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SZYMON SKONECZNY1 

CELLULAR AUTOMATA AS AN EFFECTIVE TOOL 
FOR MODELLING OF BIOFILM MORPHOLOGY 

Mathematical model of the biofilm growth and morphology dynamics has been presented based 
on the cellular automata theory. All processes occurring in a biofilm have been modelled in a discrete 
manner. The two-dimensional distributions of microorganisms density and concentrations of substrates 
were obtained from the simulation. One-dimensional distributions of microorganisms density and bio-
film porosity dependent on the growth time have been determined. It was shown that the biofilm mor-
phology varies significantly over the process time. This phenomenon can be used for determining the 
age of a growing biofilm. 

1. INTRODUCTION 

Issues of protection of surface water in Poland and worldwide belong to the strategic 
research programs. Microbiological methods to reduce water pollution are ones of the 
recognized and effective tools used for this purpose. There are two groups of technical 
and procedural issues related to the microbiological water treatment. The former group 
incorporates biodegradation technologies of wastewater treatment: municipal and in-
dustrial. The latter group is related to the utilization and multiple use of water coming 
from aquacultures or treatment of drinking water. Each of these issues requires a differ-
ent approach to both analysis and process design, as well as to the selection of the spe-
cific equipment, in particular, the construction and size of microbiological reactors. This 
selection is primarily based on: the type of the process, i.e., aerobic or anaerobic, the 
type of microorganisms, i.e. autotrophs or heterotrophs or their co-presence, the con-
centrations of substrates being subjects to microbial transformations and their volumet-
ric flow rate. 
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According to opinions of Loosdrecht et al. [1] and Eberl et al. [2], in aqueous envi-
ronments typical of biodegradation processes, microorganisms always form a biofilm. 
This phenomenon is unavoidable. Hence, in a quantitative description of the microbial 
reactors, the presence of biofilms is to be taken into account and their influence on over-
all process rate occurring in the apparatus is to be evaluated. The presence of the biofilm 
is particularly important for operation of biofilters and fluidized-bed bioreactors, be-
cause in these apparatuses the share of biomass immobilized on a solid substratum is 
considerable. 

Mathematical models of biofilms can be divided into two groups: 
 continuous models which use the idea of continuum and differential calculus for 

modelling of biofilms, 
 discrete models which treat time and space in a quantified manner. 
Below, the theory of cellular automata has been discussed and used. This method 

belongs to the latter mentioned group. It has been applied for the modelling of biofilm 
morphology, in particular to determination of density and porosity distributions in the 
biofilm, because both quantities have a principal influence on the transport of substrates 
and rate of the processes occurring in the biofilm. No matter which method is used, 
these quantities are necessary for modelling of the process in the biofilm. 

The new element of this work is the use of the cellular automata for modelling of 
microbial process following double-substrate kinetics with substrate inhibition. The mi-
crobiological degradation of phenol has been chosen as an example. Following premises 
were crucial in this choice: 

 phenol is a strongly toxic compound, dangerous for aqueous organisms, 
 this compound inhibits the growth of microorganisms, 
 kinetics of this process is well described. 

2. CELLULAR AUTOMATA AS A TOOL  
FOR MODELLING DYNAMICAL SYSTEMS 

It is considered that Hungarian mathematician, Janos von Neumann, is the author 
of cellular automata (abbreviated CA). Polish mathematician, Stanisław Ulam, had also 
an important role for creation of this method. Thanks to Ulam, von Neumann has intro-
duced discrete time and space into the model of self-reproducing machine [3]. 

Cellular automaton is a mathematic concept consisting of following elements [4]: 
 grid of cells {i} of D-dimensional space, 
 set {si} of single cell’s states, 
 transition function F, i.e., a set of rules determining the cell’s state at moment 

t + 1 depending on the state of that cell and cells surrounding it at moment t: 

  ( 1) ( ) ,i js t F s t      ( )j i  (1) 
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where Ω(i) is a neighborhood of i-th cell. On the 2-D rectangular grid, von Neumann or 
Moore neighborhood (Fig. 1) is most often used. 

 
Fig. 1. Von Neumann neighborhood (left) and Moore neighborhood (right),  

grey color denotes cells which are neighbors of the central cell 

Game of life created by John Conway is one of the most known cellular automata. 
This cellular automaton has following elements [5]: 

 two-dimensional rectangular grid, 
 two-element set of states: 0 and 1, 
 Moore neighborhood, 
 the following rules: if three living cells exist in cell’s neighborhood (without tak-

ing it into account) at moment t, then at moment t + 1 this cell is alive. If at moment t 
the cell is alive and two living cells exist in its neighborhood, then it stays alive at mo-
ment t +1. In other cases, the cell is dead at moment t + 1. 

 
Fig. 2. Evolution of Game of life, white cells are dead, black are alive:  

a) t = 0, b) t = 50, c) t = 100, d) t = 200 

The evolution of Game of life for randomly chosen cells’ states at initial moment is 
shown in Fig. 2. This simple cellular automaton has directed attention of the physicists 
on the possibility of using the cellular automata for simulations of physical systems. 
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The cellular automata have been popularized mostly by Stephen Wolfram, the au-
thor of Mathematica software. He is also the author of the oldest and most popular clas-
sification of cellular automata. According to this classification, cellular automata are 
divided into four classes, numbered with increasing complexity, and every class differs 
from the others in certain features. CA Game of life belongs to fourth class. 

Cellular automata have successfully been used for modelling of complex dynamical 
systems. The biofilm, i.e., multicomponent biological structure containing microorgan-
isms attached to solid surface or porous material or to each other belong to such systems. 
Biofilm is a complex object, both regarding its composition, morphology and regarding 
processes occurring inside. 

3. EMPIRICAL FACTS CONCERNING MORPHOLOGY OF BIOFILMS 

One of the pioneering papers concerning biofilms morphology has been published 
by Trulear and Characklis [6]. The authors claimed that increase in substrate load causes 
the increase in biofilm density, however further investigations did not confirm this state-
ment. In another paper, concerning heterogeneity of biofilms Tang and Fan [7] have 
shown that the mean thickness of a biofilm and the average diffusion coefficients of 
substrates depend on the total thickness of a biofilm. Whereas Kwok [8], discussing 
properties of the three-phase airlift bioreactor, proved that upon increasing small-grain 
carrier’s content, the biofilm density increases and that upon decreasing the substrate 
load, the biofilm thickness decreases. It is commonly known that the biofilm structure, 
i.e., its thickness, density and morphology, is strongly influenced by three elements, i.e., 
the concentration of the substrates, hydrodynamic conditions in the apparatus, and mi-
crobial species [9]. 

 

 
Fig. 3. Structures of 7-day old biofilms: 

a) Pseudomonas putida, b) Pseudomonas aeruginosa,  
based on microscopy images presented by Heydorn et al. [9] 

It arises from the experimental examinations that biofilms may form various struc-
tures, from flat to strongly irregular. Figure 3 presents two biofilm structures, formed 
by different microbial species, i.e. Pseudomonas aeruginosa (Fig. 3a) and Pseudomo-
nas putida (Fig. 3b). These figures have been drawn based on microscopic images pre-
sented by Heydorn et al. [9]. 
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Lewandowski [10] pointed out a significant role played by the internal biofilm po-
rosity to the mathematical modelling of the biofilm. It is related with the fact, that the 
values of the effective diffusion coefficients in the biofilm are even several times lower 
than in water [11]. Hence, the biofilm porosity influences the rate of substrate transport. 
Figure 4 presents one-dimensional distribution of the biofilm porosity, obtained by 
means of a confocal microscope [10]. 

Fig. 4. Distribution of the biofilm porosity obtained
using confocal microscopy (based on [10])  

4. MATHEMATICAL MODEL OF THE BIOFILM  
BASED ON THE THEORY OF CELLULAR AUTOMATA 

Two different approaches to the quantitative description of diffusion and reaction 
processes are used in biofilm models based on cellular automata. Differential diffusion- 
-reaction equations are solved when the former of these approaches is employed. Papers 
by Picioreanu et al. [12] and Xavier et al. [13] can be given as examples. In the latter 
approach, the diffusion process is simulated using an algorithm of random walks (e.g., 
papers by Pizarro et al. [14, 15], and Chang et al. [16]). In the model presented in this 
work, the latter of the mentioned approaches has been used. 

In this work, which concerns double-substrate processes, two-dimensional overlay-
ing grids with square cells have been used. Similar approach has been used in work 
concerning single-substrate kinetics, by Pizarro et al. [14]. The substrate’s grids contain 
information about the concentrations of oxygen and carbonaceous substrate, while grid 
for the biomass contains information about the presence and biological state of micro-
organisms. In a previous study [17], the algorithm was compared with the shooting 
method, for a different number of grids for each of the substrates. Criterion for the ac-
curacy of the calculation was the value of the effectiveness factor of the biofilm. The 
calculations in this work were carried out using the same number of grids for each of 
the substrates, equal J = 2. 
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Neighborhood proposed by von Neumann (Fig. 1) has been applied in the presented 
model. Periodic conditions were used on the borders of the grid. At the fixed distance 
from the front of the biofilm at each iteration, the state of the cells was determined equal 
to c

ic  (i = A, T). This is to simulate the boundary layer and the liquid phase of constant 
concentrations of oxygen and carbonaceous substrate. The thicknesses of boundary lay-
ers were determined from the mass transfer coefficients of the reagents, i.e., oxygen and 
phenol from the liquid to the biofilm. 

The state of cells for the substrate can be a value in the range [0, ]c
ic , (i = A, T). For 

the biomass, the values are  from the set max max[ , ].b b     A negative value indicates 
that the microorganisms are dead, and a positive one that the microorganisms are active. 
Zero represents the absence of biomass. The states of cells were marked with shades of 
gray color (Fig. 5). 

 
Fig. 5. Graphical representation of grids and cells’ states, the darker color, the larger concentration 

 of a substrate or biofilm density, white color denotes cells which are not neighbors of the central cell, 
 B – grid representing the biomass, A1, A2 – grids representing the carbonaceous substrate,  

T1, T2 – grids representing oxygen 

Since the reaction and diffusion processes take place at a much higher rate than the 
growth of the biofilm, it is assumed that the distributions of reagent concentrations reach 
a pseudosteady state [14]. This fact results in a separation of the two time steps in the 
algorithm of biofilm dynamics, significantly differing in values of them. The time step 
Δt, of the order of miliseconds, relates to the reaction and diffusion processes [14], while 
Δtg time step, of the order of hours, refers to the processes of growth, decay and detach-
ment of the biofilm [17, 18]. Such an approach was used in many studies on biofilm 
modeling based on the theory of cellular automata, also in the latest works [19]. 

The rules governing the proposed cellular automaton are as follows. 

RULE 1. DIFFUSION OF THE SUBSTRATES 

The diffusion process was simulated using the algorithm of random walks in a mod-
ified version. The probabilities of movement of the mass quantum of oxygen in the 
liquid phase in all four directions on the grid are the same and are PdTw, and the sum of 
these probabilities is equal to one. Mentioned modification is the assumption that the 
probability of movement of the mass quantum of oxygen is dependent on the presence 
of biomass in the starting and the target cell. It was calculated as follows 
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The above equation is useful for both the water and the biofilm, where nb is the 
number characterizing the system of two cells: the starting and the target one. It specifies 
the sum of the cells in this doublet, which represent the biomass. In turn, nw is the num-
ber related to the presence of water in the same doublet of cells. Both nb and nw can take 
values from the set {0, 1, 2}. 

Similarly as was done above for the oxygen transfer process, the relationship defin-
ing the probability PdA of the displacement of the mass quantum of the carbonaceous 
substrate is 

 0.25
2 2 2 2
w eA b Aw w eA b

dA dAw
Aw Tw Aw

n D n D n D nP P
D D D

   
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It was assumed that the ratio of the probability of the mass quantum displacement of the 
carbonaceous substrate in water to the probability of the mass quantum displacement of 
oxygen in water is equal to the ratio of diffusion coefficients in water, PdAw /PdTw = DAw /DTw. 

RULE 2. UTILIZATION OF THE SUBSTRATES IN THE BIOFILM 

The computations were made on the example of the aerobic biodegradation of phe-
nol following double-substrate kinetics of Seker et al. [20]. The rates of utilization of 
the carbonaceous substrate rA and oxygen rT in the biofilm are described by  

      1 2
1,b b b b b

A A T A T a
BA

r c c f c f c
w

  (4a) 
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1,b b b b b
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The functions f1 and f2 take the form of the equations 
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The value of the substrate concentration in the cell indexed (k, l) is determined as 
the arithmetic mean of concentrations in the cells (k, l) in each grid for this substrate, 
according to 

    ,

1

1, ,
J

b b j
A A

j
c k l c k l

J 

    (6a) 
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T T
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where J denotes the number of grids for each substrate. 
Using the equation defining the reaction rate related to the particular substrate A, 

we have 

 Δ
Δ

b b
b A A
A

dc cr
dt t

     (7) 

Based on the above relationship, the expressions determining the increases in the 
concentrations of substrates during the time step ∆t can be obtained. These expressions 
are as follows 

        Δ , , Δ , , , , , , , ,b b b b
A A A T ac k l t t r c k l t c k l t k l t       (8a) 

        Δ , , Δ , , , , , , , ,b b b b
T T A T ac k l t t r c k l t c k l t k l t       (8b) 

The new values of the cells’ states in the grids for the substrates are 
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where nA, nT are the total number of cells whose state is determined by a number greater 
than zero in a given position in the grids of the substrate, while ,b j

Ac  and ,b j
Tc are the 

mean concentrations of the substrates in the j-th substrate’s grid. 
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RULE 3. GROWTH AND DECAY OF MICROORGANISMS  
AND DETACHMENT OF THE BIOFILM 

Increase in mass of active microorganisms in one time step tg is determined by 

        Δ , , Δ , , , , , , , ,b b b
a g B A T ak l t t r c k l t c k l t k l t      (10) 

New value of cell’s state is then 

      , , Δ , , Δ , ,a g a ak l t t k l t k l t      (11) 

An algorithm of the biofilm growth was implemented, according to Picioreanu et al. 
[12]. The value of the probability of microorganisms decay was calculated from: 

 maxΔo o g
b

p k t



  (12) 

To calculate the probability of the biofilm detachment, an equation was used, like 
that proposed by Chambless et al. [21]. 

  2
det detΔ ( , )gp K t x k l  (13) 

5. RESULTS AND DISCUSSION 

Figure 6 shows how the structure of the biofilm changes over time. The biomass 
density distributions are given for different values of the biofilm growth time t, i.e., 
20 h, 50 h, 150 h, and 200 h. Different shades of green color represent the concentra-
tions of biomass (living or dead microorganisms). Initially, in the last row of grid for 
biomass, i.e., in cells representing the biofilm in contact with the surface of the support, 
the value of one cell’s state for every twenty was max ,b   and the value of remaining 
cells’ state was 0.   The initial moment is not shown in Fig. 6. Initially the colonies 
of microorganisms grow without larger deformations (Fig. 6a). Next, microbial colonies 
join together forming a layer at the base of the biofilm with very low porosity, of the 
order b = 0.2 (Fig. 6b, t = 50 h). After 150 h (Fig. 6c), the biofilm structure is very ir-
regular. It arises from the Eq. (13) that the probability of the biofilm detachment is pro-
portional to the square of the distance from the base of the biofilm. For this reason, the 
detachment does not deform the biofilm for its smaller thickness. Figures 6c and 6d 
point out that for a sufficiently long growth time, the thickness of the biofilm stabilizes. 
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Values of the model parameters, for which the computations were performed, are givrn 
in Table 1. 

 
Fig. 6. Two-dimensional distribution of the biofilm density dependent on time: 

a) t = 20 h, b) t = 50 h, c) t = 150 h, d) t = 200 h 

T a b l e  1

Values of the parameters used in the simulation 

Parameter Value Parameter Value
,c

Ac  kgm–3 310–2 Kdet, h–1m–2 2107 

,c
Tc  kgm3 8.2910–3 Kin, kgm3 0.09937 

DeA, m2h1 3.3106 KT, kgm3 4.8105

DeT, m2h1 8.28106 wBA, kg B[kg A] 0.521
k, h1 0.569 wBT, kg B[kg T]1 0.338
ko, h1 2.5104 Δt, h 7.55107

ksA, Mh1 0.144 Δtg, h 5
ksT, mh1 0.277 max ,b  kgm3 270 
KA, kgm3 0.01854
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Figure 7 shows one-dimensional distributions of biofilm porosity b and biofilm 
density b for the process time t = 20 h (Fig. 7a, b), and for t = 200 h (Fig. 7c, d). The 
distributions of the density were obtained by averaging the biofilm density for each row 
in the grid of the cellular automaton. The biofilm porosity for each row in the grid was 
determined by dividing the number of cells of the state 0 to the number of all cells in 
the row. 

 
Fig. 7. One-dimensional distributions of biofilm porosity (left) and biofilm density (right)  

for two values of the growth time: a), b) t = 20 h, and c), d) t = 200 h 

Figure 7 shows that as the biofilm growth time increases, a qualitative and quanti-
tative changes occur in the distribution of biofilm density and porosity. This property 
can be used to determine the age of the biofilm. The qualitative and quantitative simi-
larity between porosity distribution can be seen, in Fig. 4 and that shown in Fig. 7a. One 
can conclude that the porosity distribution shown in Fig. 4 was obtained for a “young” 
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biofilm. “Older” biofilms, as can be seen in Fig. 7c, are characterized by almost linear 
functions of b(z) and b(z). 

6. CONCLUSIONS 

The paper presents a mathematical model of the biofilm growth based on the theory 
of cellular automata. This model was used to simulate the biofilm morphology and to 
determine the change in the morphology over time. The proposed model takes into ac-
count the diffusion and uptake of the substrates, the growth of microorganisms, their 
decay and detachment of the biofilm. The mathematical model can be used to simulate 
microbial processes following any kinetics, both single- and multi-substrate. One can 
also use it to determine the density distributions of the biofilm and the associated po-
rosity of the biofilm, as well as concentrations of the reagents. On this basis, one can 
determine the rate of microbial processes inside the biofilm. 

Changes in one-dimensional distributions, i.e. in relation to the depth of the biofilm, 
of its porosity and density were shown. The shape of these functions depends on the age 
of the biofilm. It is hypothesized that measuring of these distributions can be used to 
assess the age of the biofilm influencing, e.g., its resistance to biocides. 

The computations were made on the example of the aerobic biodegradation of phe-
nol. The literature suggests that the theory of cellular automata has not so far been ap-
plied to the modelling of microbial processes with inhibiting substrate. The mathemati-
cal model can be used to determine the effect of inhibition constant of the carbonaceous 
substrate on the biofilm morphology. So far, such research, both theoretical and exper-
imental, has not been conducted. 

SYMBOLS 

cA, cT – concentration of the carbonaceous substrate and oxygen, respectively, kgm–3 
De – effective diffusion coefficient in the biofilm, m2h–1 
J – number of grids for each substrate,  
k – maximum specific growth rate, h–1 
ks – liquid–biofilm mass transfer coefficient, [m/h] 
K – saturation constant in kinetic equations, kgm–3 
ko – decay constant, h–1 

Kdet – detachment probability constant , h–1m–2 
Kin – inhibition constant, kgm–3 
wBA, wBT – yield coefficients, kg B(kg i) –1 
Pd – probability of the mass quantum displacement 
pdet – probability of the biofilm detachment 
po – probability of microorganisms decay 
rA, rB, rT – consumption rate of the carbonaceous substrate, growth rate of bacteria and consumption 
  – rate of oxygen, respectively, kgm–3h–1 
t – time, h 



 Cellular automata as an effective tool for modelling of biofilm morphology 189 

Δt – time step for reaction and diffusion processes, h 
Δtg – time step for processes of growth and decay of microorganisms, and biofilm detachment, h 
x – space coordinate in the biofilm, µm 
z – dimensionless coordinate of biofilm thickness 
 – state of a cell in the cellular automaton  
εb –biofilm porosity 
 – biofilm density, kgm–3 

SUPERSCRIPTS 

c – liquid phase 
b – biofilm 

SUBSCRIPTS 

a – concerns active microbial cells 
A – carbonaceous substrate 
b – concerns biofilm 
T – oxygen 
w – concerns water 
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