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Application of weighted moments to image coding, 
decoding and processing. Part I. Reconstruction 
of an image from its weighted moments*
Adam Heimeath

Institute of Physics, Technical University of Wroclaw, Wybrzeże Wyspiańskiego 27, 
50-370 Wrocław, Poland.

The concept of a certain class of optical image digital representations presented in 
this paper is based on weighted optical moments. The current state of investigations 
on such nonorthogonal representations is reported. The optimal reconstruction pro­
cedure is given for the general case. The reconstruction-accuracy improvement by 
means of approximation based on Chebyshev polynomials is presented.

1. Introduction
An important problem in the optical/digital image processing and recognition 
is the choice of a proper mathematical representation of either intensity or 
complex amplitude distribution. There is no universal representation for all 
kinds of objects and operations. Such a representation, on the one hand, should 
be easily and accurately realized in the optical processor (for this reason it seems 
promising to apply the representations based on nonorthogonal transforms) 
and, on the other hand, supply the maximal amount of information in a limited 
quantity of digital data. The respective digital transformations and reconstruc­
tion procedures should be realized in a fast, simple and accurate way. For this 
reason, the orthogonal representations are more suitable, particularly when 
various operations on matrices are required [1].

The optical moments seem to assure the desired compatibility of both 
optical and digital processings [2-4]. These moments may be calculated in 
optical processors [5, 6]. Such representations may be orthogonalized in a partic­
ularly simple way. The relations among the moments and the image [7], the 
Fourier transform of the image [8], and the rotated, translated or rescaled 
image [9] are straightforward.

The aim of this paper is to present the generalized method of the optimal 
image reconstruction from the image weighted moments. Part I I  will present 
the possibilities of digital image processing connected with this representation.

* This work has been carried on under the Research Projeot M .R. 1.5.
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2. The reconstruction of the object from its moments
The moments of the distribution f (x,  y) are defined as

M m =  J J  f (x,  y)xpypdxdy, (1)

provided that the integral (1) is convergent.
In 1980 Teague proposed a method of reconstruction [9] based on the expan­

sion into Legendre series. He assumed f {x ,y )  in the following form:

KnF „M)P,Ay)  (2)
rn = 0 71 = 0

whereP m[x) and P n(y) arc the Legendre polynomials, which satisfy the ortliogo- 
nalization conditions

f  P , J x )P m,(x)dx = ômm,, (3)

and ômm, is the Kronecker’s delta. The coefficients Xmn may be calculated as 
follows :

—  J 2” 1' f  f  f i x , y )Pm(x )Pn(y)dxdy. (4)
-1  -1

The relation between two series: {AT“" } and {!„,„} is straightforward, since the 
Legendre polynomials may be expressed in the form of power series

m
P M  =  Z M ,  (5)

» = 0

coefficients cmi being given in [10]. Equations (4) and (5) yield

1in n (2" + 1 f ,+ 1 ) (6 )

and the final approximation may be realized with truncated series (2). The 
fact that f ( x ,  y) is limited to the area |*| <  1 and \y \ <  1 is not crucial, as f {x ,  y) 
can always be rescaled to disappear outside that region.
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3. The reconstruction accuracy
Teague presented in [9] some examples of reconstruction of simple pixel distri­
butions from their moments. To examine the accuracy of this method we shall 
show the reconstruction of a step function (the 1-D case)

H(x )
0 for

1 for

— 1 <  x <  0 

0 <  x <  1.
(7)

This elementary example illustrates the limitations of the method. In Table 3 
we may see the rms error

1
+1 _ +i 11/2
/ [/(·>’) ~f(x)T-dxl f  [ f (x ) fdx\  (8)

(where f ( x )  denotes the approximation series (2) truncated and limited to 1-D), 
and the maximum deviation parameter

V =  max l/(·'')- f (x )\  (9)

for various orders of the representation. Both parameters may be treated as 
the measures of reconstruction errors.

T a b le  1. Values of the rms error e and maximum devia­
tion v’ for the reconstructions of unit step function H  (x) 
from its usual moments with Legendre polynomials 
series of various orders P

P 3 5 7 9
e 0.298 0.258 0.239 0.218

V 0.1875 0.1562 0.1367 0.1229

T a b le  2. Values of e and y> for the reconstructions 
of H (x) from its moments with weighting function

w(x) =  IV  (1 — x2) corresponding to 
approximation series of order P

the Chebyshev

P  3 5 7 9
e 0.292 0.251 0.232 0.211

y> 0.1001 0.0941 0.0909 0.0906

Figure 1 shows the reconstructions of H(x )  from representations of various 
• orders p. Since the errors and deformations of f {x)  with respect to 11 (x) cannot
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be suppressed simply by increasing the order of representation and approxima­
tion series, it seems that the final effect may be improved by modifying either 
the reconstruction method or the representation.

Fig. 1. Reconstructions of a unit step function H (x) from its usual moments up to the order: 
P  ■· 3 (curve 1), P  =  5 (curve 2), P  => 7 (curve 3), P  =  9 (curve 4)

4. The representation of the function by its weighted moments
The proposed solution of the reconstruction problem is based on the application 
of the weighted distribution moments

M*tt =  f f  f ( x ,  y)w{x, y)xpyQdxdy (10)

rather than usual moments (1). The w(x,y )  — weighting function — should 
preserve the convergence of the integral. The proposed solution is a general­
ization of Teague’s approach.

Let us assume now that f ( x ,  y) may be approximated by f (x ,  y), where

p  Q

/< ■ .» )  - * ■ . » > - 2  S aij^ i (x) Wj (y) ,  (11)
i-0  j -o

and the polynomials {W f (®)} and {Wj(y)} are orthogonal over the approxima­
tion area I  with the weighting functions wx(x) and wv(y), respectively

/  Wm(x)Wm,wx(x)dx m̂mf (12)
2

and, similarly, for {Wj(y)}.
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The approximation is understood as a minimization process of

o =  //  [/(*> V) -/(·*’> y)?w{x, y)dxdy
E

P  Q

=  J 7 [/ (r ’ ~ ¿L 21 anWi { r )Wj(y) ]1 y)dxdy
x i=0;=0

where w(x ,y ) =  wx(x)wv{y). The minimization means that

da for i =  0, 1 ,
dau ° ’ j  =  0, 1,

(13)

(14)

Applying the conditions given in (14) to (13) we get a set of (P  +  1) (Q +  1) equa­
tions for a{j

J f  f{x,y)w{x,y) Wp{x)Wq(x)dxdy 
2

P Q

=  £  £  av f  f  v' (-r ’ y)Wi(x)Wj(y)Wp(x)Wq{y)dxdy.
i = 0 j = Q 2

(15)

Noting the separability of w(x, y) and orthogonality of both Wt(x) and W} (y) 
we obtain (P  +  1)(Q +  1) independent equations

// f(a>, y)w(xt y)Wp{x)Wq{y)dxdy

apa<j
(16)

The important feature of the reconstruction based on orthogonal polynomials 
is that the increasing reconstruction order is not accompanied with any change 
of the coefficients {ai;·} calculated previously for lower orders. This accounts 
for the independence of all am in (16). In order to calculate the integrals from 
(16) let us assume the expansion of each polynomial TFi,(r) and Wq{y) into 
the. power series

Wp(x) =  ] ?  cpkxk, Wq(y) =  21 calyl ■ (17)
k= 0 ¿=0

In fact, most of the polynomials commonly used for approximation purposes 
may be expressed in this way. Application of these series to the integrals in (16) 
yields

P 1

=  ^  V  cPkcQi J J / («, y )w (‘x, y)xkyldxdy. (18)
k = o 1=0
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The term-by-term integration of the series is permissible, due to the limited 
area of integration and convergence of the integrands. Finally, if we assume 
f ( x , y ) = 0  beyond 27, then the integration on the right-hand side may be extended 
over the whole (x, y) plane. The integrals become identical with the respective 
weighted moments (10). This assumption is justified by the conditions of mo­
ment’s existence (i.e., the integral convergence).

The final result is a simple expression of approximation coefficients in terms 
of weighted moments

Setting Wp{x) =  P p(x), WQ(y) =  P q{y) and w{x, y) =  1 we get the solution 
proposed by Teague.

Definition (10) generates a class of nonorthogonal representations based on 
weighted moments. Equations (11) and (19) make possible the reconstruction 
of the original distribution, provided that a set of proper orthogonal polynomials 
is known for given w(x,y )  and 27.

In order tg verify the idea of weighted moments’ representation, the distri­
bution H(x )  (Eq. (7)) was reconstructed from various representations with 
different w(x,y) .

H(x)t ¡ . 3 2 1

(19)

5. The application of orthogonal Chebyshev polynomials

0.5

0

Fig. 2. Reconstructions of U  (x) from its moments with a weighting function w (x) =  1/1(1 — x~); 
P  — the maximum order of the moments involved (P  =  3 (curve 1), P  =  5 (curve 2), 
P  =  7 (curve 3), P  =  9 (curve 4))
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Table 2 gives the results (parameters e and y>) for the reconstruction of H(x )  
from the representation with weighting function w(x) =  1 /( 1 — æ2)l/2, correspond­
ing to the orthogonal set of Chebyshev polynomials T](x), where [10]

/-1
T m(x)Tm,{x)

1
(1 —X2)1'2

dx =
0 for to +  to' , 
ti for to =  to' =  0, 
n¡2 for to =  to' +  0,

(20 )

and similarly for {Tj(y)}. The reconstructed distribution is shown in Fig. 2. 
The improvement is due to the well-known properties of Chebyshev polynomials, 
widely applied in the solutions of approximation problems (sec, for example, 
[11])·

6. The examples of two-dimensional reconstructions
Further investigations included the reconstructions of non-complicated 2-D 
distributions. Figure 3 shows a lateial view of the distribution f ( x ,  y) =  rect 
(x) rect (y) reconstructed from its moments up to the order 10 +10, with weight-

Fig. 3. Side view of the 2-D reconstruction o i f ( x , y )  — rect(æ) rect(ÿ ) from its usual m o­
ments up to the order 10 +  10
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ing function w(x, y) =  1. Figure 4a shows the cross-section of this reconstruc­
tion along the axis x — y (referred to as r), compared with the reconstruc­
tions of lower orders. The respective e and y> values (the 2-D analogies of Eq. (8) 
and Eq. (9)) are given in Table 3a. The similar cross-sections of the same object 
reconstructed from its moments with weighting function w(x,y)  — 1/[(1— x2) 
x ( l — y2] )1'2 are shown in Fig. 4b. Parameters e and y> for these reconstruc­

tions are given in Table 3b. The case of a smooth function/(a;, y) =  exp( — x2) 
exp{ —y2) is shown in Figs. 5a, b and in Table 4a, b.

Fig. 4. Cross-sections (x — y) of f ( x , y )  — rect(x) reet (;/) from its moments: (a) usual, 

(b) weighted with w (x, y) =  11 (1 — x2) (1 — y2), with maximum order P  +  P  (r =  ± V x 2-\- y2;
-------accurate values, ......... P - f P  =  9 + 9 , — — — — — P  +  P  =  7 +  7, — —
P  +  P  -  5 +  5)
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T a b le  3a. Values of y and e for the 2-D reconstructions 
of f ( x ,  y) =  rect (a;) rect (y) from its usual moments up 
to the order P + P

9

0.531 0.312 0.183 0.122
0.673 0.425 0.301 0.228

T a b le  3b. Values o f y and e for the 2-D reconstructions 
of f ( x , y )  =  rec t (x )rec t{y) from its moments with 

weighting function w (x,y )  =  1/1^(1 — x2) (1 — y2) up 
to the order P  +  P

P  ~ 3  5 7 9

0.472 0.271 0.104 0.073

0.551 0.402 0.152 0.130

Fig. 5. Cross-section (along x axis) o f f (x ,y )  
(a) usual, (b) weighted with w(x, y) — 1/V' (1 -
(y =  0); accurate values, (------- ..
- - - - -  P  +  P  =  3 +  3)

exp ( — x2) exp ( — y2) from its moments:

x2) ( l  — y)2, with maximum order P  +  P  
P  +  P  =  7 + 7 , --------------P  +  F  =  5 + 5 ,
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T a b le  4a. Values of y and e for the 2-D reconstructions 
of f ( x , y )  =  exp ( — a:2)e x p ( — y-) from its usual mo­
ments up to the order P  +  P

P 3 5 7 9

V 0.393 0.272 0.192 0.081

e 0.532 0.373 0.167 0.158

T a b le  4b. Values of y> and £ for the 2-D reconstructions
of f ( x ,  y) =  exp ( —  x2) exp ( -- y2) from its moments with

a weighting function w (x,y )  =  l/V^l —x2) ( l - y 2) up
to the order P-J-P

P 3 5 7 9

V 0.364 0.209 0.161 0.072

E 0.301 0.123 0.107 0.051

7. Conclusions
As it was shown above, the accuracy of the reconstruction of an object from 
its nonorthogonal, moment-based representation may be improved by the 
introduction of a weighting function, which enables the choice of proper ap­
proximating polynomials. In the case of the weighting function w(x ,y )  
— [(1 — ,r2) ( l  — y2)]~1/2 which implies the approximation with Chebyshev 
polynomials, the improvement is obvious, mainly at the edges of the reconstruct­
ed area. Since the information contained at such a representation is — for the 
same order of representation — more precise when compared with that for 
usual moments, this representation seems to be a better discrimination space for 
image classification. The calculation of optical weighted moments requires 
the adoption of the processor presented in [5].
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Применение взвешенных моментов для кодирования, декодирования и преобразования 
изображений. Часть I. Реконструкция изображения но его взвешенным моментам

Д искутируется некоторый класс численных представлений оптического изображения, основанных 
на взвешенных моментах распределения напряжения или комплексной амплитуды. Обсуждено 
существующее до сих пор состояние исследований этого типа неортогональных представлений. 
Дана оптимальная процедура-реконструкции для общего случая. Доказано повышение точности 
реконструкции при применении процедуры, основанной на аппроксимации многочленами Чебы­
шева по сравнению с используемыми до сих пор многочленами Лежандра.


