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1. INTRODUCTION 

Measuring the inequalities of income distribution is an important issue 
nowadays and the accuracy of the calculations of the measures has become 
a challenge to be faced (Jędrzejczak, 2012). The problem of the 
measurement of inequalities of income distribution is relevant to the 
measurement of the justice and progression of the taxation (Monti, 
Pellegrino and Vernizzi 2015; Mazurek, Pellegrino and Vernizzi 2015; 
Pellegrino and Vernizzi 2013). Besides the problems with data reliability, 
there is the issue of the form in which they are most commonly available. 
Usually one has to deal with data grouped as the frequency distribution. 
For comparing the tax systems in many countries, we have to work on the 
aggregated data as individual data is not available. A common approach is 
to use a linear interpolation, that is – to assume that all observations within 
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a given interval are equal. However, this implies zero inequality within 
each class interval, which significantly lowers the overall inequality. To 
avoid this underestimation, several approaches have been proposed that are 
based on fitting either a probability density function or the Lorenz curve, 
and either a single function to the entire range or piecewise functions 
(Kakwani; Budd, 1970; Fisk, 1961; Kakwani, Podder; Aitchison, Brown, 
1954). However, these methods have been developed for data that is 
grouped in a specific way, when the mean value for each class interval is 
available. A significant improvement in estimating inequality measures 
was made by Gastwirth (1972), who obtained lower and upper bounds of 
estimation. The applicability of this method also depends on the knowledge 
of the actual mean values of the observations belonging to each interval 
class. However, in most cases, as usual in statistical yearbooks, only the 
width and numbers of observations within each class are provided. 

The aim of this paper is to check the accuracy of the traditional 
approach that treats all observations within a given class as being 
concentrated in the middle of it and to compare the modifications of this 
approach, in order to investigate whether the accuracy of the calculations 
of inequality measures that are based on the observed income distribution 
may be improved. We will compare the relative error methods of 
calculating these measures with the exact results, obtained from individual 
observations, and with the approximation that is based on the knowledge of 
the actual means within each range. The analysis is based on the individual 
data from the tax office. The data set concerns the year 2007. The 
inequality measures which are the matter of interest of this paper are: the 
Gini index, which is the most commonly used, as well as the Theil and the 
Atkinson indexes. The problem of measuring the inequality is particularly 
important for income distribution, when it is known that the distribution is 
extremely skewed. 

The paper is organized as follows. In the next section we describe the 
source of individual data and the way of constructing a frequency 
distribution. The inequality measures are briefly defined in Sections 3 and 
4 and the simplest and most common approach of calculating these 
measures for grouped data is presented. These sections also consider some 
simple modifications of this most popular, traditional approach. In Sections 
5 and 6 we discuss some possible extensions based on the density function 
or the cumulative income distribution function. Section 7 presents the 
conclusions. 
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2. THE DATA 

The analysis in this paper is based on the individual data from the 
Wroclaw tax office from the fiscal year of 2007. To be exact, this data set 
contains information on gross income for taxpayers (households) that file 
their tax return in the Municipality of Wroclaw, in the Fabryczna Tax Office 
(district identification). In this analysis, households are equated with couples 
of taxpayers who take advantage of joint taxation using PIT-37. After 
deleting observations with non-positive gross income, the whole population 
consists of 19,487 households. The analyses were performed by the authors’ 
own programs, written in the R language and in Mathematica 7. 

The population of 19,487 households is divided into five subpopulations 
with respect to the number of dependent children. The subpopulations are as 
follows: 
− C– families without children: 10,625 households, 
− C+1– families with one child: 5,458 households, 
− C+2– families with two children: 2,935 households, 
− C+3– families with three or more children: 469 families, 
− ALL – the whole population with each family type (C and C+1 and C+2 

and C+3). 
The values of inequality indexes calculated for individual data will be 

regarded as exact values of these indexes and serve as a reference point for 
comparison with the values obtained on the basis of grouped data. 

Let 1 2, , , nx x x  be incomes of n income units (households) of the pre-
specified subpopulation. Then, the Gini index for the individual data is 
defined as follows: 

 2
, 1

1
2 =

= −∑
n

i j
i j

G x x
n x

, (1) 

where x  denotes the average income. Table 1 presents the Gini indexes for 
all five subpopulations for individual datasets. These values will be treated 
as exact values of the Gini index. 

Table 1 

The Gini index for the individual data 

Family type 
C C+1 C+2 C+3 ALL 

0.37178 0.34647 0.34651 0.38701 0.36650 
Source: own calculations. 
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Table 2 

Frequency distributions of income for the analyzed population 

i 
Income interval (PLN)

( )1− −i ix x  

Number of households – in  

Family type 
ALL C C+1 C+2 

1 0 – 15000 908 714 122 58 
2 15000 – 30000 2785 1789 672 259 
3 30000 – 45000 3597 2247 874 402 
4 45000 – 60000 3355 1879 902 496 
5 60000 – 75000 2633 1305 845 409 
6 75000 – 90000 2010 905 658 398 
7 90000 – 105000 1290 560 425 274 
8 105000 – 125000 1072 474 356 221 
9 125000 – 145000 610 263 212 115 

10 145000 – 165000 396 151 116 112 
11 165000 – 195000 325 130 108 82 
12 195000 – 255000 273 116 94 53 
13 255000 – 315000 233 92 74 29 
14 above 315000 - - - 27 

 Total 19487 10625 5458 2935 

Source: own calculations. 

Table 3 

The frequency distribution of income for families with three or more children 

i 
Income interval (PLN) 

( )1i ix x− −  
Number  

of households in  
1 0 – 15000 14 
2 15000 – 30000 65 
3 30000 – 45000 74 
4 45000 – 60000 78 
5 60000 – 75000 74 
6 75000 – 90000 49 
7 90000 – 105000 31 
8 105000 – 135000 30 
9 135000 – 165000 28 

10 165000 – 225000 11 
11 225000 – 285000 7 
12 2855000 – 405000 5 
13 above 405000 3 

 Total 469 

Source: own calculations. 
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Usually the data concerning incomes is presented in aggregated form 
which implies the loss of information. In order to examine how much this 
loss influences the indexes of inequalities, the individual data for all five 
subpopulations is aggregated by standard rules of aggregating and presented 
in Tables 2 and 3. The cumulative frequency distribution tables were 
constructed according to theory. The individual data is grouped according to 
gross income. Table 2 presents aggregated data for all population and for 
three family types: without children, with one child and for families with two 
children. 

An analogous frequency income distribution (with different class 
intervals) is created for families with three or more children and presented in 
Table 3. 

The created distributions will be used in the next section to illustrate the 
calculations of the inequality measures. 

3. THE GINI INDEX FOR SOME SIMPLE ALTERNATIVES  
OF TREATING THE AGGREGATED DATA 

Suppose that n individual observations are grouped into c classes of 
interval form, ( )1i ix x− − , 1, ,i c= … . Assume that in  denotes the number of 
families belonging to class i, furthermore suppose that ix  denotes a mid-
value of this class: 

1 ,
2

i i
i

x xx − + = 
 
  

and 'x  is the average income: 

1

1'
c

i i
i

x x n
n =

= ∑ . 

Five simple alternatives for the calculation of the Gini index for the 
aggregated data are defined below. First, assume that all in observations are 
concentrated in the middle of the interval. Graphically this situation is 
presented in Figure 1a. 

The Gini index for this case is calculated according to the formula: 

 ( )
2

, 1

1
2 '

c
m

i j i j
i j

G x x n n
n x =

= −∑   . (2) 
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    c)                                                              d) 

Fig. 1. Graphical presentation of representatives of ith income class 
Source: own presentation. 

In the second and third cases the in  families are concentrated on the 
lower and the upper boundary of the ith interval, respectively (see Figures 1b 
and 1c). The corresponding formulae for the Gini index are the following: 

 

( )
1 12

, 1

1
2 '

c
l

i j i j
i j

G x x n n
n x − −

=

= −∑ , (3) 

 

( )
2

, 1

1
2 '

c
u

i j i j
i j

G x x n n
n x =

= −∑ . (4) 

The fourth possibility considered here consists in the assumption that all 
observations are distributed evenly in the interval (see Figure 1d). For each 
of c classes, the evenly distributed incomes are obtained by the formula: 

1
1

i i
ik i

i

x xy x k
n

−
−

−
= + , 1,2, , ik n= … 1, ,i c= … . 
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In this way individual statistical series ( )1 2, , , ny y y… =

( )1 211 12 1 21 2, , , , , , , ,
cn n cny y y y y y… … … could be reconstructed from aggregated 

data. 
The Gini index for the reconstructed data is calculated using formula (1): 

 ( )
2

, 1

1
2

n
n

i j
i j

G y y
n y =

= −∑ . (5) 

The last possibility considered here assumes that all in  observations are 
distributed randomly within the interval ( 1, )i ix x− . The uniform distribution, 
U( 1,i ix x− ), is assumed – for each of c classes, the in  incomes are 
reconstructed by random choosing in  values from the distribution U( 1, )i ix x− . 
For individual statistical series ( )1 2, , , nz z z…  obtained in such a way the 
measure of inequality is calculated using formula (1) and reads: 

 ( )
2

, 1

1
2

n
r

i j
i j

G z z
n z =

= −∑ . (6) 

It may be expected that value ( )lG  obtained from formula (3) would be 
greater than value ( )  uG  obtained with the use of upper bounds (formula (4)), 
while the value of ( )mG  will have the value somewhere between. This is 
unavoidable in the case of equally spaced intervals: for such intervals the 
sum of the differences in the formula for the Gini index is exactly the same 
in all three cases, however, the average value is the lowest for the lower 
boundaries of intervals and it is the greatest for the upper boundaries. As the 
average value is in a denominator in the expression for the Gini index, it 
turns out that ( ) ( ) ( )l m uG G G> > . In general, class intervals do not have to be 
equally spaced, however, it turns out that the inequality for ( ) ( ),l mG G  and 

( )uG  still holds in such cases, which will be shown afterwards. 
It could be expected that inequality indexes calculated with assumptions 

four and five would be greater than in the case of concentrating all 
observations in the middle of the interval, as such approaches do not imply 
zero inequality within classes. One can also expect that values obtained at 
assuming uniform spacing of the observations and those obtained with the 
assumption of random spacing would converge for high frequencies. 
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Using these five formulas (2), (3), (4), (5) and (6), the measures of 
inequality are calculated for each data set presented in Section 2 (for each 
family type, for five empirical income distributions). The results for the Gini 
index are presented in Table 4. 

Table 4 

The Gini index for various methods of calculations 

Method 
Family type 

Mean abs. dev. 
C C+1 C+2 C+3 ALL 

( )mG  
0.36967 

(-0.00211) 
0.34151 

(-0.00496) 
0.33826 

(-0.00825) 
0.38284 

(-0.00417) 
0.36180 

(-0.00470) 0.004838 

( )lG  
0.41214 

(0.04035) 
0.36707 

(0.02060) 
0.36015 

(0.01365) 
0.40238 

(0.01538) 
0.39504 

(0.02854) 0.023702 

( )uG  
0.33774 

(-0.03404) 
0.32157 

(-0.02490) 
0.32083 

(-0.02567) 
0.36807 

(-0.01893) 
0.33628 

(-0.03022) 0.026752 

( )nG  
0.37546 

(0.00368) 
0.34576 

(-0.00071) 
0.34187 

(-0.00463) 
0.38712 

(0.00011) 
0.36656 

(0.00006) 0.001838 

( )rG  
0.37505 

(0.00327) 
0.34579 

(-0.00068) 
0.34109 

(-0.00542) 
0.38590 

(-0.00110) 
0.36662 

(0.00012) 0.002116 

Source: own calculations. 

Each cell of the table contains two values (except for the last column). 
One is the value of the appropriate Gini index and the second (below, in  
the brackets) is the difference between this Gini index and the exact value  
of the Gini index given in Table 3. For example, for a family without 
children, ( ) 0.36967mG =  and the difference between the exact Gini index 

0.37178G =  is equal to 0.36967 0.37178 0.00211.− = − Negative values 
mean that the estimated Gini index has underestimated the real inequality. 
Bold font identifies the values which deviate in absolute value from the 
exact value less than the results obtained within a traditional approach (the 
first row, treating all values as concentrated in the centers of the income 
intervals). Additionally, the last column presents the average (over five 
cases) of the absolute deviations for each method. Bold font in this last 
column identifies the results that are better than those of the traditional 
approach. 

The values of the Gini index are visualized also in Figure 2.  
The values of the Gini index for the given method and different family 

types are joined with a line only for the legibility. 
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Fig. 2. The Gini index estimated from grouped data 

Source: own presentation based on results from Table 4. 

It may be seen that for the Gini index both methods in which all values are 
concentrated in the middle and at the upper limit of the given income interval, 
systematically underestimate the value of inequality measures. That was 
expected, as these methods assume zero inequality within each interval. In 
addition, the deviation from the exact values in the approach with the upper limit 
of income intervals is always larger than in the traditional approach. As for the 
method with all values within a given interval concentrated at the lower limit of 
it, in spite of the fact that it assumes zero inequality within intervals as well, the 
underestimation of the mean value overwhelms this effect and it systematically 
overestimates inequality measures. Both the methods with lower and upper 
limits of the interval as representatives of it give results worse than the 
traditional approach, as may be expected. 

The methods with values within a given interval equality spaced between its 
boundaries ( )( )nG and with random values within interval ( )( )rG  are both better 

than the traditional approach and neither of them seems to have any systematical 
bias (towards underestimation or overestimation) of the real value. 
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4. THE THEIL AND THE ATKINSON INDEXES 

Analogous comparisons are performed for two other familiar indices: the 
Theil index and the Atkinson index. 

The Theil index for individual observations is defined as (Theil, 1967): 

 
1

1 ln
n

i i

i

x xT
n x x=

= ∑ , (7) 

where ix , x  and n  denote, as above, an individual observation, the average 
value and the number of observations. For grouped data it may be 
approximated by: 

 ( )

1

1 ln
' '

c
m i i

i
i

x xT n
n x x=

= ∑
  , (8) 

with the same notation as above. Table 5 presents the results for the Theil 
index. 

Table 5 

The Theil index for various methods of calculations 

Method 
Family type Mean abs. 

dev. C C+1 C+2 C+3 ALL 
Exact T  0.242836 0.211639 0.221661 0.288899 0.23853  

( )mT  
0.237908 

(-0.00493) 
0.200026 

(-0.01161) 
0.197274 

(-0.02439) 
0.265867 

(-0.02303) 
0.225593 

(-0.01294) 0.015379 

( )uT  
0.203459 

(-0.03938) 
0.182354 

(-0.02929) 
0.181136 

(-0.04053) 
0.254942 

(-0.03396) 
0.199817 

(-0.03871) 0.036372 

( )nT  
0.243259 

(0.000423) 
0.20347 

(-0.00817) 
0.200083 

(-0.02158) 
0.26957 

(-0.01933) 
0.229919 

(-0.00861) 0.011622 

( )rT  
0.243258 

(0.000422) 
0.203514 

(-0.00813) 
0.198603 

(-0.02306) 
0.265361 

(-0.02354) 
0.230141 

(-0.00839) 0.012707 

Source: own calculations. 

The last three rows of Table 5 present modifications of the calculations of 
the Theil index analogous with modifications of the calculations of the Gini 
index. For ( )uT  all values within a given class are assumed to be 
concentrated at the upper limit of it. For the Theil index it is not possible to 
apply the method which would treat all values as concentrated at the lower 
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limit of a given interval, because in this case it would require dealing with 
data equal to zero, leading to ln 0 . Indexes ( )nT  and ( )rT  are calculated from 
equation (7) assuming all values within a given class equally spaced between 
its boundaries or randomly taken within this class.  

The last column presents the average of absolute deviations for each 
method. Again, the bold font identifies the results that are better than in the 
traditional approach (the method presented in the second row in Table 5). 

The discussion and conclusions expressed for the Gini index also hold for 
the Theil index. Methods with values within a given interval equally spaced 
between its boundaries ( )( )nT  and with random values within the interval 

( )( )rT  are both better than the traditional approach ( )( )mT . Both methods 

that assume all values to be concentrated either in the middle or at the upper 
limit of the given income interval, systematically underestimate the exact 
value of the Theil index (T). 

Finally, the results for the Atkinson index will be presented in the same 
way. 

The Atkinson index is defined as (Atkinson, 1970): 

 
( )1/ 1

1

1

1 11
n

i
i

A x
x n

ε
ε

ε

−
−

=

 
= −  

 
∑ ,      0 , 1,ε ε> ≠  (9) 

where ix , x  and n denote individual observations, the average value and the 
number of observations while ε  is a parameter called “inequality aversion” 
or a sensitivity parameter. The higher the value of this parameter, the more 
sensitive the Atkinson index becomes to inequalities at the bottom of the 
income distribution. For aggregated data it may be approximated by: 

 ( )
( )1/ 1

1

1

1 11
'

c
m

i i
i

A x n
x n

ε
ε

ε

−
−

=

 
= −  

 
∑ , (10) 

with these same symbols as in the previous formulae. 

Four modifications of the Atkinson index ( ) ( ) ( ) ( ), , ,l u n rA A A Aε ε ε ε  are 
defined analogously to the modifications in calculations of the Gini index. 
Tables 6 and 7 present the results for the Atkinson index with 0.1ε =  and 

0.5,ε =  respectively.  
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Table 6 

The Atkinson index, 0.1ε =  for various methods of calculations 

Method 
Family type Mean 

abs. dev. C C+1 C+2 C+3 ALL 
Exact 0.1A  0.023984 0.02087 0.021701 0.02806 0.023506  

( )
0.1

mA  0.023628 
(-0.00036) 

0.019868 
(-0.001) 

0.019584 
(-0.00212) 

0.02615 
(-0.00191) 

0.02242 
(-0.00109) 0.001294 

( )
0.1

lA  
0.030394 
(0.00641) 

0.023094 
(0.002224) 

0.022361 
(0.00066) 

0.02874 
(0.00068) 

0.027339 
(0.003833) 0.002762 

( )
0.1

uA  
0.020055 

(-0.00393) 
0.017994 

(-0.00288) 
0.017882 

(-0.00382) 
0.024891 

(-0.00317) 
0.019714 

(-0.00379) 0.003517 

( )
0.1

nA  
0.024214 

(0.000229) 
0.02023 

(-0.00064) 
0.01988 

(-0.00182) 
0.026537 

(-0.00152) 
0.022886 

(-0.00062) 0.000966 

( )
0.1

rA  
0.024204 

(0.000219) 
0.020235 

(-0.00063) 
0.019741 

(-0.00196) 
0.026173 

(-0.00189) 
0.022904 
(-0.0006) 0.00106 

Source: own calculations. 

As in the previous tables, below are the values calculated using a given 
method, showing the differences between these values and the exact values 
of the Atkinson index (calculated for individual data). Bold font identifies 
the values which deviate in the absolute value from the exact value less than 
the results obtained within the traditional approach from formulae ( )

0.1
mA  for 

Table 6 and from ( )
0.5

mA  for Table 7. The last column presents the average of 
the absolute deviations for each method. Bold font identifies results that are 
better (in the average sense) than those in the traditional approach. 

Table 7 

The Atkinson index, 0.5ε =  for various methods of calculations 

Method 
Family type Mean abs. 

dev. C C+1 C+2 C+3 ALL 
Exact 0.5A  0.114967 0.099267 0.10115 0.126592 0.111851  

( )
0.5

mA  
0.115395 

(0.000427) 
0.096946 

(-0.00232) 
0.095455 

(-0.00569) 
0.123003 

(-0.00359) 
0.109712 

(-0.00214) 0.002834 

( )
0.5

lA  
0.170195 

(0.055228) 
0.121767 
(0.0225) 

0.116823 
(0.015673) 

0.147654 
(0.021061) 

0.149742 
(0.037891) 0.030471 

( )
0.5

uA  
0.094985 

(-0.01998) 
0.085503 

(-0.01376) 
0.085142 

(-0.01601) 
0.113631 

(-0.01296) 
0.093648 
(-0.0182) 0.016184 

( )
0.5

nA  
0.120017 

(0.005049) 
0.09939 

(0.000123) 
0.097469 

(-0.00368) 
0.12555 

(-0.00104) 
0.113239 

(0.001388) 0.002257 

( )
0.5

rA  0.119798 
(0.004831) 

0.099461 
(0.000194) 

0.096873 
(-0.00428) 

0.124851 
(-0.00174) 

0.113224 
(0.001373) 0.002483 

Source: own calculations. 



              ON THE ACCURACY OF INEQUALITY MEASURES […] 93 

For the Atkinson measures the following inequality also holds: 
( ) ( ) ( )l m uA A Aε ε ε> > . Both the methods with the lower and upper limit of 

intervals as representatives of them (referring to intervals) give results 
worse than in the standard approach. Again, methods with values within a 
given interval equally spaced between its boundaries and with random 
values within the interval are better than the traditional approach. It may be 
expected that the methods for all the presented measures of inequalities 
should be convergent while increasing the numbers, as equally spaced 
values and a uniform distribution over a given interval should converge in 
the limit of a large number of values. Indeed, the largest differences 
between these two methods may be observed for empirical income 
distributions for families with two children (C+2) and three children (C+3), 
which are the least numerous of all five cases. However, it is not 
guaranteed that these two methods will always give better estimations of 
inequality measures than the standard one, as there are cases in which the 
standard approach is better to approximate exact values, nevertheless they 
are better in the great majority of the cases. 

5. METHODS BASED ON A DENSITY FUNCTION 

Besides the simple methods described above, one may try some more 
advanced approaches to calculate inequality measures based on limited 
(grouped) data. One possibility can be methods based on a probability 
density function.  

Let X denote the income of a member of the population. Assume that X is a 
random variable with probability density function ( )g x , and corresponding 

cumulative distribution function ( )F x . Continuous counterparts of the measures 
of inequality defined by formulae (1), (7) and (9) are the following: 
the Gini index: 

 ( ) ( )1 1G F x F x dx
µ

∞

−∞

=  −  ∫ , (11) 

the Theil index: 

 ( ) lnx xT g x dx
µ µ

∞

−∞

= ∫ , (12) 
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the Atkinson index: 

 ( )
( )1/ 1

111A x g x dx
ε

ε
ε µ

−∞
−

−∞

 
= −  

 
∫ ,  0 , 1,ε ε> ≠  (13) 

where µ is the expected value of the income distribution. 

To use the above formulae, in the first step it is necessary to perform the 
estimation of probability density function ( )g x , given only observations at 
a discrete set of points. We will apply six methods to approximate the 
probability density function based on known frequencies, if ’s, in

i nf =  (if 
needed, scaled according to the different widths of intervals, sc

if ). The 
methods are described below. 

METHOD 1 

First, we will adopt the method described by Kakwani (Kakwani, 1976), 
based on piecewise linear approximations of a probability density function. 
The method relies on fitting a piecewise linear function normalized up to the 
frequency in each given interval. Within the original approach described by 
Kakwani (see also below), we need also to know the mean value within each 
interval. For the data usually provided in statistical yearbooks we do not 
have such information. Thus, we have to follow another rule that will 
determine the slope of the line within each interval. There are two simple 
possibilities that are based on the differences of frequencies of neighboring 
intervals. 

The first is that the slope is proportional to the difference between the 
next and the current intervals, which is equivalent to connecting the left 
upper corners of histogram rectangles, i.e. points ( )1, sc

i ix f− . After 
normalization we get a piecewise linear function given by: 

 ( ) ( ) ( ) ( )_ _ _l lin l lin l lin
i i if x a x b= +    for ( ]1,i ix x x−∈ , (14) 

where 
( )

( )
_ 1

2
11

2 sc sc
l lin i i i

i sc sc
i ii i

f f fa
f fx x
+

+−

−
=

+−
, 

( )

( )
_ 1 1

2
11

2 sc sc
l lin i i i i i

i sc sc
i ii i

f f x f xb
f fx x

+ −

+−

−
=

+−
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and a corresponding cumulative distribution: 

( ) ( )
( )

( ) ( ) ( )
_1

_ _2 2
1 1

1 2

l lini
l lin l lini

i i i i i
j

aF x f x x b x x
−

− −
=

= + − + −∑ . 

from which we can calculate inequality measures according to formulae (11) 
to (13). 

METHOD 2 

Within the second approach to this question the slope is proportional to 
the difference between frequencies of the current and the previous intervals, 
which is equivalent to connecting the right upper corners of histogram 
rectangles, that is, points ( ), sc

i ix f . 
Similarly to METHOD 1, we get a piecewise linear function given by: 

 ( ) ( ) ( ) ( )_ _ _u lin u lin u lin
i i if x a x b= +  for ( ]1,i ix x x−∈ , (15) 

where 

( )

( )
_ 1

2
11

2  
sc sc

u lin i i i
i sc sc

i ii i

f f fa
f fx x

−

−−

−
=

+−
, 

( )

( )
_ 1 1

2
11

2 sc sc
u lin i i i i i

i sc sc
i ii i

f f x f xb
f fx x

− −

+−

−
=

+−
 

and corresponding cumulative distribution: 

( ) ( )
( )

( ) ( ) ( )
_1

_ _2 2
1 1

1 2

u lini
u lin u lini

i i i i i
j

aF x f x x b x x
−

− −
=

= + − + −∑ , 

from which we can again calculate inequality measures inserting these 
functions into the proper formulae. 

It is worth mentioning that functions ( )_l linf  and ( )_u linf  are in general 
discontinuous. However this is not a shortcoming of this approach, inasmuch 
as other approaches, such as the one described by Kakwani, not to mention 
the standard approach (which may be considered as taking the density 
function in the form of peaks in the centers of intervals), are also 
discontinuous. 
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METHOD 3 

So far we have described linear approaches that are linear counterparts of 
“point” approaches (all observations within a given interval concentrated at 
one value), which are based on taking the lower or upper limits of intervals. 
However, in the case of “point” approaches there is also the third, the most 
intuitive and the most commonly used approach, that is based on taking the 
middles of intervals. Thus, here we would like to investigate the approach 
which consists in connecting not the lower and not the upper limits, but the 
centers of intervals, that is, points ( )( ) ( )1 2 sc sc

i i i i ix x / , f x , f− + ≡  . In that way 
we will get a standard relative frequency polygon, however, it is not 
necessarily normalized. To be specific, the area below such a curve equals 

( ) ( )( )
( ) ( )

1

1 1 1
1

1 0 1 1

min , 0.5

0.5

c
sc sc sc sc

i i i i i i
i

sc sc
c c c

A x x f f f f

x x f x x f

−

+ + +
=

−

= − + − +

 − + − 

∑  

, 

where ( )min ,⋅ ⋅  denotes the smaller of the two values. We have to normalize 
the plot, thus obtaining the piecewise linear curve in the form: 

( ) ( ) 1 1 1

1 1

1 sc sc sc sc
norm i i i i i i

i i i i

f f f x f xfp x x
A x x x x

+ + +

+ +

 − −
= + − − 

 

   

, 

for [ ]1,i ix x x +∈   , 0, ,i c= … , 

where 0 1
0

3
2

x xx −
= , 1

1
3

2
c c

c
x xx −

+

−
= , 0 1 0sc sc

cf f += = . Note that as we 

normalize the frequency polygon as a whole, then thus obtained normalized 
frequency polygon, ( )normfp  is a continuous function. 

METHOD 4 

Finally, let us briefly recall here a method developed half a century ago to 
be applied to cases when the mean values for each interval are known. In 
spite of the fact that we are not able to apply it in cases of the observed 
income distribution considered in this paper, we will still try to make use of 
this method. This method, described by Kakwani (Kakwani, 1976), is based 
on approximating the probability density function by a piecewise linear 
function within all ranges but the first and last (open) ones, while for the 
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latter two the Pareto functions are used. There are two conditions for 

function ( )ig x  within each interval: ( )
1

i

i

x

i i
x x

g x f
−=

=∫  and ( )
1

i

i

x

i i
x x

xg x µ
−=

=∫ , 

where iµ  denotes the mean value for .i  interval. Thus we get: 

 ( )
( )

( )1 1
12

1 1 11

2 62 3 2 1i i i i i i
i i

i i i i i ii i

f x f xg x x x
x x x x x xx x

µ µ− −
−

− − −−

   − −
= − + − −   − − −−   

 (16) 

for 2, , 1i c= … − , and for the first and the last income classes the functions 
are defined as the Pareto functions in the following way:  

 ( ) ( )

1 1

1 1

2

1 1
1

1 1 1 1

x
xf xg x

x x x

µ
µµ

µ

−
− 

=  −  
, (17) 

 ( ) ( )

1

1

2

1

1 1

c c

c c

x
x

c c c
c

c c c

f xg x
x x x

µ
µµ

µ

−

−

−
−

−

− −

 =  −  
. (18) 

As was mentioned before, we are not able to apply this method directly, 
as we deal with a standard income distribution with the knowledge of neither 
mean values for particular intervals nor an exact total mean value. However 
we will use this method by putting the middle of an interval for the exact 
mean value. It may be noticed that in that way we obtain a step function in 
the majority of the whole range: the slope of function iρ  depends on the 
difference between the middle of the class and the actual mean value for this 
class. If this difference is zero the slope is zero as well. Hence we regain an 
approximation highly similar to the uniform distribution of the values within 
each interval. However, there appear differences for the first and last (open) 
classes where the distribution of values is modeled in a different way. 

METHOD 5 

Going beyond linear approximations, we have also tried to approximate 
the probability density function by a polynomial function. We have used  
the Hermite interpolation method implemented in program Mathematica.  
In the case of no given values of derivatives this method boils down  
to the Lagrange interpolation. For the set of c  given points, 
( )( ) ( )1 / 2, ,sc sc

i i i i ix x f x f− + ≡  , 1, ,i c= … , they are interpolated by the 

polynomial with a degree at most 1c −  given in the form: 
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( ) ( )1
1

n
sc

c i i
i

G x l x f−
=

= ∑ , 

where ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1

1 1 1

i i n
i

i i i i i i n

x x x x x x x x
l x

x x x x x x x x
− +

− +

− … − − … −
=

− … − − … −
   

   

. 

The results for the estimation of income inequality measures for grouped 
observations that are using methods based on a probability density function 
are presented in Table A1 in the Appendix. We will also compare these 
results with the values that would be obtained if the real means for particular 
intervals of income were known, to check how much such knowledge, which 
is usually not available in Polish statistical yearbooks, would improve the 
estimations of inequality measures. These results that use the real means are 
based on a method that approximates the probability density function by the 
piecewise linear function described above (see expressions (16)-(18)) and 
will be denoted in what follows as METHOD 6.  

The results for the Gini index are presented in Figure 3. The analogous 
figures for other inequality measures look alike. The values of the Gini index 
for the given method and a different family type are connected with a line 
only for better legibility. 

 

 
Fig. 3. The Gini index estimated by methods based on probability density functions for 

income. 
Source: own presentation based on results from Table 8. 

0,31
0,32
0,33
0,34
0,35
0,36
0,37
0,38
0,39
0,40
0,41

C C+1 C+2 C+3 all

Gini index 

Family type 

exact METHOD 3 METHOD 1
METHOD 2 METHOD 4 METHOD 5



              ON THE ACCURACY OF INEQUALITY MEASURES […] 99 

The linear approximations of a probability density function using the 
lower/upper limit of the intervals to fix the points to be fitted in analogy to the 
methods described in Section 2 (with all values within an interval concentrated 
at the lower/upper limit of it), in most cases underestimate/overestimate the real 
values and are not good approaches, as might be expected. METHOD 1 and 
METHOD 2 always underestimate the value of inequality measures. Figure 2 
presents the results of these methods for the Gini index. As for fitting a 
piecewise linear function to points ( )( )1 / 2, sc

i i ix x f− +  (METHOD 3), it turns 
out to give a slightly better estimation, on average, than the standard approach 
for all indexes: 0.1, ,G  T  A  and 0.5A . 

The operation of introducing a special function for open classes 
(METHOD 4) reduces slightly the relative error of the estimation compared 
to the best modification of a standard approach, that is to the method 
described in Section 2, which is a relevant reference point here (remember 
that approximating the function within METHOD 4 and the best 
modification of the standard approach are identical except from the open 
classes), for 0.1, ,G  T  A  but not for 0.5A . Fitting the probability density 
function of incomes with a polynomial function in fact does not improve the 
obtained results. Although this approach has been marked with a bold font in 
Table 8, because the average result is slightly better than in the standard 
approach (with the middles of intervals as representatives of them), this 
improvement is almost zero and probably would vanish when examining 
more examples. 

In Table A1 in the Appendix there are presented the results for METHOD 
6 that are in principle not available within the scope of the task that we face 
here, as this method requires the knowledge of the actual mean values for 
each interval of income for the observed income distribution which is not 
accessible in normal circumstances (that is why they are printed in italics). 
One can see that for the Gini index this method is much better, by two orders 
of magnitude, than the best of the methods that are not using the knowledge 
of intervals’ means. For other measures it is still very efficient, however one 
may notice that it is surprisingly not the best method in the case of 0.1A . 

6. APPROACHES BASED  
ON THE CUMULATIVE DISTRIBUTION FUNCTION 

As mentioned above, approaches that are based on approximating the 
probability density function may be considered as suffering a serious 
imperfection, as we approximate here with a function the points’ coordinates 



100 K. OSTASIEWICZ, E. MAZUREK 

which are already approximated. However this is not the case when we are 
dealing with a cumulative income distribution function, as we have some 
fixed points which definitely belong to the real cumulative, i.e. points 

( ), c
i ix f , 0, ,i c= … , where 

1

i
c

i i
j

f f
=

=∑ , 0 0cf = , 0 0x = . 

To approximate the cumulative income distribution function we will use: 
1. piecewise linear function, 
2. log-logistic distribution, 
3. log-normal distribution, 
4. polynomial function as a cumulative distribution. 

The simplest method that could be used to approximate the cumulative 
density function would be to fit it with a piecewise linear function, 
connecting points ( ), c

i ix f . One can notice that this approach is very similar 
to the modification of the traditional approach (described in Section 3) for 
which all values within an interval are assumed to be equally spaced 
between its boundaries. This is because for the uniform (and continuous) 
distribution of the values within each interval, the cumulative function 
increases linearly within the whole range of this interval. Within the 
modification of the standard approach we assume a finite number of 
observations equally spaced, thus the cumulative distribution will differ from 
a piecewise linear form (being a discontinuous step function), tending to 
such linear form (smoothing the steps out) with the number of observations 
tending to infinity. The results obtained within the piecewise linear fitting of 
the cumulative distribution, LINEAR, reflect this similarity, as the results for 
these two methods are almost identical, which will be seen in what follows. 

Now we proceed to more advanced methods of fitting the cumulative 
distribution of incomes. We want to approximate the cumulative distribution 
function with one of the functions that are widely used to describe the 
distributions of income. We have decided to use two distributions. The first 
of them and the most commonly used is a log-normal distribution. The 
density function of it is given by: 

 ( ) ( )2

2

ln1 exp , 0
22ln

x
PDF x x

x
µ

σσ π

 −
= − > 

  
, (19) 

where µ  is a scale parameter and σ  – a shape parameter. 

The cumulative distribution cannot be expressed in terms of elementary 
functions and has the form: 
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 ( ) 1 1 lnerf ,  0
2 2 2ln

xCDF x xµ
σ
− = + >  

, (20) 

where ( ) 22

0

exp( )
y

erf y t dtπ= −∫  denotes the error function. 

The second distribution considered here is a log-logistic distribution, 
recently claimed as the one that may appear to be the better choice, at least in 
some applications (Kot and Adamkiewicz-Drwiłło, 2013). The density of it 
has the form: 

 
( )( )

( )

1

2

/ /
, 0

1 /

a

ll a

a b x b
PDF x

x b

−

= >
 + 

. (21)

 
In contrast to the log-normal distribution, the cumulative distribution 

function of the log-logistic distribution is given in a simple analytical form, 
namely: 

 
( )

1

1 , 0
a

ll
xCDF x x
b

−−  = + >  
   

. (22)
 

We have applied the least squares method in cases of both distributions: 
to estimate the parameters µ  and σ  in the case of a log-normal distribution 
and a  and b  in the case of a log-logistic one. That is, we have minimized 

the sum ( )( )2

0

; ,
c

c
ln i i

i

CDF x fµ σ
=

−∑  with respect to µ  and σ , and the sum 

( )( )2

0

; ,
c

c
ll i i

i

CDF x a b f
=

−∑  with respect to a and b. We have obtained the 

values of the parameters for which this theoretical form of a distribution is 
best fitted to the empirical data. The case of fitting the log-normal 
distribution will be denoted in what follows as LOG_NORMAL and fitting 
the log-logistic distribution case will be denoted as LOG_LOGISTIC. For the 
Gini index, in the case of the log-logistic distribution, we will not have to 
use formula (9), as this inequality measure is expressed in terms of one of 
the parameters of llCDF : 1 /G a= . For other inequality measures, the Theil 
index and the Atkinson indexes, and for all indexes for the log-normal 
distribution, we still use the formulae that integrate over the whole range of 
incomes, equations (10) and (11). 
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Finally, we have approximated the cumulative distribution function of 
income by a polynomial function, using the Hermite interpolation. The 
results of this approach will be denoted by POLYNOMIAL. 

Table A2 in the Appendix presents the results of the calculations of the 
inequality measures based on the methods described in this section. 

Approximating the cumulative density function with a piecewise linear 
function gives better estimations of 0.1, , G T A  and 0.5A  than the traditional 
approach, and the results are largely similar to the best modification of the 
standard approach, with the assumption of equally spaced values within the 
given interval (see Tables 5 to 8). Figure 4 presents the Gini index for the 
methods based on a cumulative density function. 

 

 

Fig. 4. The Gini index estimated by methods based on cumulative density functions for 
income 

Source: own presentation based on the results from Table 4. 

It may seem surprising that such a “coarse-grained” approach as fitting 
the cumulative density function with a function chosen beforehand, which in 
fact means in the case of both functions (17) and (19) estimating only two 
parameters, still gives some reasonable results. Although the average 
deviation from the exact values of the inequality indexes in both cases of 
LOG_LOGISTIC and LOG_NORMAL is larger than in the standard 
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approach, let us examine these results a bit closer as they seem to be very 
interesting, especially their comparison. Table 8 consists of the mean 
squared deviations for estimating distributions with log-normal and log-
logistic distributions for five sets of data. It may be seen that in some cases 
the log-normal distribution is a better fit to the data and in the others, the 
log-logistic is better. This is in general reflected in the accuracy of the 
inequality measures, as for sets C+2 and C+3 the accuracy of the 
LOG_LOGISTIC method in estimating inequality is better for all four 
indexes, for sets C and A the accuracy of LOG_NORMAL method in 
inequality estimating is better for all four indexes, and for C+1 
(LOG_NORMAL) is much better in two cases and very slightly worse in the 
remaining two cases. This last effect is opposite to the relative goodness-of-
fit of the two distributions, but this inverse relationship is very slight. 
Therefore it is not conclusive which distribution is better to be fitted in the 
context of estimating inequality measures. However, a very interesting effect 
may be observed, namely fitting the log-logistic distribution always 
overestimates all the inequality measures examined here, while fitting the 
log-normal distribution always underestimates them. This effect does not 
seem to be an artifact of the choice of data, and probably deserves further 
investigation. 

Table 8 

Mean squared deviations for fitting aggregated data with log-normal 
and log-logistic distributions 

Distribution 
Family type 

C C+1 C+2 C+3 ALL 
log-normal 7.968·10-5 10.657·10-5 9.145·10-5 12.947·10-5 8.270·10-5 
log-logistic 8.690·10-5 11.587·10-5 7.583·10-5 7.850·10-5 10.180·10-5 

Source: own calculations. 

Finally, interpolating the cumulative density function of income with a 
polynomial function does not improve the results, even if the numbers 
corresponding to this approach have been printed in bold for the Gini index and 
the Theil index. Formally, the average absolute deviation in these two cases is 
smaller than the one obtained using POLYNOMIAL, but the difference is so 
small, even on the scale of the differences we generally deal with here, that this 
approach may be regarded as obtaining the results of this same precision as the 
simplest standard approach, which is much more laborious. 
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SUMMARY AND CONCLUSIONS 

Estimating inequality measures according to the simplest approach that 
treats all the values from a given interval as if concentrated in the center of 
this interval, underestimate inequalities as such an approach neglects 
inequality within each class. This underestimation increases as the number of 
classes decreases. In the examples considered in this paper where the 
number of classes equals 13 or 14, the relative error of estimation reached 
2.4% for the Gini index, and as much as 11% for the Theil index. In spite of 
the fact that 2.4% (for the Gini index) may not seem to be so much in some 
issues, the differences in the Gini index of this level play their role, and the 
error of 11% (for the Theil index) always seems to be unacceptable. Thus, it 
would be beneficial if we had a method of the better estimation of inequality 
measures in cases of the need for better accuracy.  

In this paper we have examined some simple methods that one can apply 
when dealing with a standard frequency distribution of income, i.e. knowing 
only the limits of intervals and their frequencies. We have shown that some 
of the methods considered here may improve the quality of estimations, 
sometimes as much as reducing the relative error a few times. However it 
seems that nothing can compare with the precision of the results of the 
method that deals with the known means of the intervals. Such 
considerations could serve as an argument in discussion over the form in 
which statistical offices provide the data. It also may be the argument in 
discussion over the inequality measure to be commonly used. Nowadays the 
most common one is the Gini index, however it has been often criticized and 
different measures are proposed, e.g. J. Galbraith very strongly recommends 
the use of the Theil index (Galbraith, 2009). In spite of the many advantages 
of this measure, we have to consider the problem of errors that are made 
when computing the Theil index on the basis of the standard frequency 
distribution of income. We have seen that even when applying to the Theil 
index the best of the methods investigated here, the relative error ranges 
from 1% to 7%, where this upper value still seems to be too great. If having 
a standard frequency income distribution, without knowledge of the 
intervals’ means, the Gini index seems still to be the most reliable measure 
(among the measures examined here), and is also the one most liable to 
improve its accuracy while applying some more advanced methods. 
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APPENDIX 

Table A1 

The inequality measures for methods of calculations based on the estimation of a probability 
density function of income 

Method 
Family type Mean abs. 

dev. C C+1 C+2 C+3 all 
1 2 3 4 5 6 7 

GINI INDEX 
exact 0.37178 0.34647 0.34651 0.38701 0.36650  

METHOD 1 0.370491 
(-0.001289) 

0.340449 
(-0.00602) 

0.337316 
(-0.00919) 

0.380903 
(-0.00611) 

0.361354 
(-0.00515) 0.005551 

METHOD 2 0.365785 
(-0.005995) 

0.338089 
(-0.00838) 

0.335529 
(-0.01098) 

0.378041 
(-0.00897) 

0.35827 
(-0.00823) 0.008511 

METHOD 3 0.37721 
(0.00543) 

0.35091 
(0.00443) 

0.34592 
(-0.00059) 

0.39468 
(0.00767) 

0.36963 
(0.00313) 0.004250 

METHOD 4 0.37540 
(0.00362) 

0.34580 
(-0.00067) 

0.34219 
(-0.00432) 

0.38654 
(-0.00047) 

0.36659 
(0.00009) 0.001836 

METHOD 5 0.37828 
(0.00650) 

0.34776 
(0.00128) 

0.34546 
(-0.00105) 

0.39540 
(0.00839) 

0.37127 
(0.00477) 0.004398 

METHOD 6 0.37161 
(-0.00017) 

0.34653 
(0.00005) 

0.34656 
(0.00006) 

0.38693 
(-0.00008) 

0.36647 
(-0.00003) 0.000078 

THEIL INDEX 
exact 0.242836 0.211639 0.221661 0.288899 0.23853  

METHOD 1 0.234341 
(-0.0085) 

0.195051 
(-0.01659) 

0.193264 
(-0.0284) 

0.258313 
(-0.03059) 

0.220903 
(-0.01763) 0.020339 

METHOD 2 0.228805 
(-0.01403) 

0.193227 
(-0.01841) 

0.191783 
(-0.02988) 

0.255887 
(-0.03301) 

0.21784 
(-0.02069) 0.023205 

METHOD 3 0.24529 
(0.002454) 

0.209638 
(-0.002) 

0.204309 
(-0.01735) 

0.278992 
(-0.00991) 

0.233484 
(-0.00505) 0.007352 

METHOD 4 0.244092 
(0.001256) 

0.204544 
(-0.0071) 

0.20064 
(-0.02102) 

0.296962 
(0.008063) 

0.230932 
(-0.0076) 0.009007 

METHOD 5 0.247324 
(0.004488) 

0.205168 
(-0.00647) 

0.185343 
(-0.03632) 

0.278744 
(-0.01016) 

0.2363 
(-0.00223) 0.011933 

METHOD 6 0.242968 
(0.000132) 

0.213758 
(0.002119) 

0.22024 
(-0.00142) 

0.296887 
(0.007988) 

0.238867 
(0.000337) 0.002399 

ATKINSON INDEX, 0.1=ε  
exact 0.023984 0.02087 0.021701 0.02806 0.023506  

METHOD 1 0.0233184 
-0.000666 

0.0194002 
-0.00147 

0.019203 
-0.0025 

0.0254475 
-0.00261 

0.021989 
-0.00152 0.001753 

METHOD 2 0.0227038 
(-0.00128) 

0.0191821 
(-0.00169) 

0.019029 
(-0.00267) 

0.0251597 
(-0.0029) 

0.0216328 
(-0.00187) 0.002083 

METHOD 3 0.024363 
(0.000379) 

0.020825 
(-4.5E-05) 

0.02029 
(-0.00141) 

0.027453 
(-0.00061) 

0.023204 
(-0.0003) 0.000549 

METHOD 4 0.024283 
(0.000298) 

0.020322 
(-0.00055) 

0.019928 
(-0.00177) 

0.028649 
(0.000589) 

0.022971 
(-0.00053) 0.000749 

METHOD 5 0.024526 
(0.000541) 

0.020342 
(-0.00053) 

0.018634 
(-0.00307) 

0.027397 
(-0.00066) 

0.023435 
(-7E-05) 0.000974 

METHOD 6 0.02573 
(0.001746) 

0.023636 
(0.002766) 

0.021583 
(-0.00012) 

0.028706 
(0.000646) 

0.023544 
(3.78E-05) 0.001063 
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1 2 3 4 5 6 7 
ATKINSON INDEX, 0.5=ε  

exact 0.114967 0.099267 0.10115 0.126592 0.111851  

METHOD 1 0.115096 
(0.000129) 

0.0952264 
(-0.00404) 

0.0939841 
(-0.00717) 

0.12054 
(-0.00605) 

0.108501 
(-0.00335) 0.004148 

METHOD 2 0.110491 
(-0.004476) 

0.0933822 
(-0.00588) 

0.0925345 
(-0.00862) 

0.118179 
(-0.00841) 

0.105539 
(-0.00631) 0.00674 

METHOD 3 0.119383 
(0.004416) 

0.101811 
(0.002544) 

0.099145 
(-0.002) 

0.129501 
(0.002909) 

0.113822 
(0.001971) 0.002769 

METHOD 4 0.120185 
(0.005218) 

0.099636 
(0.000369) 

0.097624 
(-0.00353) 

0.12742 
(0.000828) 

0.113445 
(0.001594) 0.002307 

METHOD 5 0.119271 
(0.004304) 

0.098398 
(-0.00087) 

0.097998 
(-0.00315) 

0.128203 
(0.001611) 

0.113807 
(0.001956) 0.002378 

METHOD 6 0.116122 
(0.001155) 

0.100978 
(0.001711) 

0.100889 
(-0.00026) 

0.127471 
(0.000879) 

0.111904 
(5.29E-05) 0.000812 

Source: own calculations. 

Table A2 

The inequality measures for methods of calculations based on a cumulative distribution 
function of income 

Cumulative 
distribution 

function 

Family type Mean 
abs. dev. C C+1 C+2 C+3 all 

1 2 3 4 5 6 7 
GINI INDEX 

exact 0.37178 0.34647 0.34651 0.38701 0.36650  

LINEAR 0.37546 
(0.00368) 

0.34577 
(-0.00071) 

0.34189 
(-0.00462) 

0.38722 
(0.00021) 

0.36656 
(0.00006) 0.001856 

LOG_LOGISTIC 0.38996 
(0.01817) 

0.35947 
(0.01299) 

0.35299 
(0.00648) 

0.38926 
(0.00226) 

0.38377 
(0.01726) 0.011434 

LOG_NORMAL 0.361042 
(-0.01074) 

0.333285 
(-0.01319) 

0.327171 
(-0.01934) 

0.357994 
(-0.02902) 

0.354487 
(-0.01201) 0.016858 

POLYNOMIAL 0.37058 
(-0.00120) 

0.34180 
(-0.00468) 

0.33741 
(-0.00909) 

0.38457 
(-0.00244) 

0.36317 
(-0.00334) 0.004150 

THEIL INDEX 
exact 0.242836 0.211639 0.221661 0.288899 0.23853  

LINEAR 0.243278 
(0.000442) 

0.203501 
(-0.00814) 

0.200136 
(-0.02153) 

0.270105 
(-0.01879) 

0.229928 
(-0.0086) 0.0115 

LOG_LOGISTIC 0.294699 
(0.051863) 

0.243865 
(0.032226) 

0.233918 
(0.012257) 

0.293452 
(0.004553) 

0.283814 
(0.045284) 0.029236 

LOG_NORMAL 0.220108 
(-0.02273) 

0.185468 
(-0.02617) 

0.178311 
(-0.04335) 

0.216128 
(-0.07277) 

0.211604 
(-0.02693) 0.038389 

POLYNOMIAL 0.23703 
(-0.00581) 

0.198503 
(-0.01314) 

0.194088 
(-0.02757) 

0.271156 
(-0.01774) 

0.226239 
(-0.01229) 0.01531 
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Table A2, cont. 
1 2 3 4 5 6 7 

ATKINSON INDEX, 0.1=ε  
exact 0.023984 0.02087 0.021701 0.02806 0.023506  

LINEAR 0.024216 
(0.000231) 

0.020234 
(-0.00064) 

0.019886 
(-0.00181) 

0.026588 
(-0.00147) 

0.022887 
(-0.00062) 0.000954 

LOG_LOGISTIC 0.028555 
(0.004571) 

0.023757 
(0.002887) 

0.022812 
(0.001111) 

0.028439 
(0.000379) 

0.027532 
(0.004027) 0.002595 

LOG_NORMAL 0.0217703 
(-0.00221) 

0.0183759 
(-0.00249) 

0.017673 
(-0.00403) 

0.0213809 
(-0.00668) 

0.0209381 
(-0.00257) 0.003597 

POLYNOMIAL 0.023486 
(-0.0005) 

0.019626 
(-0.00124) 

0.01923 
(-0.00247) 

0.0265 
(-0.00156) 

0.022407 
(-0.0011) 0.001374 

ATKINSON INDEX, 0.5=ε  
exact 0.114967 0.099267 0.10115 0.126592 0.111851  

LINEAR 0.120035 
(0.005068) 

0.099421 
(0.000154) 

0.097522 
(-0.00363) 

0.125883 
(-0.00071) 

0.113249 
(0.001398) 0.002191 

LOG_LOGISTIC 0.128306 
(0.013339) 

0.108603 
(0.009336) 

0.104642 
(0.003492) 

0.127838 
(0.001246) 

0.124163 
(0.012312) 0.007945 

LOG_NORMAL 0.104214 
(-0.01075) 

0.0885642 
(-0.0107) 

0.0852965 
(-0.01585) 

0.10243 
(-0.02416) 

0.100397 
(-0.01145) 0.014585 

POLYNOMIAL 0.113712 
(-0.00126) 

0.093474 
(-0.00579) 

0.092711 
(-0.00844) 

0.121135 
(-0.00546) 

0.108023 
(-0.00383) 0.004955 

Source: own calculations. 

 




