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In this paper, we optimize the geometries of some 2D photonic crystal waveguides to increase
their single-mode bandwidths for TE and TM polarizations. Using the Plane Wave Expansion
(PWE) method combined with optimization algorithm, we find the local maxima as well as the
global maximum. A photonic crystal waveguide geometry is proposed which has a single-mode
normalized bandwidth of 41% for TM polarization. This value is about 7% greater than the corre-
sponding value for the commonly used square lattice of dielectric rods in which a row is removed.
Also, some waveguide geometries are proposed for TE polarization and it is shown that one of
these geometries can provide a single-mode bandwidth of 39%, while the widest bandwidth re-
ported so far for the TE case is 21%. The dielectric material used for both cases is GaAs with a di-
electric constant of 11.4.
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1. Introduction

Photonic crystals (PCs) are periodic dielectric structures that under certain condi-
tions prohibit the propagation of electromagnetic waves of certain frequency bands.
This phenomenon provides the ability of controlling and manipulating the flow of
light [1]. Mathematically speaking, PCs can be periodic in one, two or three dimen-
sions. There also exist types which are referred to as slab PCs. Slab PCs are periodic
in two dimensions and have a finite thickness in the other dimension. If the thick-
ness is chosen large enough, usually ten times larger than the lattice constant [2], the
3D slab structure can be approximated by a 2D PC, which has the same index pro-
file. It is interesting to mention that there also exists a local optimum thickness
which maximizes the bandgap. 2D numerical analysis using effective index in addi-
tion to applying a light cone can be used in this case. Either type of mentioned 2D
PCs have been implemented and used. In our simulations, we focus our study on the
former case.
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A 2D PC structure may have a photonic bandgap for TE, TM or both polariza-
tions. Usually, a triangular lattice of dielectric holes with a radius of 0.3a, where a is
the lattice constant, is used for TE polarization and a square lattice of dielectric rods
with a radius of 0.2a is used for TM polarization. Annular PCs can be used to obtain
complete bandgaps [3]. PCs are used to design optical filters, resonators, waveguides,
multiplexers, logical gates, etc. [4–6]. Waveguides are realized by introducing a line
defect in the PC structure [7]. Since waveguides are the basic elements of optical cir-
cuits, it is desired to increase their bandwidths as much as possible.

Since the guiding modes of a waveguide lies within the bandgap of the corre-
sponding PC, having a large bandgap PC is a necessary condition to obtain a large
bandwidth waveguide. For TM polarization, a triangular or square lattice of dielectric
rods provides a large bandgap [1]. Conventional TM waveguides are realized by re-
moving a row in a square lattice of dielectric rods [1]. For a square lattice of GaAs
circular rods with a dielectric constant of 11.4 and a rod radius of 0.19a, the obtained
waveguide has a relatively large bandwidth of 33.8% when normalized to its mid-
frequency. A Kagome lattice of dielectric rods can also provide large bandgaps for
TM polarization and can be used for designing single-mode waveguides [8, 9]. How-
ever, since the guiding mode is located at higher frequencies, the normalized band-
width becomes less than the corresponding value for the square lattice of dielectric
rods in which one column is removed. Adding a dielectric slab in the square lattice
can further increase the bandwidth [10]. As it will be shown in this paper, the best
waveguide structure, which provides a large single-mode bandwidth for TM polariza-
tion, is a triangular lattice of dielectric rods in which a row of rods is replaced by
a dielectric slab.

For TE polarization, a triangular lattice of holes of 0.45a radius creates the largest
bandgap. However, in order to avoid the structure to become fragile, a radius of 0.3a
is often used. Unlike TM waveguides, several methods have been proposed in the
literature for increasing the bandwidths of TE waveguides [11–13]. These methods
try to maximize the bandwidth by optimizing the parameters of the line defect or the
adjacent rows assuming other holes to have a radius of 0.3a. Combining these meth-
ods, a waveguide geometry is obtained which increases the single-mode bandwidth
to 21% [14].

In order to have a wide bandwidth waveguide, the parameters of the defect region
should be chosen carefully. In this paper, an optimization algorithm is used to obtain
the optimum structure. This algorithm searches the space of some predefined input
variables and finds the local maxima as well as the global maximum. The 2D PWE
method is used to calculate the single-mode bandwidth of waveguides. Here, we show
that a combination of a dielectric strip waveguide and a triangular lattice of dielectric
rods can provide a better performance than the conventionally used square lattice PCs
for TM polarization. Furthermore, we introduce some geometries that nearly double
the maximum bandwidth obtained for TE polarization.

The paper is organized as follows. Section 2 describes the optimization algorithm
used. The optimization geometries used are described in Section 3, while Section 4



Optimization of two-dimensional photonic crystal waveguides... 645

provides the optimization results for TM polarization. In Section 5, we first summa-
rize the methods reported in the literature for increasing the TE waveguides band-
widths and then we present our optimization results for TE waveguides. Finally, Sec-
tion 6 is devoted to the conclusions.

2. The optimization algorithm

Several algorithms can be used for optimization, such as genetic algorithms [15],
simulated annealing [16, 17] and gradient descent [15]. These algorithms tend to find
the global optimum solution. However, they may be trapped temporarily in local op-
tima. The local optima are sometimes nearly as important as the global one. In this
paper, an algorithm has been used which specifies the global optimum as well as the
local optima.

The optimization algorithm has three phases. During the first phase, the space of
input variables is searched using a random basis method, and the fitness function is
computed for each of these points. The fitness function determines the normalized
single-mode bandwidth of each waveguide structure and it is defined as 

�ω
/
ω

0, whereω
0 is the mid-frequency of the waveguide and 

�ω
 specifies its frequency bandwidth.

In the second phase, another algorithm receives these randomly generated input points
and their respective fitness values, and estimates the whereabouts of the local maxima.
In the final phase, for fine-tuning purpose, theses estimations are fed to a gradient
algorithm for finding the exact values of the local maxima.
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Fig. 1. A typical super-cell with a cell width of 9a in a square lattice of dielectric rods having a radius of
0.19a in which a column is omitted (a). Calculated normalized bandwidth for TM polarization vs. cell-width
for the waveguide shown in Fig. 1a (b).

In order to use the PWE method for single-mode bandwidth calculation, a unit cell
should be chosen [12]. Waveguides are periodic in one dimension, while the PWE
method can only be used for structures that are periodic in two dimensions. To over-
come this problem, we can use a super-cell, with a large cell-width, as shown in
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Fig. 1a, and assume that the waveguide is periodic in two dimensions. Figure 1b il-
lustrates the effect of cell-width on the calculated single-mode bandwidth of the
waveguide shown in Fig. 1a. The dielectric is assumed to be GaAs with a dielectric
constant of 11.4. The radius of the rods is 0.19a, where a is the lattice constant. Fig-
ure 1b shows that as the cell-width increases, the bandwidth approaches its final value
(which is obtained when the cell-width tends to infinity). However, the error caused
by the limited cell-width is negligible in the optimization process. For example, using
a cell-width of 7a the calculated bandwidth still has two significant digits. In our cal-
culations, the super cell dimension is chosen equal to 9a to guarantee less than 1%
error. The flowchart of fitness calculation is demonstrated in Fig. 2. For a predefined
unit cell with some geometrical input variables, a two dimensional dielectric constant
matrix is constructed. Next, the discrete Fourier series of this matrix is calculated.
Using all or the truncated form of this matrix, the PWE method is used to calculate the
band diagram of the unit cell [19]. Finally, the normalized single-mode bandwidth
(normalized to its mid-frequency) is calculated using the band diagram. This calcu-
lated value is provided in the output as the fitness value. Figure 3 depicts the band
diagram of the structure shown in Fig. 1a. In this band diagram, the boundaries of
single-mode region are represented by 

ω
1 and 

ω
2. Here the fitness value, defined as�ω

/
ω

0, is equal to 33.8%.
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Fig. 3. The band diagram of the waveguide shown in Fig. 1a.
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3. Optimization geometries

Among the conventional lattice configurations, square and triangular lattices are most
commonly used. The waveguide structures that we consider for optimization and their
corresponding unit cells are shown in Fig. 4. A super cell width of 9a is used for PWE
analysis. As shown in Fig. 4, each structure has three optimization parameters. The
first parameter (Var1) is related to the central region of the waveguide. The second
parameter (Var2) is assigned to the adjacent rods that have a significant effect on the
waveguide bandwidth. The third parameter (Var3) is the radius of other rods in the PC
which determines the position and width of the bandgap. For TM polarization, the

Fig. 4. Simulation parameters and the unit cell chosen for each case. Triangular lattice of dielectric rods
combined with a dielectric strip (a), triangular lattice of dielectric rods (b), square lattice of dielectric rods
combined with a dielectric strip (c), square lattice of dielectric rods (d), triangular lattice of dielectric rods
with a row displaced half of the lattice constant (e), square lattice of dielectric rods with a row displaced
half of the lattice constant (f).

(a) (b)

(c) (d)

(e) (f)
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gray parts of the structures shown in Fig. 4 are assumed to be GaAs with a dielectric
constant of 11.4 and the background is assumed to be air. For TE polarization, the
gray parts are assumed to be air and the rest is dielectric. Note that in Fig. 4, the
diameter of rods (holes) is represented by 2 × Var1 and 2 × Var2, and the thickness of
the strips (in Figs. 4a and 4c) is denoted by Var1.

Figure 4a is a combination of a triangular lattice of dielectric rods and a strip
waveguide. Figure 4b is a triangular lattice of dielectric rods in which the radius of central
rods is different. Part (c) depicts a square lattice of dielectric rods combined with a strip
waveguide which has replaced the central row. Part (d) also shows a square lattice of
dielectric rods in which the radius of the central row is chosen as an optimization parame-
ter. In parts (e) and (f) a row has been shifted half of the lattice constant.

4. Increasing the waveguide bandwidth for TM polarization

All of the previously mentioned structures are optimized by the proposed algorithm to
find the local and global maximums. The optimization corresponding to the structures
shown in Fig. 4 are presented in Table 1. In this table, the first row of each section
shows the fitness values. The second, third, and forth rows specify the values of Var1,
Var2 and Var3, respectively. In each section, the second column corresponds to the
global optimum and the following columns correspond to local optimums whose fit-
nesses are at least 70% of the global maximum. They are sorted in descending order of
their fitness values. In fact, there exist much more local optimums which due to their
poor fitness values are not listed in the table.

Table 1. Global and local maximums of fitness parameter obtained for the geometries shown in Fig. 4
and assuming TM polarization.

Global Maximum Local Max. 1 Local Max. 2 Local Max. 3

1 2 3 4 5

(a) Triangular lattice of dielectric rods combined with a dielectric strip

fitness 0.412 0.407 0.402 0.342

Var1 0.20 0.15 0.31 0.04

Var2 0.21 0.18 0.25 0.20

Var3 0.20 0.16 0.24 0.21

(b) Triangular lattice of dielectric rods

fitness 0.314 0.271 0.291 *

Var1 0.00 0.10 0.00 *

Var2 0.16 0.00 0.19 *

Var3 0.17 0.29 0.18 *

(c) Square lattice of dielectric rods combined with a dielectric strip

fitness 0.380 0.344 * *

Var1 0.20 0.00 * *

Var2 0.20 0.20 * *

Var3 0.20 0.19 * *
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1 2 3 4 5

(d) Square lattice of dielectric rods

fitness 0.344 0.311 0.265 *

Var1 0.00 0.00 0.11 *

Var2 0.20 0.13 0.25 *

Var3 0.19 0.15 0.28 *

(e) Triangular lattice of dielectric rods with a row displaced half of the lattice constant

fitness 0.348 0.300 0.255 *

Var1 0.06 0.10 0.10 *

Var2 0.16 0.24 0.00 *

Var3 0.17 0.22 0.31 *

(f) Square lattice of dielectric rods with a row displaced half of the lattice constant

fitness 0.373 0.372 * *

Var1 0.08 0.05 * *

Var2 0.19 0.16 * *

Var3 0.20 0.17 * *

Table 1(a) illustrates the optimization results corresponding to the structure shown
in Fig. 4a. It is interesting to mention that without the strip waveguide, the triangular
lattice of dielectric rods does not provide a large single-mode bandwidth. In column 2,
values of the geometrical variables corresponding to the global optimum are provided.
It is important to note that the radius of rods for the global optimum of Table 1(a) is
nearly the same as the commonly used radius of rods in a square lattice. Considering
the fabrication and lithography resolution, the radii of the rods and the width of the
strip waveguide have acceptable values.
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0.24a instead of 0.2a, making it easier for implementation. The strip waveguide also
has a width equal to 0.31a which is quite reasonable regarding the implementation
concerns. Figure 5a shows the band diagram corresponding to this local optimum. As
it can be seen, a wide-band single-mode geometry with approximately constant group-
delay has been obtained. As shown in Fig. 5a, the guiding mode is located between
frequencies 0.26(a/λ) and 0.39(a/λ) and so the normalized value of the single-mode
bandwidth is equal to 40%. Each of the optimized variables is swept in the neighbor-
hood of the optimum point while the remaining two variables are held constant to get
a better overview of the proposed topologies sensitivities to the parameter variation.
The results are presented in Fig. 5b as three sensitivity curves.

In Table 1(b), the fourth column shows another local optimum. This local optimum
indicates that removing a single row (Var1 = 0) in a triangular lattice of dielectric rods
provides a waveguide with fitness lower than the conventional TM waveguide realized
in a square lattice of PC. This may be the main reason that for TM polarization most of
the research has been dedicated to square lattices. The global maximum in Table 1(d) is
very similar to the conventional choice which is recommended in the literature.
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The overall maximum fitness is obtained for a triangular lattice of dielectric rods
combined with a strip waveguide of Var1 = 0.2, Var2 = 0.21 and Var3 = 0.2 (global
maximum in Table 1(a)). Figure 6a shows the band diagram of this global optimum
waveguide. The normalized bandwidth of this waveguide is equal to 41.2%. Figure 6b
illustrates the sensitivity curves related to the optimum waveguide presented in
Table 1(a). It can be concluded from this figure that the fitness function variation is
relatively low for small changes of the fabrication variables around their optimum
values. As an example, for a 5% deviation in each variable, the values of fitness func-
tions still remain above 40%. This gives some sort of robustness to the design. The
fitness value obtained in this case (normalized bandwidth of 41.2%) is about 7% more
than the fitness value of a conventional TM waveguide. The conventional waveguide
for TM polarization is realized by removing a row in a square lattice of rods. This
waveguide has a maximum single-mode bandwidth of 34.4%, as it can be seen in
Table 1(d). Table 1(c) also provides a global maximum with a large fitness function
value (38%) for the combination of a square lattice and a strip waveguide. Its band
diagram and sensitivity curves are shown in Fig. 7a and Fig. 7b, respectively. Al-
though Table 1(e) and Table 1(f) provide large bandwidths, they correspond to small
feature sizes, which make them unsuitable from the implementation point of view.

5. Increasing the waveguide bandwidth for TE polarization

In order to obtain a wide-band waveguide for TE polarization, PCs with large band-
gaps are needed. A triangular lattice of air holes in a dielectric environment can pro-
vide a large bandgap for TE polarization. For GaAs, the maximum bandgap occurs
when the radius of PC holes is 0.45a. This makes the structure too fragile. Therefore,
in most applications a radius of 0.3a is used instead. Conventional TE waveguides are
realized by filling a single row in the above mentioned PC. ADIBI  et al. tried to in-
crease the bandwidth of conventional TE waveguides by optimizing the radii of the
holes adjacent to the defect (see Fig. 8a) [11], [12].
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Fig. 9. The structure proposed in [14], the gray part is dielectric with 11.4 dielectric constant while
rd = 0.22a, radj = 0.38a and the radii of other holes are assumed to be 0.3a (a), the resulting band
diagram (b).

Yamada et al. showed that shifting one row half of the lattice constant can also
create a large bandwidth waveguide [13]. They optimized the radii of the shifted line
defect to maximize the bandwidth. Combining the methods proposed in [11–13], the
radii of the holes in line defect as well as the adjacent holes were optimized simulta-
neously to further increase the bandwidth. By this improvement, a normalized band-
width of 21% can be obtained [14]. Figure 9 shows the structure proposed in [14] and
its band diagram.

For TE polarization, rod type PCs do not provide large bandgaps. Hence, we
choose the same geometries as in Fig. 4 for optimization, but in this case the gray
sections of each structure are assumed to be air and the rest is dielectric. The optimi-
zation results are shown in Table 2. This table shows that the best results belong
to parts (a) and (e), having bandwidths of 39.5% and 34.6%, respectively. Figures 10
and 11 show the band diagrams and sensitivity curves of these two waveguides,
respectively.
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Fig. 11. The band diagram corresponding to the global maximum of Table 2(e) (a), and its sensitivity curves (b).

Table 2. Global and local maximums of fitness parameter obtained for the geometries shown in Fig. 4
and assuming TE polarization.

Global Maximum Local Max. 1 Local Max. 2 Local Max. 3

1 2 3 4 5

(a) Triangular lattice of dielectric air combined with an air strip

fitness 0.395 0.269 * *

Var1 0.45 0.29 * *

Var2 0.42 0.36 *

Var3 0.35 0.30 * *

(b) Triangular lattice of air holes

fitness 0.313 0.289 0.248 0.190

Var1 0.55 0.50 0.49 0.22

Var2 0.29 0.38 0.31 0.44

Var3 0.33 0.33 0.29 0.43

(c) Square lattice of air holes combined with an air strip

fitness 0.106 0.101 * *

Var1 0.47 0.04 * *

Var2 0.42 0.41 * *

Var3 0.40 0.39 * *

(d) Square lattice of air holes

fitness 0.104 0.104 0.101 0.086

Var1 0.20 0.04 0.49 0.25

Var2 0.44 0.39 0.43 0.49

Var3 0.43 0.38 0.43 0.39

(e) Triangular lattice of air holes with a row displaced half the lattice constant

fitness 0.346 0.255 * *

Var1 0.48 0.44 * *

Var2 0.33 0.34 * *

Var3 0.35 0.32 * *
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1 2 3 4 5

(f) Square lattice of air holes with a row displaced half the lattice constant

fitness 0.111 0.110 0.108 *

Var1 0.45 0.03 0.12 *

Var2 0.41 0.42 0.45 *

Var3 0.41 0.41 0.41 *

Table 2(a) corresponds to a PC of triangular holes in a dielectric medium, from
which a strip of dielectric has been removed. In the global optimum case, Var3 is
equal to 0.35a, while for the local maximum it is equal to 0.3a. From the implementa-
tion point of view, the radius of 0.35a is not so large to make the structure fragile, but
it can provide a bandwidth which is nearly double the one reported in [14]. The local
maximum 1 in Table 2(a) has an optimum hole radius of 0.3a, which is equal to the
hole radii used in [11–14], but its bandwidth is 5% greater than the best result reported
in [14].

For the global optimum of Table 2(b), the radius of line-defect holes (Var1) has
become so large that the holes join together and form a structure similar to Fig. 4a.
Tables 2(c), 2(d) and 2(f) do not provide large bandwidth waveguides. The maximum
bandwidth obtained in these cases does not exceed 11%. Table 2(e) is the optimization
result of a triangular lattice of air holes, in which a row is displaced half of the lattice
constant. The global and first local maximums of this structure provide single-mode
bandwidth of 34.6% and 25.5%, respectively, while they have acceptable parameters.

6. Conclusions

A wide variety of PC waveguide structures has been investigated in order to obtain
wide-band single mode TM and TE waveguides. All structures have been optimized
using an algorithm that finds the global optimum as well as the local optimums. We
have shown that in comparison with the global optimum, some local optimums can
provide moderately wide bandwidths, while the radii of their holes/rods make the
implementation easier. To our best knowledge, these local optimums are reported for
the first time. For TM polarization, a single-mode waveguide with a bandwidth of
41% was proposed. This value is about 7% greater than the single-mode bandwidth of
conventional TM waveguides. For TE polarization, a waveguide with 39% bandwidth
was proposed. This bandwidth is nearly double the best result that has been reported
in the literature.
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