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In this paper, we optimize the geometries of sorBephotonic crystal waveguides to increase
their single-mode bandwidths for TE and TM polati@as. Using the Plane Wave Expansion
(PWE) method combined with optimization algorithwe find the local maxima as well as the

global maximum. A photonic crystal waveguide geamést proposed which has a single-mode
normalized bandwidth of 41% for TM polarization.i¥lvalue is about 7% greater than the corre-
sponding value for the commonly used square latfagielectric rods in which a row is removed.

Also, some waveguide geometries are proposed fopdl&rization and it is shown that one of

these geometries can provide a single-mode bankvafiB9%, while the widest bandwidth re-

ported so far for the TE case is 21%. The dielectraterial used for both cases is GaAs with a di-
electric constant of 11.4.
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1. Introduction

Photonic crystals (PCs) are periodic dielectrizctres that under certain condi-
tions prohibit the propagation of electromagneteves of certain frequency bands.
This phenomenon provides the ability of controllimgd manipulating the flow of
light [1]. Mathematically speaking, PCs can be peid in one, two or three dimen-
sions. There also exist types which are referreaistelab PCs. Slab PCs are periodic
in two dimensions and have a finite thickness i ¢ther dimension. If the thick-
ness is chosen large enough, usually ten timesiahgn the lattice constant [2], the
3D slab structure can be approximated by a 2D R@g¢hwhas the same index pro-
file. It is interesting to mention that there alsrists a local optimum thickness
which maximizes the bandgap. 2D numerical analysiag effective index in addi-
tion to applying a light cone can be used in ttdsec Either type of mentioned 2D
PCs have been implemented and used. In our siman&gtive focus our study on the
former case.
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A 2D PC structure may have a photonic bandgap for TE, TM or both polariza-
tions. Usually, a triangular lattice of dielectric holes withadius of 0.8, wherea is
the lattice constant, is used for TE polarization and a squaice laftdielectric rods
with a radius of 0.2 is used for TM polarization. Annular PCs can be used to obtain
complete bandgaps [3]. PCs are used to design optical filters, respmaveguides,
multiplexers, logical gates, etc. [4-6]. Waveguides are realized mdirting a line
defect in the PC structure [7]. Since waveguides are the Hasiems of optical cir-
cuits, it is desired to increase their bandwidths as much as possible.

Since the guiding modes of a waveguide lies within the bandgap of the corre-
sponding PC, having a large bandgap PC is a necessary condition to obtga a la
bandwidth waveguide. For TM polarization, a triangular or square |aitideslectric
rods provides a large bandgap [1]. Conventional TM waveguides are delayize-
moving a row in a square lattice of dielectric rods [1]. Fog@ase lattice of GaAs
circular rods with a dielectric constant of 11.4 and a rod radius o&,0H® obtained
waveguide has a relatively large bandwidth of 33.8% when normalized toidt
frequency. A Kagome lattice of dielectric rods can also provides laedgaps for
TM polarization and can be used for designing single-mode waveguides {&v8].
ever, since the guiding mode is located at higher frequencies, the izedniaand-
width becomes less than the corresponding value for the square ddittigelectric
rods in which one column is removed. Adding a dielectric slab in the staitice
can further increase the bandwidth [10]. As it will be shown in phiser, the best
waveguide structure, which provides a large single-mode bandwidth fgolaviza-
tion, is a triangular lattice of dielectric rods in which a rowrads is replaced by
a dielectric slab.

For TE polarization, a triangular lattice of holes of @4&dius creates the largest
bandgap. However, in order to avoid the structure to become fragileua cdd).2
is often used. Unlike TM waveguides, several methods have been proposed in the
literature for increasing the bandwidths of TE wgwiees [11-13]. These methods
try to maximize the bandwidth by optimizing the aeters of the line defect or the
adjacent rows assuming other holes to have a radi0s3a. Combining these meth-
ods, a waveguide geometry is obtained which increases the singlebaiodi@idth
to 21% [14].

In order to have a wide bandwidth waveguide, the parameters of thot efion
should be chosen carefully. In this paper, an optimization algorithm dstosebtain
the optimum structure. This algorithm searches the space of seuefiped input
variables and finds the local maxima as well as the global maximiben2D PWE
method is used to calculate the single-mode bandwidth of waveguideswédesikow
that a combination of a dielectric strip waveguide and a triancattézd of dielectric
rods can provide a better performance than the conventionally used sdticeePICs
for TM polarization. Furthermore, we introduce some geometries tlaaly ouble
the maximum bandwidth obtained for TE polarization.

The paper is organized as follows. Section 2 describes the optonizdgiorithm
used. The optimization geometries used are described in Section 3,Sebilen 4
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provides the optimization results for TM polarization. In Section 5filse summa-

rize the methods reported in the literature for increasing thevaeguides band-
widths and then we present our optimization results for TE waveguithedlyFSec-

tion 6 is devoted to the conclusions.

2. The optimization algorithm

Several algorithms can be used for optimization, such as genetidthatgo{15],
simulated annealing [16, 17] and gradient descent [15]. These algoréhchiotfind
the global optimum solution. However, they may be trapped temporarily indpea
tima. The local optima are sometimes nearly as important agldbal one. In this
paper, an algorithm has been used which specifies the global optimuell as the
local optima.

The optimization algorithm has three phases. During the first plesspace of
input variables is searched using a random basis method, and the fitmetgm is
computed for each of these points. The fitness function determinegstitalized
single-mode bandwidth of each waveguide structure and it is defimad/as, where
wo is the mid-frequency of the waveguide akd specifies its frequency bandwidth.
In the second phase, another algorithm receives these randomly geimgratt@dints
and their respective fitness values, and estimates the whereabtut local maxima.
In the final phase, for fine-tuning purpose, theses estimations ér® fa gradient
algorithm for finding the exact values of the local maxima.
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Fig. 1. A typical super-cell with a cell width o&9n a square lattice of dielectric rods having a radius of
0.1% in which a column is omittecy). Calculated normalized bandwidth for TM polariaatvs. cell-width
for the waveguide shown in Figa1b).

In order to use the PWE method for single-mode bandwidth calculation, @elini
should be chosen [12]. Waveguides are periodic in one dimension, while the PWE
method can only be used for structures that are periodic in two dimenBmoser-
come this problem, we can use a super-cell, with a large adtfrwas shown in
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Fig. 1a, and assume that the waveguide is periodic in two dimensions. Figllke 1
lustrates the effect of cell-width on the calculated single-mioaiedwidth of the
waveguide shown in Fig.al The dielectric is assumed to be GaAs with a diele
constant of 11.4. The radius of the rods is ,1¢herea is the lattice constant. Fig-
ure b shows that as the cell-width increases, the bandwidth approazfieslivalue
(which is obtained when the cell-width tends to infinity). However, tiher &€aused
by the limited cell-width is negligible in the optimization process. &ample, using

a cell-width of & the calculated bandwidth still has two significant digits. In our cal
culations, the super cell dimension is chosen equahtm Quarantee less than 1%
error. The flowchart of fithess calculation is demonstrated gn ZiFor a predefined
unit cell with some geometrical input variables, a two dimensioe#atric constant
matrix is constructed. Next, the discrete Fourier series ofntlaisix is calculated.
Using all or the truncated form of this matrix, the PWE methoded ts calculate the
band diagram of the unit cell [19]. Finally, the normalized single-mode bdtrdw
(normalized to its mid-frequency) is calculated using the band diadnaiw.calcu-
lated value is provided in the output as the fitness value. Figure 3démcband
diagram of the structure shown in Figa. In this band diagram, the boundaries of
single-mode region are representeddayand w,. Here the fitness value, defined as
Awlwo, is equal to 33.8%.

Geometrical | Calculate Calculate Calculate

parameters |the DFT band single- .

of the —» matrix of diagram mode Fitness

structure super cell using band- value
PWE width

Fig. 2. The flowchart of fithess calculation.
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3. Optimization geometries

Among the conventional lattice configurations, square and triangulaetatie most
commonly used. The waveguide structures that we consider for optonizatd their
corresponding unit cells are shown in Fig. 4. A super cell width of @seid for PWE
analysis. As shown in Fig. 4, each structure has three optimizatiamgiars. The
first parameter (Varl) is related to the central region ofvtheeguide. The second
parameter (Var2) is assigned to the adjacent rods that hagweifecant effect on the
waveguide bandwidth. The third parameter (Var3) is the radius of mttigin the PC
which determines the position and width of the bandgap. For TM polariz#tien,
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gray parts of the structures shown in Fig. 4 are assumed to bewgales dielectric
constant of 11.4 and the background is assumed to be air. For TE paaritad
gray parts are assumed to be air and the rest is dielectrie.thit in Fig. 4, the
diameter of rods (holes) is represented by 2 x Varl and 2 x Varhathidkness of
the strips (in Figs.&and £) is denoted by Varl.

Figure 4 is a combination of a triangular lattice of diétec rods and a strip
waveguide. Figureblis a triangular lattice of dielectric rods in which the wadf central
rods is different. Parc] depicts a square lattice of dielectric rods camatiwith a strip
waveguide which has replaced the central row. (@ralso shows a square lattice of
dielectric rods in which the radius of the centeaV is chosen as an optimization parame-
ter. In parts€) and f) a row has been shifted half of the lattice conista

4. Increasing the waveguide bandwidth for TM polarization

All of the previously mentioned structures are optimized by the propdgedtlam to

find the local and global maximums. The optimization corresponding to thewses

shown in Fig. 4 are presented in Table 1. In this table, the firsofaach section
shows the fitness values. The second, third, and forth rows specifgities of Varl,

Var2 and Var3, respectively. In each section, the second column correspahds
global optimum and the following columns correspond to local optimums whese fit
nesses are at least 70% of the global maximum. They are sorted in descendinfy order o
their fitness values. In fact, there exist much more local optinwinish due to their

poor fitness values are not listed in the table.

Table 1. Global and local maximums of fithess parameter obitémethe geometries shown in Fig. 4
and assuming TM polarization.

Global Maximum Local Max. 1 Local Max. 2 Local Max. 3
1 2 3 4 5
(a) Triangular lattice of dielectric rods combined with dediic strip
fitness  0.412 0.407 0.402 0.342
Varl 0.20 0.15 0.31 0.04
Var2 0.21 0.18 0.25 0.20
Var3 0.20 0.16 0.24 0.21
(b) Triangular lattice of dielectric rods
fitness 0.314 0.271 0.291 *
Varl 0.00 0.10 0.00 *
Var2 0.16 0.00 0.19 *
Var3 0.17 0.29 0.18 *
(c) Square lattice of dielectric rods combined with a digtestrip
fitness  0.380 0.344 * *
Varl 0.20 0.00 * *
Var2 0.20 0.20 * *

Var3 0.20 0.19 * *
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1 2 3 4 5
(d) Square lattice of dielectric rods

fitness 0.344 0.311 0.265 *
Varl 0.00 0.00 0.11 *
Var2 0.20 0.13 0.25 *
Var3 0.19 0.15 0.28 *
(e) Triangular lattice of dielectric rods with a row dig@d half of the lattice constant
fitness  0.348 0.300 0.255 *
Varl 0.06 0.10 0.10 *
Var2 0.16 0.24 0.00 *
Var3 0.17 0.22 0.31 *
(f) Square lattice of dielectric rods with a row displaceld dfethe lattice constant
fitness  0.373 0.372 * *
Varl 0.08 0.05 * *
Var2 0.19 0.16 * *
Var3 0.20 0.17 * *

Table 1(a) illustrates the optimization results corresponding tsttheture shown
in Fig. 4a. It is interesting to mention that without the strip waveguide, thagular
lattice of dielectric rods does not provide a large single-mode bdtidvm column 2,
values of the geometrical variables corresponding to the global optineupncaided.
It is important to note that the radius of rods for the global optimuirabfe 1(a) is
nearly the same as the commonly used radius of rods in a squaee latnsidering
the fabrication and lithography resolution, the radii of the rods and thé widhe
strip waveguide have acceptable values.
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Fig. 5. Band diagram of the second local optimum in Table &(a@nd its sensitivity curve®.

An interesting result in Table 1(a) concerns the 2nd local maximsnfitiess
value is very close to the fitness of the global optimum, whileatieis of PC rods is
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0.24a instead of 0.2, making it easier for implementation. The strip waveguide also
has a width equal to 0.8lwhich is quite reasonable regarding the implementation
concerns. Figureabshows the band diagram corresponding to this local optimum. As
it can be seen, a wide-band single-mode geometry with approximatetgrog®up-
delay has been obtained. As shown in Fa.tGe guiding mode is located between
frequencies 0.26(1) and 0.39/1) and so the normalized value of the single-mode
bandwidth is equal to 40%. Each of the optimized variables is swem imeighbor-
hood of the optimum point while the remaining two variables are heldarurist get

a better overview of the proposed topologies sensitivities to the paravaeiation.

The results are presented in Fif.d&s three sensitivity curves.

In Table 1(b), the fourth column shows another llopdimum. This local optimum
indicates that removing a single row (Varl = Ogiftriangular lattice of dielectric rods
provides a waveguide with fitness lower than theveational TM waveguide realized
in a square lattice of PC. This may be the maisaedhat for TM polarization most of
the research has been dedicated to square laffivegylobal maximum in Table 1(d) is
very similar to the conventional choice which isaemended in the literature.
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Fig. 6. @) Band diagram for the global maximum of Table 1(a).I{s sensitivity curves.
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The overall maximum fitness is obtained for a triangular latifcgielectric rods
combined with a strip waveguide of Varl = 0.2, Var2 = 0.21 and Var3 = 0.2 (global
maximum in Table 1(a)). FigureaGhows the band diagram of this global optimum
waveguide. The normalized bandwidth of this wavegus equal to 41.2%. Figurd 6
illustrates the sensitivity curves related to thatimum waveguide presented in
Table 1(a). It can be concluded from this figurattthe fithess function variation is
relatively low for small changes of the fabrication variablesuad their optimum
values. As an example, for a 5% deviation in each variable, the \dlfieress func-
tions still remain above 40%. This gives some sort of robustness tesign. The
fitness value obtained in this case (normalized bandwidth of 41.2%) is &houore
than the fitness value of a conventional TM waveguide. The conventiomabuide
for TM polarization is realized by removing a row in a squaréc&if rods. This
waveguide has a maximum single-mode bandwidth of 34.4%, as it can be seen in
Table 1(d). Table 1(c) also provides a global maximum with a langes§ function
value (38%) for the combination of a square lattice and a stripguale Its band
diagram and sensitivity curves are shown in Fg.aid Fig. B, respectively. Al-
though Table 1(e) and Table 1(f) provide large bandwidths, they correspomélto s
feature sizes, which make them unsuitable from the implementation point of view.

5. Increasing the waveguide bandwidth for TE polarization

In order to obtain a wide-band waveguide for TE polarization, PCs angle lband-
gaps are needed. A triangular lattice of air holes in a diedemtiiironment can pro-
vide a large bandgap for TE polarization. For GaAs, the maximum bandgays occ
when the radius of PC holes is (g49his makes the structure too fragile. Therefore,
in most applications a radius of .3 used instead. Conventional TE waveguides are
realized by filling a single row in the above mentioned PGIBAet al. tried to in-
crease the bandwidth of conventional TE waveguides by optimizing theofatie
holes adjacent to the defect (see Fa).[&1], [12].
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Yamadaet al. showed that shifting one row half of the lattice constant can also
create a large bandwidth waveguide [13]. They optimized the radii aghifted line
defect to maximize the bandwidth. Combining the methods proposed in [11-13], the
radii of the holes in line defect as well as the adjacent vades optimized simulta-
neously to further increase the bandwidth. By this improvement, a norchabrel-
width of 21% can be obtained [14]. Figure 9 shows the structure proposkd ampl
its band diagram.

For TE polarization, rod type PCs do not providegéabandgaps. Hence, we
choose the same geometries as in Fig. 4 for opithoiz, but in this case the gray
sections of each structure are assumed to be @ithanrest is dielectric. The optimi-
zation results are shown in Table 2. This table shows that therdsedts belong
to parts (a) and (e), having bandwidths of 39.5% and 34.6%, respectively. HiQures
and 11 show the band diagrams and sensitivity sunfethese two waveguides,
respectively.
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Table 2. Global and local maximums of fithess parameter olté@methe geometries shown in Fig. 4
and assuming TE polarization.
Global Maximum Local Max. 1 Local Max. 2 Local Max. 3
1 2 3 4 5
(a) Triangular lattice of dielectric air combined with ansiip
fitness  0.395 0.269 * *
Varl 0.45 0.29 * *
Var2 0.42 0.36 *
Var3 0.35 0.30 * *
(b) Triangular lattice of air holes
fitness  0.313 0.289 0.248 0.190
Varl 0.55 0.50 0.49 0.22
Var2 0.29 0.38 0.31 0.44
Var3 0.33 0.33 0.29 0.43
(c) Square lattice of air holes combined with an air strip
fithness  0.106 0.101 * *
Varl 0.47 0.04 * *
Var2 0.42 0.41 * *
Var3 0.40 0.39 * *
(d) Square lattice of air holes
fitness  0.104 0.104 0.101 0.086
Varl 0.20 0.04 0.49 0.25
Var2 0.44 0.39 0.43 0.49
Var3 0.43 0.38 0.43 0.39
(e) Triangular lattice of air holes with a row displaced tia lattice constant
fitness  0.346 0.255 * *
Varl 0.48 0.44 * *
Var2 0.33 0.34 * *
Var3 0.35 0.32 * *
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1 2 3 4 5
(f) Square lattice of air holes with a row displaced Haflattice constant

fitness  0.111 0.110 0.108 *
Varl 0.45 0.03 0.12 *
Var2 0.41 0.42 0.45 *
Var3 0.41 0.41 0.41 *

Table 2(a) corresponds to a PC of triangular holes in a dieles&iium, from
which a strip of dielectric has been removed. In the global optimum &as3 is
equal to 0.3, while for the local maximum it is equal to 8.3 rom the implementa-
tion point of view, the radius of 0.83s not so large to make the structure fragile, but
it can provide a bandwidth which is nearly double the one reported in [14]oddle
maximum 1 in Table 2(a) has an optimum hole radius &, @Bich is equal to the
hole radii used in [11-14], but its bandwidth is 5% greater than the baktraported
in [14].

For the global optimum of Table 2(b), the radiusliogé-defect holes (Varl) has
become so large that the holes join together and form a strigitoitar to Fig. 4.
Tables 2(c), 2(d) and 2(f) do not provide large bandwidth waveguides. The maximu
bandwidth obtained in these cases does not exceed 11%. Table 2(@pisntiwation
result of a triangular lattice of air holes, in which a rowligplaced half of the lattice
constant. The global and first local maximums of this structure preindge-mode
bandwidth of 34.6% and 25.5%, respectively, while they have acceptable parameters.

6. Conclusions

A wide variety of PC waveguide structures has been investigatedien tr obtain
wide-band single mode TM and TE waveguides. All structures havedptienized
using an algorithm that finds the global optimum as well as the ¢gtahums. We
have shown that in comparison with the global optimum, some local optimams c
provide moderately wide bandwidths, while the radii of their holes/roalsenthe
implementation easier. To our best knowledge, these local optimumsparted for
the first time. For TM polarization, a single-mode waveguide witbaadwidth of
41% was proposed. This value is about 7% greater than the single-mode tiadwid
conventional TM waveguides. For TE polarization, a waveguide with 39% bdufdwi
was proposed. This bandwidth is nearly double the best result that hazperad

in the literature.
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