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Abstract
Background: With an increase of the number of features in a vehicle, the computational re-
quirements also increase, and vehicles may contain up to 100 Electronic Control Units (ECUs) to
accommodate these requirements. For cost-effectiveness reasons, amongst others, it is considered
desirable to limit the growth of, or preferably reduce, the number of ECUs. To that end, mixed
criticality is a promising approach that received a lot of attention in the literature, primarily from
a theoretical perspective.
Aim: In this paper, we address mixed criticality from a practical perspective. Our prime goal is
to extend an OSEK-compliant real-time operating system (RTOS) with mixed criticality support,
enabling such support in the automotive domain. In addition, we aim at a system (i) supporting
more than two criticality levels; (ii) with minimal overhead upon an increase of the so-called
criticality level indicator of the system; (iii) requiring no changes to an underlying operating
system; and (iv) featuring further extensions, such as hierarchical scheduling and multi-core.
Method: We used the so-called adaptive mixed criticality (AMC) scheme as a starting point for
mixed criticality. We extended that scheme from two to more than two criticality levels (satisfying
(i)) and complemented it with specified behavior for criticality level changes. We baptized our
extended scheme AMC*. Rather than selecting a specific OSEK-compliant RTOS, we selected
ExSched, an operating system independent external CPU scheduler framework for real-time
systems, which requires no modifications to the original operating system source code (satisfying
(iii)) and features further extensions (satisfying (iv)).
Results: Although we managed to build a functional prototype of our system, our experience
with ExSched made us decide to rebuild the system with a specific OSEK-compliant RTOS, being
µC/OS-II. We also briefly report upon our experience with AMC* and suggest directions for
improvements.
Conclusions: Compared to extending ExSched with AMC*, extending µC/OS-II turned out to be
straightforward. Although we now have a basic system operational and available for experimentation,
enhancements of the AMC*-scheme are considered desirable before exploitation in a vehicle.
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1. Introduction

A growing trend in the automotive domain is
a feature intensive vehicle. These features may
be safety related, driver assistance related, con-
nected services, or multimedia and entertainment

related. With an increase of the number of fea-
tures, the computational requirements also in-
crease. Nowadays, a vehicle may be controlled by
over 100 million lines of code, that are executed
on up to 100 Electronic Control Units (ECUs) [1].
For reasons of cost, space, weight, and power con-
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sumption, amongst others, adding more ECUs is
undesirable. Instead, even a reduction of ECUs
is preferred, with appropriate means for (tempo-
ral and spatial) isolation between applications,
efficient and effective resource management, as-
surance against failure, and graceful degrada-
tion upon overloads. Given the distinct critical-
ity levels of these features, e.g. safety critical,
mission critical, and low-critical, application of
mixed criticality theory and practice [2] may be
beneficial. Within the context of the i-GAME [3]
and EMC2 projects1, we therefore explored the
option to apply mixed criticality. Whereas there
exists an overwhelming number of papers on
mixed criticality, the majority addresses theo-
retical aspects, with a focus on schedulability
analysis. Although some address implementation
aspects, such as [4], only a few present actual
implementations extending an operating system,
such as [5–7]. None of these aim at the automo-
tive domain, however, which is the main focus of
this paper.

In this paper, we report upon our initial ef-
forts to extend an OSEK-compliant [8] real-time
operating system (RTOS) for a single-core with
support for mixed criticality. In addition, we aim
at a system (i) supporting more that two criti-
cality levels; (ii) with minimal overhead upon an
increase of the so-called criticality level indicator
of the system; (iii) requiring no changes to an
underlying operating system; and (iv) featuring
further extensions, such as hierarchical schedul-
ing and multi-core.

For our mixed criticality scheme, we selected
an existing scheme, Adaptive Mixed Critical-
ity (AMC) [9], as a basis. We extended the
scheme from two criticality levels to multiple
criticality levels (satisfying (i)), and comple-
mented it with specified behavior upon critical-
ity level changes. Rather than selecting a spe-
cific OSEK-compliant operating system, we se-
lected ExSched [10]. ExSched is an operat-
ing system independent external CPU sched-
uler framework for real-time systems, which re-
quires no patches (i.e. modifications) to the orig-

inal operating system source code (satisfying
(iii)), unlike, for example LITMUSRT [11] and
AQUOSA [12], making it easier to update to
newer kernel versions. Moreover, ExSched sup-
ports multiple operating systems, in particular
Linux and VxWorks, and comes with hierarchi-
cal and multi-core schedulers (satisfying (iv)),
amongst others. In our initial experiments, we
used ExSched in combination with Linux ver-
sion 2.6.36, which we downloaded from [13], on
an Intel Core I5 processor. We intended to sub-
sequently develop support of ExSched to sup-
port an OSEK-compliant RTOS. Although we
managed to build a functional prototype of our
system, we decided to abandon ExSched, how-
ever, based on our experiences with and insights
gained during the extension of ExSched with
mixed criticality support. Our subsequent ex-
periments therefore concerned the move from
ExSched with Linux towards an OSEK-compliant
RTOS, in particular µC/OS-II [14]. We used
µC/OS-II in combination with RELTEQ (Rel-
ative Timed Event Queues) [1], which sup-
ports hierarchical scheduling (iv), amongst oth-
ers. Our final contribution concerns a reflection
on AMC*.

This journal paper is an extended version of
a workshop paper [15]. Compared to [15], this
extended version has the following two major
contributions. Firstly, it presents the extension
of µC/OS-II with mixed criticality (Section 6.2).
Secondly, it presents the experience with and the
evaluation of AMC*, including improvements of
the scheme (Section 7).

The remainder of this paper is organized as
follows. We start by a brief discussion of related
work in Section 2. Next, in Section 3, we present
our real-time scheduling model and a brief re-
capitulation of ExSched. Our extended AMC
scheme, baptized AMC*, is the topic of Section 4.
Extending ExSched with mixed criticality sup-
port is addressed in Section 5. The move from
ExSched with Linux to µC/OS-II is addressed
in Section 6. In Section 7, we reflect on AMC*.
The paper is concluded in Section 8.

1The work presented in this paper was funded in part by the EU 7th framework programme through the i-GAME
(Interoperable GCDC AutoMation Experience) project (grant agreement 612035) and the ARTEMIS Joint Undertaking
EMC2 project (grant agreement 621429).
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2. Related work

There exists a plethora of papers on mixed
criticality systems; see [2] for a review. Here,
we focus on two specific mixed criticality as-
pects, being mixed criticality schemes and ac-
tual implementations extending an operating
system, and briefly discuss existing support of
OSEK-compliant RTOSs.

Building upon the seminal work of Vestal [16],
whichwas the first paper addressing schedulability
analysis for mixed criticality systems given a basic
mixed criticality scheme, a lot of theoretical work
has been done on mixed criticality systems. The
scheme presented by Vestal consists of an ordered
set of four criticality levels. At anymoment of time,
the system is running at a particular criticality
level. The scheme describes the cause (i.e trig-
gering event) and behavior of a criticality level
up, i.e. when the system makes the transition
from a lower to a higher criticality level, but lacks
a description of a criticality level down. This initial
scheme was later refined and the schedulability of
mixed criticality systems improved by Baruah et
al. in [4, 9, 17], amongst others. Although the re-
striction on the number of criticality levels is lifted
in these later works, the description of the latest
scheme [9] called adaptivemixed criticality (AMC)
and its analysis has been restricted to two levels
for simplicity. The cause and behavior of a crit-
icality level down was first described in [4]. The
AMC scheme was later relaxed in [18] at the cost
of increased implementation complexity. In this
paper, we therefore selected AMC as a basis. For
a detailed comparison of the schemes mentioned
above, the interested reader is referred to [19,20].

Whereas a lot of papers address theoretical
aspects, only a few papers describe actual imple-
mentations extending an operating system with
mixed criticality support, such as [5–7]. Kim
et al. [6] studied the actual implementation of
a criticality level change in the RTOS eCOS [21],
with the aim to minimize the scheduler overheads.
They assume a mixed criticality scheme with two
criticality levels. Herman et al. [5] describe RTOS
support for multi-core mixed criticality systems,

using the academic RTOS LITMUSRT [11], an
extension to the Linux kernel. The number of
criticality levels assumed in that work is four. Kri-
tikakou et al. [7] describe support for multi-core
mixed criticality systems using their own devel-
oped bare-metal library [22]. In their model, only
a single task of a high criticality level is assumed.
To the best of our knowledge, there does not exist
an OSEK-compliant [8] RTOS with an extension
for mixed criticality, which is the focus of this
paper.

There exist many OSEK-compliant RTOSs,
such as ETAS RTA-OSEK2, µC/OS-II [14], and
Erika Enterprise RTOS3. The specification of
the OSEK operating system [8] explicitly states
that the “OSEK operating system is a single
processor operating system meant for distributed
embedded control units”. An OSEK-compliant
RTOS may therefore provide support for hierar-
chical scheduling and multi-core, but need not
provide such support. As examples, both ETAS
RTA-OSEK and µC/OS-II provide neither hierar-
chical scheduling nor multi-core support, whereas
Erika Enterprise RTOS only provides multi-core
support. An extension of µC/OS-II with hierar-
chical scheduling has been described in [23]. To
the best of our knowledge, there does not exist
an OSEK-compliant RTOS providing support for
both hierarchical scheduling and multi-core. In
this paper, we focus on µC/OS-II, because we
gained significant experience with that RTOS
over the past years [24–26].

3. Preliminaries

In this section, we present our real-time schedul-
ing model in Subsection 3.1 and a brief recap of
ExSched in Subsection 3.2.

3.1. Real-time scheduling model

After presenting a basic real-time scheduling
model for fixed-priority pre-emptive scheduling
(FPPS), we extend the model with mixed criti-
cality conform AMC [9].

2Details about ETAS RTA-OSEK can be found at http://www.etas.com.
3Details about Erika Enterprise OS can be found at http://www.tuxfamily.org.

http://www.etas.com
http://www.tuxfamily.org
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3.1.1. Basic model for FPPS

We assume a single processor and a set T of n
independent sporadic tasks τ1, τ2, . . ., τn, with
unique priorities π1, π2, . . ., πn. At any moment
in time, the processor is used to execute the
highest priority task that has work pending. For
notational convenience, we assume that (i) tasks
are given in order of decreasing priorities, i.e. τ1
has the highest and τn the lowest priority, and
(ii) a higher priority is represented by a higher
value, i.e. π1 > π2 > · · · > πn.

Each task τi is characterized by a minimum
inter-activation time Ti ∈ R+, a worst-case
computation time Ci ∈ R+, and a (relative)
deadline Di ∈ R+. We assume that the con-
stant pre-emption costs, such as context switches,
are subsumed into the worst-case computation
times. We assume constrained deadlines, i.e. the
deadline Di may be smaller than or equal to
period Ti. The utilization Ui of task τi is given
by Ci/Ti, and the utilization U of the set of tasks
T by

∑
1≤i≤n Ui.

We also adopt standard basic assump-
tions [27], i.e. tasks do not suspend themselves
and a job does not start before its previous job
is completed.

3.1.2. Extended model for mixed criticality

We assume a set L of m criticality levels4 Λ1, Λ2,
. . ., Λm. For notational convenience, we assume
that (i) criticality levels are given in order of de-
creasing criticality, i.e. Λ1 represents highest and
Λm represents lowest criticality, and (ii) a higher
criticality level is represented by a higher value,
i.e. Λ1 > Λ2 > . . . > Λm.

Each task τi has a particular criticality level
λi ∈ L, termed its representative criticality level.
We now define subsets T Λ of T , i.e.

T Λ def= {τi|λi ≥ Λ} (1)
When the system is executing at criticality level
Λ, i.e. the criticality level indicator Γ is equal to

Λ, the processor is used to execute only tasks in
the subset T Λ.

Moreover, the worst-case computation time
of a task τi becomes a vector ~Ci indexed by
criticality level. These computation times are
monotonically non-decreasing for increasing crit-
icality levels, i.e.

Λk ≤ Λ` ≤ λi ⇒ ~Ci(Λk) ≤ ~Ci(Λ`) (2)

The actual execution time of the current job of
task τi at time t is denoted by βi(t).

The following condition defines when a criti-
cality level up occurs5.
Condition 1. When a job of task τi is execut-
ing at time t while the system is running at level
Λ with Λ ≤ λi < Λ1 and the actual execution
time βi(t) equals the worst-case computation time
~Ci(Λ) of τi, a criticality level up occurs.

A criticality level down occurs upon
a so-called criticality level Λ idle time.
Definition 1. A criticality level Λ idle time is
an instant at which there is no pending load of
the tasks in T Λ.
Intuitively, a task has pending load [28] larger
than zero at time t when it has been activated
strictly before time t and did not complete yet
at time t.
Condition 2. Upon a criticality level Λ idle
time with Λ > Λm a level down change occurs.

3.2. Recapitulation of ExSched

The ExSched framework [10] is a loadable Linux
kernel module and an extension of the REal-time
SCHeduler (RESCH) framework [29]. Figure 1
shows the structural components of ExSched. An
application uses the ExSched APIs provided by
the ExSched Library in user space to commu-
nicate with the main ExSched Module in ker-
nel space. This communication takes place via
the ioctl () system call, i.e. ExSched is built as
a character-device module. The ExSched frame-
work supports development of plug-ins with the
help of callback functions. Plug-ins for hierarchi-

4In [9], a so-called dual-criticality system is assumed, i.e. m = 2. In this paper, we assume more than 2 criticality
levels.

5The AMC scheme assumes that a criticality level up is handled instantaneously.
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Figure 1. ExSched: structural components [10]

cal scheduling and multi-core scheduling are part
of ExSched’s release.

The ExSched Library provides methods to
– register/de-register tasks: rt_init () and

rt_exit();
– set parameters of tasks: rt_set_wcet(),

rt_set_period(), rt_set_deadline(), and
rt_set_- priority ();

– start a task: rt_run(); and
– activate a next job, i.e. wait (sleep) until the

next period: rt_wait_for_period().
The ExSched Module uses the POSIX-com-

pliant SCHED_FIFO scheduling policy pro-
vided by the Linux kernel. The module main-
tains its own task structure, which extends
the encapsulated Linux task structure with ad-
ditional timing parameters provided through
the ExSched Library. The ExSched Module pro-
vides a dedicated interface to install and
un-install a plug-in; see Table 1. Only one plug-in
can be installed in ExSched at the time.

4. AMC* scheme

In Subsection 3.1.2, a general model for mixed
criticality has been given, leaving specific details
unspecified, such as (i) what happens when a task
τi exceeds its worst-case computation time at its
representative criticality level, (ii) what will be
the new criticality level at which the system will
execute upon a criticality level change, and (iii)
what happens with the (jobs of the) tasks that
are no longer executed when a criticality level up
occurs and accordingly how to deal with tasks
that are again allowed to execute when a critical-

ity level down occurs. In this section, we consider
these three topics for our AMC*-scheme.

4.1. Overrun of ~Ci(λi)

For AMC*, we consider an overrun of the
worst-case computation time of a task τi at its
representative criticality level λi erroneous behav-
ior, similar to [18]. Upon such an overrun, a crit-
icality level up occurs if λi < Λ1. The behavior
is unspecified for λi = Λ1; see also Condition 1.

4.2. New criticality level upon
a criticality level change

Because an overrun at criticality level Λ1 is con-
sidered erroneous behavior and worst-case com-
putation times are monotonically non-decreasing
for increasing criticality levels (2), we consider
three cases when a criticality level up occurs,
assuming the system is executing at criticality
level Λ:
1. Λ ≤ λi < Λ1 ∧ ~Ci(Λ) = ~Ci(λi): When a task

τi overruns its worst-case computation time
at its representative criticality level λi and λi
is smaller than the highest criticality level Λ1,
the new criticality level Λnew is the smallest
criticality level larger than λi, i.e.

Λnew = min {λ ∈ L|λ > λi} (3)

2. ~Ci(Λ) < ~Ci(λi): When a task τi overruns its
worst-case computation time at the criticality
level Λ ( ~Ci(Λ)) and that computation time is
less than its worst-case computation time at
its representative criticality level λi ( ~Ci(λi)),
the new criticality level Λnew is the smallest
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Table 1. Existing API provided by the ExSched Module to install
and un-install a plug-in

Method Description

extern void install_scheduler(

Install Plug-in

void (*task_run_plugin)(resch_task_t*),
void (*task_exit_plugin)(resch_task_t*),
void (*job_release_plugin)(resch_task_t*),
void (*job_complete_plugin)(resch_task_t*)
);

extern void uninstall_scheduler(void); Un-install Plug-in

criticality level not giving rise to an overrun
for τi, i.e.

Λnew = min
{
λ ∈ L| ~Ci(Λ) < ~Ci(λ)

}
(4)

3. Unspecified behavior An overrun of ~Ci(λi)
of task τi is unspecified for λi = Λ1; see Sub-
section 4.1.

When a criticality level down occurs, the system
returns to the lowest criticality level Λm.

4.3. Policies for criticality level changes

We considered three policies for mixed criticality,
i.e. suspend, resume, and abort.
Definition 2. The suspend policy for a task (i)
temporarily does not give any execution time to
a currently active job of that task and (ii) sup-
presses new releases of jobs of that task.
Definition 3. The resume policy allows sus-
pended tasks to release new jobs.

The release of new jobs shall satisfy the con-
straints of the system, i.e. no earlier than allowed
according to the minimal inter-activation time.
Definition 4. The abort policy for a task de-
cides whether or not the current job of a sus-
pended task is discarded or allowed to continue
at a later time.

The abort policy is conditional, i.e. depending
on the context, suspended jobs of a task may, but
need not, be aborted. As an example, in a reserva-
tion-based resource management context, where
suspension is used to prevent jobs of tasks to exe-
cute upon depletion of a budget, abortion will not
be applied. In our initial experiments extending
ExSched with mixed criticality, we suspend jobs
of tasks that are no longer executed when a criti-
cality level up occurs and abort those jobs when

a criticality level down subsequently occurs. By
delaying the actual abort, we minimize overhead
upon a criticality level up.

5. Extending ExSched with mixed
criticality support

In this section, we describe our extension of
ExSched with mixed criticality support. We start
with a description of the required extensions in
Section 5.1. The design of the system is the topic
of Section 5.2. We demonstrate our implemented
system by means of an example in Section 5.3.

5.1. Basic mechanisms

To support the AMC* scheme, the following basic
mechanisms, are required:
– run-time monitoring, to keep track of the

amount of time a job of a task has spent on
execution, to detect depletion of a “budget”,
and to realize (i.e. trigger the handler for)
the criticality level up functionality;

– task-management services, i.e. the suspend,
resume, and abort policies, which have been
described in Subsection 4.3;

– idle-time detection, to realize (i.e. trigger the
handler for) the criticality level down func-
tionality.

We briefly consider these mechanisms in the fol-
lowing subsections.

5.1.1. Run-time monitoring

Run-time monitoring is a basic mechanism that
is not only required for mixed criticality, but
also for reservation-based resource management.
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Rather than incorporating run-time monitoring
in a to-be-developed AMC∗ plug-in, we therefore
decided to extend the ExSched Module.

The timers used in ExSched do not satisfy our
needs, however. In particular, the values of the
execution times are stored in so-called “jiffies”,
which is the time between two successive clock
ticks of the real-time clock. Instead of using the
(low-resolution) real-time clock, we decided to
base monitoring on high-resolution timers (pro-
vided through hrtimer.h), with a resolution in
the order of nanoseconds on an Intel Core I5
processor. The methods for run-time monitoring
are described in Table 2.

5.1.2. Task management services

The task management functionality to real-
ize criticality level changes is described in Ta-
ble 3. We believe that this functionality is of
a generic nature, i.e. that it can also be used
by other plug-ins. Moreover, in order to be
able to “hide” the specific details of the ac-
tual operating system, which is one of the de-
sign goals of ExSched [10], plug-ins shall not
be aware of specific operating system function-
ality. As a result, the ExSched Module is the
only place where this functionality can be imple-
mented.

Note that we combined the resume and abort
policy into a single primitive resume_task(). For
the AMC* implementation described in this pa-
per, we always pass a value true for the parameter
abort when calling resume_task().

The abort functionality has been imple-
mented using Linux signals, in particular the
POSIX compliant SIGUSR1 signal. Before a task
is actually resumed and only when a job of the
task has been suspended, a SIGUSR1 is sent to
the task. This allows the task to perform clean-up
activities as required when resumed.

5.1.3. Extended plug-in interface

Table 4 presents the methods that the AMC∗
plug-in provides to the ExSched Module, allow-
ing the latter to bring criticality level up and
criticality level down events to the attention of

the plug-in. We expect the methods to be of
a sufficient generic nature to justify incorporation
in the generic install-methods, e.g. to monitor
individual tasks. The description given in Table 4
is therefore from the perspective of the AMC∗
plug-in. The method to install a plug-in given
in Table 1 is extended with parameters for these
two methods.

5.2. System design

Figure 2 shows the static structure of ExSched
extended with AMC*. A similar structure has
been used for AMC* as for ExSched, i.e. a li-
brary AMC∗ Library in user space and a load-
able kernel module AMC∗ Plugin Module in ker-
nel space, using the ioctl () system call for com-
munication. Although we generalized ExSched
by extending the ExSched Module with run-time
monitoring and additional task-management ser-
vices, amongst others, its general architecture
remained unchanged, i.e. Figure 2 is an extension
of Figure 1.

The generic interfaces of the ExSched Module
towards a plug-in have been described in
the previous section. Below, we consider the
AMC∗ Library and the AMC∗ Plugin Module
in more detail. Both modules share a header file
defining a constant NO_OF_CRIT_LEVELS
denoting the number of criticality levels sup-
ported by the system.

5.2.1. AMC∗ Library

The AMC∗ Library provides a method to allow
a task τi to set its representative criticality level
λi and its worst-case computation times for each
criticality level λ ∈ L; see Table 5.

5.2.2. AMC∗ Plugin Module

The AMC∗ Plugin Module stores the represen-
tative criticality level λ of each task and the
worst-case computation time ~C of each task for
every criticality level. Moreover, it stores and
maintains the criticality level indicator Γ of the
system. In particular, it implements the handlers
for the criticality level up and criticality level
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Table 2. New local methods of the ExSched Module for run-time monitoring

Method Description

void start_monitor_timer
(resch_task_t *rt)

Start timer for a task τi denoted by
*rt for an amount of time ~Ci(Λ) −
βi(t). Both ~Ci(Λ) and βi(t) are stored
in the task’s control block.

void stop_monitor_timer
(resch_task_t *rt)

Stop timer for a task τi denoted by
*rt and update βi(t).

enum hrtimer_restart mon-
itor_expire_handler (struct
hrtimer *timer)

Interrupt handler of the timer identi-
fied by *timer.

Figure 2. ExSched extended with AMC* [19,20]

down handler, using the functionality provided
by the ExSched Module.

5.3. An example

In this section, we illustrate our system by means
of an example6, with 3 criticality levels and 4

tasks. The characteristics of the synthetic task
set are given in Table 67.

Figure 3, which has been created by means of
Grasp [30]8, shows a timeline with the executions
of the tasks. The figure shows both a criticality
level up, at time 57 ms and 61 ms, as well as
a criticality level down at time 73 ms.

6The interested reader is referred to [19,20] for other examples.
7Don’t-care values for ~C are specified as zero, i.e. λi < λ ⇒ ~Ci(λ) = 0.
8A version of Grasp is available in the ExSched distribution at http://www.idt.mdh.se/~exsched/.

http://www.idt.mdh.se/~exsched/
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Table 3. New methods provided by the ExSched Module to its plug-ins for task management

Method Description

void suspend_task
(resch_task_t *rt)

Suspends a task.

void resume_task
(resch_task_t *rt, bool abort)

Resumes a task. When abort
is true, a pending job will be
aborted.

void abort_job
(resch_task_t *rt)

Aborts the pending job of
a task.

Table 4. New methods expected by the ExSched Module from its plug-ins, i.e. callback functions,
to handle criticality level changes

Method Description

void (*monitor_expire_plugin)
(resch_task_t *rt)

Criticality-level up handler.

void (*idle_time_plugin)
(resch_task_t *rt)

Criticality-level down handler.

Table 5. AMC∗ API: Method provided by the AMC∗ Library

Method Description
int rt_set_rep_crit_level (int
rep_crit, unsigned
long[NO_OF_CRIT_LEVELS]
wcet_per_crit)

Method to set a task’s repre-
sentative criticality level and
worst-case computation time
per criticality level.

6. Moving from Linux to µC/OS-II

ExSched [10] supports both Linux and VxWorks,
but lacks support for an OSEK-compliant
real-time operating system, such as µC/OS-II or
ERIKA Enterprise [31]. In this section, we de-
scribe our efforts in moving from ExSched with
Linux to µC/OS-II. We start this section with
our experience with and evaluation of ExSched.
We subsequently consider the usage of µC/OS-II.

6.1. Experience with and evaluation of
ExSched

Based on ExSched’s features, i.e. (i) being an op-
erating system independent external CPU sched-
uler framework, (ii) providing support for tempo-
ral isolation through hierarchical scheduling, and
(iii) providing support for multi-core scheduling,
selecting ExSched for our extension with support
for mixed criticality seemed a good choice. As
illustrated by the example in Section 5.3, we

managed to build a functional prototype of our
system.

Extending ExSched with mixed criticality
support turned out to be laborious, however.
Instead of adding just a “mixed criticality”-spe-
cific plug-in, we also extended and revised the
ExSched Module, as described in Section 5.
Although the code is documented with sam-
ples illustrating its usage, critical user docu-
mentation is missing. A conference paper [10]
describes Exsched’s high-level design. Other
software engineering artifacts, such as require-
ments, specification, design and correspond-
ing tests are unavailable. As a result, the
Exsched API is hard to validate and test-
ing our mixed criticality plugin against its
API is even harder. Although we resolved
the problems with Exsched that we encoun-
tered, we did not thoroughly validate and
verify the existing functionality of ExSched.
Based on our experience, the framework is hard
to maintain.
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Table 6. Task characteristics

Task λ π
~C

T
Λ3 Λ2 Λ1

Task 1 Λ3 99 6 ms 0 ms 0 ms 45 ms
Task 2 Λ2 98 6 ms 10 ms 0 ms 50 ms
Task 3 Λ2 97 6 ms 6 ms 0 ms 50 ms
Task 4 Λ1 96 6 ms 9 ms 12 ms 60 ms

Figure 3. At time 57 ms, the job of Task 2 executed for its worst-case computation time at criticality level
Λ3 but didn’t complete yet. As a result, a criticality level up change to Λ2 occurs. At time 61 ms the job of
Task 2 executed for its worst-case computation time at its representative criticality level Λ2 but didn’t

complete yet, resulting in a criticality level up change to Λ1. The active jobs of Task 2 and Task 3 at time
61 ms are suspended due to the criticality level up. A criticality level down occurs at time 73 ms to Λ3 and

the SIGUSR1 signal is sent at that time, effectively aborting the suspended job

One of the reasons to select ExSched was the
availability of existing plug-ins, such as hierar-
chical scheduling and multi-core. As described
in Section 3.2, the current implementation only
allows to use a single plug-in at the time, however.
Whenever multiple plug-ins are desired, a major
redesign of ExSched seems to be required. Given
these experiences and gained insight, we decided
to entirely abandon ExSched for our future efforts.

6.2. Extending µC/OS-II with AMC*

In this section, we briefly describe the ratio-
nale for selecting µC/OS-II, the extension of
µC/OS-II with AMC*, and a comparison be-
tween ExSched and µC/OS-II regarding the ex-
tension with mixed criticality.

6.2.1. Background and rationale

Based on our earlier experience with the
OSEK-compliant RTOS µC/OS-II [14]9 in (i)
research [24, 25], (ii) an automotive case study
implementing and demonstrating active suspen-
sion in a Jaguar XF [26], and (iii) education,
i.e. the core course Real-time software systems
engineering (2IN70) in the master automotive
technology [32] at the TU/e, we decided to se-
lect this RTOS for our next step and to use it
in combination with RELTEQ (Relative Timed
Event Queues) [1, 23]. RELTEQ provides a gen-
eral timer management system and supports pe-
riodic tasks and a hierarchical scheduling frame-
work (HSF) in our extended implementation of
µC/OS-II; see Figure 4.

9Unfortunately, the supplier of µC/OS-II, Micrium, has discontinued the support for the OSEK-compatibility
layer.



Experience Report: Towards Extending an OSEK-Compliant RTOS with Mixed Criticality Support 315

Figure 4. Interfaces between µC/OS-II and its extension [23]. The numbers indicate the sections in [23]
describing the provided interfaces and their implementation

In our earlier work, we created a port for
µC/OS-II to the OpenRISC platform [33] to ex-
periment with the accompanying cycle-accurate
simulator and to ease development. Our set-up
also runs on a Freescale EVB9S12XF512E evalu-
ation board with a 16-bits, MC9S12XF512 pro-
cessor and 32 kB on-chip RAM.

6.2.2. Basic mechanisms and specific
AMC*-functionality

As described in Section 5.1, three sets of basic
mechanisms are required to support AMC*, run-
time monitoring, task management services, and
idle-time detection. All these mechanisms are
essentially supported through RELTEQ and our
earlier extension of µC/OS-II with an HSF.

To implement specific AMC*-functionality,
we extended the task-control block with mixed-
criticality specific information, such as the
representative criticality level λ and the vec-
tor of worst-case computation times ~C. In
addition, we provided a method similar to
rt_set_rep_crit_level (see Table 5) to set
λ and ~C. Given these mechanisms and ex-
tended data structures, implementing the specific
AMC*-functionality turned out to be straight-

forward. In particular, we implemented a ded-
icated module for AMC* with the level up
handler and the level down handler (see Ta-
ble 4). The level up handler is called from
RELTEQ, upon the detection of an overrun,
and the level down handler is called from the
OSTaskIdleHook within µC/OS-II. Support for
run-time monitoring (Table 2) and task man-
agement (Table 3) is provided by RELTEQ
and µC/OS-II, respectively. An overview of
the µC/OS-II architecture including the exten-
sions for both RELTEQ and AMC* is given
in Figure 5.

6.2.3. A comparison between ExSched
and µC/OS-II

Compared to ExSched with Linux, extending
RELTEQ and µC/OS-II with AMC* was rela-
tively easy. The only functionality implemented
in Linux that could not be supported by our
µC/OS-II extension concerned allowing a task to
perform the clean-up activities as required when
resumed, i.e. µC/OS-II lacks functionality similar
to the POSIX compliant SIGUSR1 signals. An-
other disadvantage of our extension of RELTEQ
and µC/OS-II with AMC* is that RELTEQ
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Figure 5. Interfaces between µC/OS-II, RELTEQ and AMC*

has been implemented in µC/OS-II10, and our
AMC* extension required additional changes to
µC/OS-II as well. Hence, whereas ExSched re-
quires no pathes (modifications) to the original
source code of the underlying operating system,
our support for AMC* using RELTEQ did require
modifications to µC/OS-II. Extending µC/OS-II
with AMC* without patches to the original source
code would be considerably less straightforward.

As a final remark, we merely observe that
whereas µC/OS-II inherently provides function-
ality to suspend and resume a task by means
of OSTaskSuspend() and OSTaskResume(), the
OSEK/VDX-standard [8] lacks such functional-
ity. Extending an OSEK-compliant RTOS with
mixed criticality without patches may therefore
not be trivial.

7. A reflection on AMC*

In this section, we briefly reflect on AMC*, our
mixed criticality scheme. We first report on our
experience with AMC*. We subsequently de-
scribe directions for resolving the undesirable
behavior encountered.

7.1. Experience with and evaluation of
AMC*

Within the literature, various options for im-
provement of the AMC-scheme have been pro-
posed [2, 18]. Below, we briefly report upon two
aspects we encountered while experimenting with
our implementation that have, to the best of
our knowledge, not been reported before in the
literature.

7.1.1. Erroneous and unspecified behavior

As described in Section 4.1, an overrun of the
worst-case computation time of a task τi at its
representative criticality λi is considered erro-
neous behavior. Moreover, the behavior is unspec-
ified when λi = Λ1. Figure 3 shows an example
with erroneous behavior of a job of Task 2 with
λ2 < Λ1, which gives rise to a criticality level
up conform the AMC scheme (see Condition 1).
A drawback of this behavior is that Task 3, which
has the same representative criticality level as
Task 2, is also no longer allowed to execute, and
its activation at time 50 is therefore aborted as
well. Moreover, this criticality level up is not

10Unlike the implementation of an HSF in µC/OS-II, the implementation of an HSF in VxWorks described in [34]
required no changes to the operating system.
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Figure 6. A criticality level up immediately followed by a criticality level down in AMC*

Table 7. Task characteristics

Task λ π
~C

T
Λ3 Λ2 Λ1

Task 1 Λ3 99 5 ms 0 ms 0 ms 50 ms
Task 2 Λ1 98 18 ms 24 ms 24 ms 100 ms
Task 3 Λ2 97 18 ms 24 ms 0 ms 100 ms

necessitated by a need for more anticipated re-
sources by tasks with a higher representative
criticality level than the criticality level at which
the system is executing, but instead to prevent
the erroneous behavior of Task 2 from jeopardiz-
ing the correct timing behavior of tasks with the
same or a higher representative criticality level.

Although it is theoretically (i.e. from an aca-
demic perspective) convenient to classify an over-
run of the worst-case response time of a task at
its representative criticality level as erroneous
behavior, this is clearly not desirable from a prac-
tical (i.e. an industrial) perspective.

7.1.2. Criticality-level up immediately
followed by a criticality level down

Using the original AMC*-scheme, a critical-
ity level up can be immediately followed by
a criticality- level down, as illustrated in Fig-
ure 6 for a task set with characteristics as given
in Table 7.

At time t = 41, a job of Task 3 experiences
an overrun of ~C3(Λ3) = 18 ms and a criticality
level up occurs from criticality level Λ3 to Λ2.
The job of Task 3 experiences a next overrun of
~C3(Λ2) = 24 ms at time t = 47 ms and a crit-

icality level up occurs towards Λ1. The system
subsequently encounters an idle-time and the
system returns to its lowest criticality level Λ3,
i.e. the system exhibits the undesirable behavior
of a criticality level up immediately followed by
a criticality level down.

In case we modify the characteristics of Task 3
to ~C3(Λ3) = ~C3(Λ2) = 24 ms, we even have a crit-
icality level up from Λ3 to Λ1 at time t = 47
would immediately be followed by a criticality
level down to Λ3. This behavior is clearly unde-
sirable.

7.2. Improving AMC*

To prevent (or at least mitigate) the undesirable
behavior identified in the previous section, we pro-
pose to bound the time provided to a task τi at its
representative criticality level λi to its worst-case
computation time ~C(λi), e.g. through resource
reservation with temporal protection [35], rather
than raising the criticality level. Similar to Qual-
ity-of-Service like approaches [36,37], tasks there-
fore have to get by with a budget given by ~C(λi)
at their representative criticality level. Hence, we
propose to adapt both AMC and AMC*, and com-
plement these schemes with resource reservation.
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7.2.1. Adaption of AMC

First, we change the condition Λ ≤ λi < Λ1 in
Condition 1 of the AMC scheme to Λ < λi ≤ Λ1,
effectively suppressing a criticality level up upon
an overrun at a task’s representative criticality
level, i.e. Condition 1 now becomes:
Condition 3. When a job of task τi is execut-
ing at time t while the system is running at level
Λ with Λ < λi ≤ Λ1 and the actual execution
time βi(t) equals the worst-case computation time
~Ci(Λ) of τi, a criticality level up occurs.

7.2.2. Adaption of AMC*

Next, we reconsider the three topics for our
AMC*-scheme, that were discussed in Section 4.
As mentioned above, an overrun of ~Ci(λi) is now
prevented by a resource reservation. With this
change, handling that overrun becomes the re-
sponsibility of the (developer of the) task and
part of the specification of the task. In this way,
we also resolved the unspecified behavior for an
overrun of a task at a criticality level Λ1. Upon
a criticality level up change, the three cases dis-
tinguished in Section 4.2 simplify to only one
case:
1. Λ < λi ≤ Λ1: When a task τi overruns its

worst-case computation time at the criticality
level Λ < λi, the new criticality level Λnew

remains unchanged if ~Ci(Λ) = ~Ci(λi) and be-
comes the smallest criticality level not giving
rise to an overrun for τi otherwise, i.e.

Λnew = if ~Ci(Λ) = ~Ci(λi)
then
Λ

else
min

{
λ ∈ L|~Ci(Λ) < ~Ci(λ)

}
fi

(5)

Note that by keeping the criticality level un-
changed when ~Ci(Λ) = ~Ci(λi), we prevent a crit-
icality level up whenever the resource reservation
already bounds the execution of task τi. The poli-
cies for criticality changes, being the third topic
for our AMC*-scheme discussed in Section 4.3,
remain unaltered.

7.2.3. Resource reservation

Finally, for every task τi ∈ T we assume a re-
source reservation ρi with a priority equal to
the priority of τi and a capacity ~Ci(λi) that is
replenished when τi is activated and lost when
τi becomes idle. Task τi can execute using the
capacity of ρi as long as the system is execut-
ing at a criticality level Λ at most equal to τi’s
representative criticality level λi. At a higher
criticality level, ρi will be disabled.

Additional policies and mechanisms to sup-
port a (developer and a) task upon detecting
and/or handling an overrun are conceivable, such
as means to measure progress [37], but fall out-
side the scope of this paper.

8. Conclusion

In this paper, we described our experience with
extending an OSEK-compliant RTOS with mixed
criticality support. Instead of selecting a specific
RTOS,we started our investigationswithExSched
[10], an operating system independent external
CPU scheduler supporting multiple operating
systems. For our initial experiments, we used
ExSched in combination with Linux. We selected
AMC [9] as a basic mixed criticality scheme,
extended its model from two to multiple criti-
cality levels, and complemented it with specified
behavior for criticality level up and criticality level
down functionality. Extending ExSched required
both extensions and revisions of the ExSched
Module. In particular, we incorporated generic
functionality usable for multiple plug-ins, such
as run-time monitoring based on high-resolution
timers and taskmanagement services, e.g. suspend
and resume, and extended the plug-in interface of
the ExSched Module. In addition, we developed
a dedicated plug-in for mixed criticality, baptized
AMC* Plugin Module, and complemented that
kernel module with an AMC* Library in user
space. In particular, we used a similar design struc-
ture for AMC* as for ExSched itself, effectively
increasing the modularity of ExSched. Our exten-
sion requires minimal overhead when a criticality
level up occurs by postponing clean-up actions till



Experience Report: Towards Extending an OSEK-Compliant RTOS with Mixed Criticality Support 319

a criticality level down occurs. We built a working
prototype of our system, as demonstrated through
visualized traces using Grasp [30].

Despite the fact that ExSched is a great re-
search vehicle, we decided to abandon ExSched
based on our experiences with and insights gained
during the extension of ExSched with mixed
criticality support. During our subsequent in-
vestigations, we directed our attention to the
OSEK-compliant RTOS µC/OS-II and its exten-
sion with RELTEQ [1]. Compared to extending
ExSched with AMC*, extending µC/OS-II and
RELTEQ with AMC* turned out to be straight-
forward. Unfortunately, our implementation re-
quired changes to µC/OS-II, whereas the im-
plementation in ExSched required no patches
(i.e. modifications) to the original source code
of Linux. Although µC/OS-II has been stable
for many years, new kernel versions will require
updates of our system. Extending µC/OS-II with
AMC* without making changes to the original
source code seems considerably less straightfor-
ward than our implementation, however.

Finally, we briefly reflected on AMC and
AMC*. We encountered undesirable behavior
of both the original and the extended scheme,
i.e. erroneous and unspecified behavior as well
as a criticality level up immediately followed by
a criticality level down, and described improve-
ments for both schemes in combination with re-
source reservation. As future work, we aim at
enhancing our implementation with the described
improvement of the AMC* scheme. Additional
policies and mechanisms to support (a developer
and) a task upon detecting and/or handling an
overrun are a topic of future work as well.
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