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The concept of a certain class of optical image digital representations presented in
this paper is based on weighted optical moments. The current state of investigations
on such nonorthogonal representations is reported. The optimal reconstruction pro-
cedure is given for the general case. The reconstruction-accuracy improvement by
means of approximation based on Chebyshev polynomials is presented.

Introduction

An important problem in the optical/digital image processing and recognition
is the choice of a proper mathematical representation of either intensity or
complex amplitude distribution. There is no universal representation for all
kinds of objects and operations. Such a representation, on the one hand, should
be easily and accurately realized in the optical processor (for this reason it seems
promising to apply the representations based on nonorthogonal transforms)
and, on the other hand, supply the maximal amount of information in a limited
quantity of digital data. The respective digital transformations and reconstruc-
tion procedures should be realized in a fast, simple and accurate way. For this
reason, the orthogonal representations are more suitable, particularly when
various operations on matrices are required [1].

The optical moments seem to assure the desired compatibility of both
optical and digital processings [2-4]. These moments may be calculated in
optical processors [5, 6]. Such representations may be orthogonalized in a partic-
ularly simple way. The relations among the moments and the image [7], the
Fourier transform of the image [8], and the rotated, translated or rescaled
image [9] are straightforward.

The aim of this paper is to present the generalized method of the optimal
image reconstruction from the image weighted moments. Part Il will present
the possibilities of digital image processing connected with this representation.

* This work has been carried on under the Research Projeot M.R. 1.5.
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2. The reconstruction of the object from its moments

The moments of the distribution f(x, y) are defined as
Mm = JJ f(x, y)xpypdxdy, Q)

provided that the integral (1) is convergent.
In 1980 Teague proposed a method of reconstruction [9] based on the expan-
sion into Legendre series. He assumed f{x,y) in the following form:

KnF,M)P,A 2
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whereP m[x) and P n(y) arc the Legendre polynomials, which satisfy the ortliogo-
nalization conditions

f P,Ix)Pm(x)dx = omm, )

and 6mm is the Kronecker’s delta. The coefficients Xm may be calculated as
follows :

— Jz2” 1T f ffix,y)Pm(x)Pn(y)dxdy. (4)
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The relation between two series: {AT“"} and {!,,,,} is straightforward, since the
Legendre polynomials may be expressed in the form of power series

m
PM =2 M , 5
4 (5)

coefficients cm being given in [10]. Equations (4) and (5) yield

Tnn @' +1f ,+1) (6)

and the final approximation may be realized with truncated series (2). The
fact thatf(x, y) is limited to the area P] < 1and W\< 1lis not crucial, asf{x, y)
can always be rescaled to disappear outside that region.
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3. The reconstruction accuracy

Teague presented in [9] some examples of reconstruction of simple pixel distri-
butions from their moments. To examine the accuracy of this method we shall
show the reconstruction of a step function (the 1-D case)

) 0 for —1< X< 0
H(x
1 for O0< x< 1. (7)

This elementary example illustrates the limitations of the method. In Table 3
we may see the rms error

+1 +i 112

1/ [/(>)~F(x)T-dxl £ [f(x)fdx\ )

(where f(x) denotes the approximation series (2) truncated and limited to 1-D),
and the maximum deviation parameter

V = max I/(")-f(x)\ 9)

for various orders of the representation. Both parameters may be treated as
the measures of reconstruction errors.

Table 1. Values of the rms error e and maximum devia-
tion v for the reconstructions of unit step function H (x)
from its usual moments with Legendre polynomials
series of various orders P

P 3 5 7 9
e 0.298 0.258 0.239 0.218
V] 0.1875 0.1562 0.1367 0.1229

Table 2. Values of e and y> for the reconstructions
of H(x) from its moments with weighting function
w(x) = IV (1 —x2 corresponding to the Chebyshev
approximation series of order P

P 3 5 7 9
e 0.292 0.251 0.232 0.211
g 0.1001 0.0941 0.0909 0.0906

Figure 1 shows the reconstructions of H(x) from representations of various
eorders p. Since the errors and deformations of f{x) with respect to 11(x) cannot
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be suppressed simply by increasing the order of representation and approxima-
tion series, it seems that the final effect may be improved by modifying either
the reconstruction method or the representation.

Fig. 1. Reconstructions of a unit step function H (x) from its usual moments up to the order:
P m 3 (curve 1), P = 5 (curve 2), P = 7 (curve 3), P = 9 (curve 4)

4, The representation of the function by its weighted moments

The proposed solution of the reconstruction problem is based on the application
of the weighted distribution moments

M*tt = ff f(x, y)w{X, y)xpyQxdy (20)

rather than usual moments (1). The w(x,y) — weighting function — should
preserve the convergence of the integral. The proposed solution is a general-
ization of Teague’s approach.

Let us assume now that f(x, y) may be approximated by f(x, y), where

p
/<m») -*m . »>-2 éauA i O Wjy), (11
i-0 j-o0

and the polynomials {Wf(®)} and {Wj(y)} are orthogonal over the approxima-
tion area | with the weighting functions wx(x) and ww(y), respectively

/ Wm(x)Wmwx(x)dx Nf 12
2

and, similarly, for {Wj(y)}.
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The approximation is understood as a minimization process of

o= //[/(*>V)-/(*>y)?w{X, y)dxdy
E
. (13)
=J7[/(r" ~¢L 21 anWi{r)Wj(y)]1 y)dxdy
X 1=0;=0
where w(x,y) = wx(X)wv{y). The minimization means that
da for i = O, 1, 14
dau e’ i =0, 1, 4)

Applying the conditions given in (14) to (13) we get a set of (P + 1) (Q + 1) equa-
tions for afj

J X, y)w{X,y) Wp{x)Wqx)dxdy
2

P (15)
£ £QQ av If V(T y)WI(X)W () Wp(x)Wedy) dxdy.

i=0j=

Noting the separability of w(x, y) and orthogonality of both Wt(x) and W}(y)
we obtain (P + 1)(Q + 1) independent equations

// f(@a>, y)w(xty)Wp{x)Waq{y)dxdy
) (16)
apag
The important feature of the reconstruction based on orthogonal polynomials
is that the increasing reconstruction order is not accompanied with any change
of the coefficients {ai;} calculated previously for lower orders. This accounts
for the independence of all am in (16). In order to calculate the integrals from

(16) let us assume the expansion of each polynomial TH,(r) and Wq{y) into
the. power series

Wp(x) = ]? cpkxk, Wq(y) = 21 cdylm @7
k=0 ¢=0
In fact, most of the polynomials commonly used for approximation purposes
may be expressed in this way. Application of these series to the integrals in (16)
yields

P 1

= AV PkeQI I /(< Y)W, y)xkyldxdy. (18)
k=0 1=0
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The term-by-term integration of the series is permissible, due to the limited
area of integration and convergence of the integrands. Finally, if we assume
f(x,y) =0 beyond Z7,then the integration on the right-hand side may be extended
over the whole (x, y) plane. The integrals become identical with the respective
weighted moments (10). This assumption is justified by the conditions of mo-
ment's existence (i.e., the integral convergence).

The final result is a simple expression of approximation coefficients in terms
of weighted moments

(19)

Setting Wp{x) = Pp(x), WQy) = Pg{y) and w{x, y) = 1 we get the solution
proposed by Teague.

5. The application of orthogonal Chebyshev polynomials

Definition (10) generates a class of nonorthogonal representations based on
weighted moments. Equations (11) and (19) make possible the reconstruction
of the original distribution, provided that a set of proper orthogonal polynomials
is known for given w(x,y) and Z7.

In order tg verify the idea of weighted moments’ representation, the distri-
bution H(x) (Eq. (7)) was reconstructed from various representations with
different w(x,y).

H(x)t i.321

Qa5

Fig. 2. Reconstructions of U (x) from its moments with aweighting function w(x) = 1/1(1 —x~);
P — the maximum order of the moments involved (P = 3 (curve 1), P = 5 (curve 2),
P = 7 (curve 3), P = 9 (curve 4))
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Table 2 gives the results (parameters e and y for the reconstruction of H(x)
from the representation with weighting function w(x) = 1/A1—a?I/2, correspond-
ing to the orthogonal set of Chebyshev polynomials T](x), where [10]

1 0 for to + to,
Tm(x) Tm{x) dx = 4t for to = to' = O, 20
—{ (1—x312 nj2 for to = o + 0O,
and similarly for {Tj(y)}. The reconstructed distribution is shown in Fig. 2.
The improvement is due to the well-known properties of Chebyshev polynomials,
widely applied in the solutions of approximation problems (sec, for example,

[11]):

6. The examples of two-dimensional reconstructions

Further investigations included the reconstructions of non-complicated 2-D
distributions. Figure 3 shows a lateial view of the distribution f(x, y) = rect
(x) rect (y) reconstructed from its moments up to the order 10 +10, with weight-

Fig. 3. Side view of the 2-D reconstruction oif(x,y) —rect(e) rect(y) from its usual mo-
ments up to the order 10+ 10
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ing function w(x, y) = 1. Figure 4a shows the cross-section of this reconstruc-
tion along the axis x — vy (referred to as r), compared with the reconstruc-
tions of lower orders. The respective e and yvalues (the 2-D analogies of Eq. (8)
and Eq. (9)) are given in Table 3a. The similar cross-sections of the same object
reconstructed from its moments with weighting function w(x,y) — 1/[(1—x2
X (I—y2)12 are shown in Fig. 4b. Parameters e and y-for these reconstruc-

tions are given in Table 3b. The case of a smooth function/(a;,y) = exp(—x2
exp{—y2 is shown in Figs. 5a, b and in Table 4a, b.

Fig. 4. Cross-sections (x —y) of f(x,y) —rect(x) reet(;/) from its moments: (a) usual,
(b) weighted with w(x, y) = 11 (1 —x2 (1 —y2), with maximum orderP + P (r = =V x2X Yy2;
------- accurate values, ........ P-fP = 949, — — — — — P +P = 7+ 7, — —

P+P - 5+ 5
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Table 3a. Values of y and e for the 2-D reconstructions
of f(X, y) = rect (&)rect (y) from its usual moments up
to the order P+ P

9
0.531 0.312 0.183 0.122
0.673 0.425 0.301 0.228

Table 3b. Values of y and efor the 2-D reconstructions
of f(x,y) = rect(X)rect{y) from its moments with
weighting function w(x,y) = /1M1 —x2(1—y2 up
to the order P + P

P ~3 5 7 9
0.472 0.271 0.104 0.073
0.551 0.402 0.152 0.130

Fig. 5. Cross-section (along X axis) off(x,y) exp(—x2 exp (—y2 from its moments:
(a) usual, (b) weighted with w(x, y) — ANV (1- x2(l —y)2 with maximum order P + P
(y = 0); accurate values, (------- . P+P = 7 + 7, ceemmmemeeee P+F = 5+5,
----- P+P = 3+ 3
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Table 4a. Values of y and e for the 2-D reconstructions
of f(x,y) = exp(—a2exp(—y-) from its usual mo-
ments up to the order P + P

P 3 5 7 9
\VJ 0.393 0.272 0.192 0.081
e 0.532 0.373 0.167 0.158

Table 4b. Values of y>and £for the 2-D reconstructions
off(x, y) = exp (- x2exp (--Y3 from its moments with
a weighting function w(x,y) = I/VAl —x2)(l-y 2 up
to the order P-J-P

P 3 5 7 9
\V; 0.364 0.209 0.161 0.072
E 0.301 0.123 0.107 0.051

7. Conclusions

As it was shown above, the accuracy of the reconstruction of an object from
its nonorthogonal, moment-based representation may be improved by the
introduction of a weighting function, which enables the choice of proper ap-
proximating polynomials. In the case of the weighting function w(x,y)
— [ —,r2(1 —y2]~-12 which implies the approximation with Chebyshev
polynomials, the improvement is obvious, mainly at the edges of the reconstruct-
ed area. Since the information contained at such a representation is — for the
same order of representation — more precise when compared with that for
usual moments, this representation seems to be a better discrimination space for
image classification. The calculation of optical weighted moments requires
the adoption of the processor presented in [5].
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MprMeHeHVe B3BelLleHHbIX MOMEHTOB A5 KOAUPOBaHUS, AeKOAMPOBAHMS U NMpeo6pa3oBaHus
n3o6paxkeHnii. YacTb |. PeKOHCTPYKLUS WN306pa)KEHWSI HO ero B3BelUeHHbIM MOMeHTaM

[ nckyTupyetcs HEKOTOPbIN Kacc YMCNEHHbIX MPeAcTaBneHWii ONTUYECKOro M306padKeHUsl, OCHOBaHHbIX
Ha B3BeELLEHHbIX MOMeHTax pacnpefefeHVs HanpsHKeHUst UM KOMIMIEKCHOW amnanTygbl. O6Cy>KaeHo
CyLLecTBYylOLLIeE [0 CMX MMOP COCTOSIHWE WCCMefioBaHUi 3TOro Tuna HeopTOroHalbHbIX MPeAcTaBneHNA.
[aHa onTumanbHas npoueaypa-peKoOHCTPYKUUW Anst o6Liero cnydas. [lokasaHo MoBbilLeHWe TOYHOCTU
PEKOHCTPYKLMM MPU NPUMeEHEHUN Mpoueaypbl, OCHOBaHHOW Ha anmnpokcumMauuu MHorodneHamn Yebbl-
LueBa Mo CPaBHEHWIO C UCMOMb3yeMbIMU A0 CUX MOP MHoroudneHamu JlexxaHapa.



