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1. Introduction to issues addressed in the dissertation

1.1. Subject of the research

This dissertation develops a new methodology for shaping and implementing discrete freeform
structures, commonly called freeforms, in architecture using existing and newly developed methods
of their generation and transformation.

Although their definition is not yet explicit and well-established, as will be discussed further, freeforms
are becoming increasingly popular in architectural designing practice (Soeren, Sanchez-Alvarez,
and Knebel 2004), (Huzefa 2013), (Pottmann, Schiftner, and Wallner 2008), (Liu et al. 2006),
(Hambleton et al. 2009).

1.1.1. What are freeforms

Freeforms should not be confused with design freedom, which is an indispensable attribute of both
architecture and structural design. This term refers primarily to the geometrical features of objects
and their visual perception.

As already mentioned above, freeform geometry does not have a well-established definition,
see e.g. (Hambleton et al. 2009). It is characterized by smooth flowing lines, unique and varying shapes
and lack of inherent symmetries. In (Adriaenssens et al. 2014), freeforms are associated with
free-curved or sculptural shells whose geometry does not consider any structural performance — unlike
mathematical and form-found surfaces. In (Soeren, Sanchez-Alvarez, and Knebel 2004)
and (Sanchez-Alvarez 2002), freeforms are associated with NURBS surfaces allowing to specify
any imaginable form. In a general case, the freeform surface has a permanently changing curvature
and parts of that surface are non-symmetric (irregular). Irregularity and variable curvature
are indicated as main features of freeforms also in (Giddfalvy, Katula, and Ma 2016). However,
freeforms can be shaped as discrete models (i.e. grid shells or meshes) without a corresponding,
continuously curved surface, as mentioned in (Yang et al. 2011). According to (Pottmann, Eigensatz,
et al. 2015), freeforms that are shaped under a certain regime —i.e. including fabrication requirements
— are not fully free formed due to the fact that fabrication-aware design restricts the freedom
of design.

1.1.2. Freeforms in architecture

Although known for a long time in other areas of technical activity, freeforms found application
in architecture only when some computer based design tools have become available that did not exist
before, or for various reasons were only available in specific applications, e.g. in automotive, aviation
and naval industries (Bagneris et al. 2007), (Gonzales-Pulido, Vaggione, and Ackley 2002). In contrast
to these areas, in architecture freeforms are strongly connected with the uniqueness of structural parts
of a building or a structure.

The first large scale use of such design tools in architecture was during design and construction
of the Guggenheim Museum in Bilbao (from 1993 to 1997) (Gonzales-Pulido, Vaggione, and Ackley
2002). In contrast to the majority of architects, the designer of Guggenheim Museum, Frank O. Gehry,
was supported by structural engineers (from Skidmore, Owings & Merrill) as well as technicians
formerly associated with the aviation design industry. They made designing decisions together since
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the very beginning. As emphasized in (Schober 2015a): "designing completely freeforms requires
special skills which very few designers possess".

The incredible international success of the building accelerated the adoption of NURBS surfaces
and parametric design in architectural practice. Since then the number of designers who followed the
style of its designer, and started to design similar forms has been constantly growing.

In a simplified, but very popular approach, freeforms are associated with all forms for which
the geometric basis are surfaces with a two-way curvature, usually changing according to an adopted
formula.

Such objects, popular at one time in architecture, were shells, made mainly of reinforced concrete,
but also of small-size elements like bricks and stones, which were designed and constructed even
before the advent of the aforesaid methods. Single-layer, thin shells achieved a high degree
of structural efficiency and enabled the construction of many objects that are outstanding in terms
of architectural form. Notable examples of such forms are objects designed by Felix Candela, Eduardo
Torroja, Heinz Isler, Anton Tedesko and others. In (Schober 2015a) an elegant justification for doubly
curved shells is provided:

“Shells are naturally beautiful and efficient structures. The reason for this is that their flowing
double-curved form is able to transfer loads without bending, by transmitting tension and compression
forces solely within the surface. They therefore require significantly less material than flat structures
under bending stress, as for instance beam or slab structures. There is however a discrepancy between
favourable load-bearing behaviour and difficult double-curved construction. Solving this discrepancy
is an important step towards successful shell design.”

Another type of structures in which two-way curvature is a prerequisite for implementation
are structures made of textile membranes. The distinguishing designers of membrane structures were
Frei Otto and Jorg Schlaich.

Although traditional shell and membrane structures are usually classified as freeforms, they clearly
break out of the trend initiated by the emergence of the Guggenheim Museum. It’s because their form
is shaped on the basis of structural logic, often by means of physical modeling. “Contemporary”
freeforms are distinguished by the fact that — thanks to the above-mentioned computer tools — their
complex double-curved geometric form has been created apart from any material and structural
constraints and limitations.

Such freedom, however, has its price. Iconic architectural forms often break technological boundaries,
e.g. Sydney Opera House! and Guggenheim Museum in Bilbao, but in the first case, however,
overwhelmingly exceeding the budget. Some ambitious architectural forms fail to successfully
overcome the barrier between the design and the construction. A good example is Milano Convention
Centre which form was inspired by pappardelle pasta and the resultant structure supporting
the architectural form was a challenge for both its designers: Mario Bellini — architect and Massimo
Majowiecki — structural engineer (Tarczewski 2011).

In (Majowiecki 2013) and (Majowiecki 2007), professor Massimo Majowiecki, on the base of his
personal experience as being a structural engineer of many important freeform objects, notes that
new morphologies adopted in the present conceptual design methodology cause significant
uncertainties in the assessment of reliability. Majowiecki highlights that nowadays more and more

! The architect of the Sydney Opera House was Jgrn Oberg Utzon, later awarded the Pritzker Prize
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architects and engineers, absorbed by this new challenge which is the pursuit of ever new freeforms
in design, put aesthetics over static rationality.

Apart from the introduction of CAD tools, which allow shaping freeforms, a new trend has emerged —
the parametric designing. It allows one to grasp complicated structural systems which, in the context
of freeform design, are composed of numerous and unique structural elements. These elements
are designed as a result of a parametric model, predefined by the designer (Oosterhuis 2016):

"Parametric design means modelling associations between the components which a ship or a building
is made of. Associations are a form of dynamic entanglement. When one part changes its values,
the associated parts change with it”.

These facts may cause a false impression that any architectural form is possible and the purpose
of structural engineering is merely supporting an architectural vision. Nowadays, it is possible to design
complicated forms not getting away from the computer screen, whereas in the past designers
had been limited to relying on physical tools and models.

Before the invention of digital tools intended for designing freeforms, empirical (physical)
and analytical (mathematical and geometrical) methods had been used, (Lienhard 2014), p. 51. Shaping
forms in empirical way allows for almost immediate evaluation of their structural properties.
The physical modelling methods, give precise shapes in which a structure performs optimally.
Gaudi's experiments with the structure of Sagrada Familia with the use of strings, and Frei Otto
experiments with shapes of tensile membrane structures with the use of soap film are widely known.

While new design tools give architects opportunities to design new forms, they often go far beyond
the available and feasible technologies of their construction (Veltkamp 2015) and even force solutions
that are detached and inadequate from the logic of structural systems (Hambleton et al. 2009):

"Although there is no doubt that this newly found freedom has given rise to some incredible
and beautiful forms, it has also widened the gap between the original design intent of a project
and what can reasonably be constructed.”

Separating the form from its physical sense in the shaping process makes it ineffective and sometimes
even dangerous. For this reason, many authors recommend a return to the use of form finding
procedures, which were developed for the purpose of shaping shell and membrane structures.
It is defined by Patrik Schumacher as follows (Hassel 2016):

“Form finding is a physical setup where form self-organizes and it is not drawn by hand or invented
or preconceived. It emerges in a physical process”.

On the other hand, ignoring purely aesthetical and compositional reasons for using freeforms
in architecture, when reasonably well-designed, they allow for obtaining optimal forms from
the structural point of view, making it possible to increase the span and height of a structure
and reduce material consumption and total costs. Parametric designing tools allow to look at freeforms
in terms of their non-physical —i.e. geometrical and topological properties and form-find them in these
fields. This is very important because, while the application of physical modelling or its numerical
equivalent allows to obtain an optimal form in terms of flow of forces and mechanical properties,
in the case when there are additional limitations of topological or geometric nature, such modelling
becomes inadequate.

One of the sources of such constrains is the very strong tendency now to introduce large glazed
surfaces in both fagades of buildings and roofs over various surfaces. The consequence of this is that



most freeforms are not realized as continuous structures with a homogeneous surface but
as reticulated structures also called lattice or grid structures. Such solutions are very spectacular,
however, they impose restrictions, the fulfilment of which is often very difficult in practice.

1.1.3. Glossary of basic terms

Below are explained some of the most basic terms related to freeforms, which are used in further
considerations.

1.1.3.1. Curvature

The curvature associated with freeforms is a function showing how much each part of the curve
or curved surface is deformed. The curvature Kk of a curve is reciprocal to the radius R of a circle tangent
to that curve at measured point, see formula (1.1).
o (1.1)

R
The curvature of the curve on Fig. 1.1 is measured at two points — P; and P.. The lesser the curvature,
the greater the tangent circle and its radius. Location of the centre of curvature on different sides
of the curve is expressed by a curvature sign: positive or negative.

P

Fig. 1.1 Circles tangent to a curve at its specified points and their radii.

Surfaces have two distinct directions along which they can be curved. The freeformed surfaces
are curved along both directions, and are called doubly curved surfaces. Depending on the relation
between curvatures in both directions, doubly curved surfaces are distinguished by two types:

e synclastic (positive Gaussian curvature) — when curvatures are compatible, e.g. sphere;
e anticlastic (negative Gaussian curvature) — when curvatures are opposite, e.g. saddle (hypar)
surface.

Spheres are synclastic surfaces of constant curvature in both directions. Despite the identical curvature
on the whole surface, spheres can be classified as a freeform due to the fact that there is only a finite
number of ways a sphere can be divided into identical fragments. All other forms of surfaces whose
curvatures are varying are classified as freeforms due to their lack of regularity.

The curvature is also defined as a derivative of the direction of a curve. The faster the tangent direction
changes along a curve, the greater is the curvature of that curve, see Fig. 1.1. On doubly curved



surfaces the curvature may be examined in any chosen direction, therefore Gaussian and mean
curvatures are defined, see section 1.1.3.3.

1.1.3.2. Curvature continuity

The continuity of curves and surfaces is represented as level of the curvature continuity
(Golay, Hambly, and Fugier 2014), p. 39. The curvature continuity levels are as follows:

e Positional continuity — GO
* Tangency continuity — G1
e Curvature continuity — G2

GO continuity at a point means that the tangent vectors at the infinitesimal distances around
the measured point are not equal. There is a kink on a curve or between two line segments,
see Fig. 1.2. Consequently there can be a positional continuity between two surfaces. The necessary
condition is that the segments must have common point.

Fig. 1.2 Two line segments and two curve segments with GO continuity.

G1 continuity have the necessary condition of GO, with additional condition, that the tangent vectors
must be equally directed, see Fig. 1.3.

Fig. 1.3 Two curve segments with G1 continuity — the tangent vectors are shown separately for clearance.

G2 continuity have the necessary conditions of G1, with the additional condition, that the centres
of tangent circles of both curve segments have to be at the same point. The distances R of the tangent
circles of both curve segments are therefore equal so as the curvatures — k. Thus, the graphs
of the curvatures in Fig. 1.4, right, are continuous, i.e. have the same value on both sides of the
measured point, contrary to the graphs of the curvatures in Fig. 1.4, left.
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Fig. 1.4 Curvature graphs of G1 (left) and G2 (right) continuities.

There are also G3, G4 levels of continuity and the next ones. The G3 continuity have the necessary
conditions of G2, with the additional condition that the curvature graph has to be smooth, i.e. without
the kink as in Fig. 1.4, right. However above the G3 there is no visible significance to the shape
of the curve of surface. An example is shown in Fig. 1.5.

Fig. 1.5 Curvature graph of G3 continuity.

1.1.3.3. Gaussian and mean curvature?

The Gaussian curvature K at a point P of a surface is the product of two principal curvatures
Kqand k3, see equation (1.2). At each point of surface a normal vector exists. A plane containing that
normal vector intersects with the surface and the intersection is a curve. Such curve has a curvature
at the point on a surface. There are infinitely many planes containing one normal vector and infinitely
many curves. The principal curvatures are the maximum and minimum values among all the curves
obtained by intersection between the surface and plane.

Mean curvature H is a half of the sum of curvatures k4 and K, see equation (1.3).

K = K1K; (12)
1 1.3
H =2 (1, +12) (3
The values of k4 and kK, may have opposite signs if the curvatures are opposite, i.e. when the centres
of tangent circles are on the opposite sides of the surface. Anticlastic surfaces have opposite principal
curvatures, therefore the Gaussian curvature is negative. Synclastic surfaces have the principal
curvatures compatible, therefore their Gaussian curvature is positive. When the surface is single
curved one of the principal curvatures is equal to zero, therefore the Gaussian curvature of such
surface is also equal to zero.

2 Exact definitions and formulas for principal curvatures can be found in (Weisstein 2018k).

11



1.1.3.4. Continuous and discrete forms

Curves and doubly-curved surfaces may have continuous or discrete representations.
The term continuous refer to the curvature function, i.e. the graph of that function is continuous.
Discrete representations are composed of elements in straight or planar configurations, see Fig. 1.6.
The curvature continuity of the discrete forms is GO.

Fig. 1.6 Left: curve in the discrete (top) and the continuous (bottom) form. Right: surface in the discrete (top) and the
continuous (bottom) form.

Discrete forms of surfaces, i.e. polyhedral surfaces, are also have Gaussian curvature G (A. |. Bobenko
et al. 2008), p. 180, expressed by formula (1.4).

G= (ZR—Z(pj)/A (1.4)
7

Where (I)]- are the angles in radians between edges of facets that are adjacent to a point P,
around which the curvature is measured. The A is the area around the measured point.

Figure 1.7 shows that the sum of angles around a vertex can be less than 360°3. Areas around vertex
are marked by rectangular borders.

Fig. 1.7 Angles around a vertex.

3 The difference between full angle (2rt) and the sum of angles around a vertex in polyhedron is called angular
defect, see (Weisstein 2018b).
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1.2. Scope of the research

Based on previous considerations, the term freeforms has been specified for the purpose of this work,
in order to achieve unambiguity and certain ordering of content. In this dissertation freeforms
are always associated with the forms that are not regular. Unlike in (Adriaenssens et al. 2014)
and (Pottmann, Eigensatz, et al. 2015), the term freeforms here also covers the structurally optimized
forms. Although freeforms can be represented by NURBS surfaces or discrete models (grid shells)
this work focuses on the methods of shaping discrete models only. Discrete representations of doubly
curved surfaces with constant curvature (spheres) are also included in the group of freeformed if their
topology (panelization) is irregular, therefore meeting the requirement of irregularity.

Freeforms that are created purely for the sculptural reasons are excluded from the scope of this thesis.
The example of such form is the Milwaukee Art Museum designed by Santiago Calatrava.
In this building ribs based on ruled surface create the “wings” which spread over the building.
However, they carry no structural improvement or significance to the building, and only function
as a moving sculpture. The imperative of the aesthetical aspects over the structural and economical
logic makes the necessity of optimization and reasoning less significant.

Additionally, in this work the methods of implementation of freeforms as grid shells are narrowed
down to planar-quadrilateral (PQ) topologies. The meaning of this term is explained in the following.
The decision is supported by analyses provided in Chapter 3 which prove superiority of PQ topology
in terms of functional, economical and fabrication aspects.

The methods of formation and implementation of freeforms in this work are investigated together
in accordance with the fabrication-aware design principle. Consequently, the newly proposed methods
of formation of freeforms should always:

e actin accordance with the implementation rules, and
e offer sufficient freedom of design.

The change of the design paradigm is imposed due to the requirements of fabrication-aware design.
The approach assumes the awareness of specific fabrication methods that will be used during
the construction from the very first design phases. Hence, the scope of this work is narrowed down
to the bottom-up paradigm, see section 3.4.

Since the author of this work is an architect, not a structural engineer, the geometrical aspects
of creating freeforms are mainly emphasised. The issues related to the geometric stability, selection
of the member cross-sections and other structural aspects are out of the scope of this work.

1.3. Theses of the dissertation

The emergence of the unique Guggenheim Museum in Bilbao in 1997 coincided with the dissemination
and wide availability of computer tools allowing relatively easy creation and manipulation of objects
with complex geometry, in particular with NURBS surfaces. This caused an avalanche effect of using
such forms in architectural design, soon named the Bilbao effect.

Henceforth the designers, felt free from many previous limitations, were able to realize all their ideas,
at least on the geometric level of forms. Therefore, this design trend is now referred to as freeform
design and the architectural forms designed and realized in this manner are called freeforms.
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After the initial, quite enthusiastic period, when numerous objects formed on the basis of freeforms
were created, numerous problems were identified, which are the result of the detachment
of geometric shaping from the material conditions related to the implementation. These are problems
related to, for example, issues of stability and dynamics, which are solved as part of structural design,
as well as problems concerning the form itself, which require certain solutions at the topological
and geometric level.

An especially important and interesting example of such freeforms are discrete grid shells covered
with glass or other types of panels, which are coverings of buildings, their parts or their structural skins
i.e. facades.

e Thesis 1

Grid shells are one of the main means of expression within the free-form design trend
in architecture and belong to the most characteristic and most frequently implemented
objects in this group.

¢ Thesis 2

Free-form grid shells based on planar quadrilateral topology (PQ) have many advantages
over grid shells based on a triangular topology.

¢ Thesis 3

It is possible to develop design tools that allow for the effective design of PQ meshes based
on a bottom-up methodology.

¢ Thesis 4

Guided by the principles of bottom-up design, desirable grid shells can be obtained
with a small and acceptable restriction of freedom in shaping their form.

1.4. Scientific objectives and research methods

Research carried out in connection with the preparation of this doctoral dissertation was aimed
at gathering and systematizing knowledge on the methods of designing doubly curved grid shells,
in particular of PQ topology and preparing a monographic study based on it, that would depict these
issues in a comprehensive way.

The specific aim of the dissertation was to develop proprietary methods of generating
and transforming meshes for doubly curved grid shells and formulating the procedure for their design
according to the bottom-up methodology taking into account non-geometric structural
and implementation aspects.

During the implementation of the main objective, the following intermediate goals were also set:

e Capturing the common features and the way of shaping freeforms in architecture;

e Analysis and evaluation of topological and geometric features of discrete freeforms;

e Gathering and systematizing information on the methods of shaping meshes of grid shells;

e Proposing new, proprietary methods for shaping grid shells;

e Gathering and systematizing information on the methods of transformation of meshes
of grid shells;
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* Proposing new, proprietary methods for transforming grid shells;

* Proposing a systematic and comprehensive methodology for the design of grid shells shaped
on freeform surfaces;

e Verification of the proposed methods through their application in practical examples.

These objectives were accomplished through the analysis of existing facilities, observation of applied
solutions, analysis of the current state of knowledge and own conceptual work. The conclusions drawn
from the research and new design tools developed can be used for implementation a more effective
methodology for the design of grid shells shaped on freeform surfaces.

The problems of shaping the PQ mesh on freeforms presented in the dissertation are divided into
chapters which present the history of application of freeforms in technology; issues and problems
related to their application in architecture; methods of forming PQ meshes; methods of transforming
PQ meshes; a comprehensive concept of the design process for PQ meshes; case studies
and mechanical assessment of the presented solutions. In the course of work on the dissertation,
classical research methods used in architecture (Niezabitowska 2014) were applied, such as the logical
analysis, observational - descriptive method, comparative case studies, numerical experiments,
modelling and simulation research as well as combinations of these methods.

1.5. Current state of research

The glazed PQ grid shell at the courtyard of the Museum of Hamburg History is considered
as the pioneer structure of its type. Designed by the architect Volkwin Marg, engineered
by Jorg Schlaich, built in 1989. The geometrical solutions, beside the structural properties,
were described by Jorg Schlaich in Conceptual Design of Long-Span Roofs (Schlaich and Bergermann
1994) with Rudolf Bergermann and in Glass-covered lightweight spatial structures
(Schlaich and Schober 1994) with Hans Schober, both in 1994. Prior, German-speaking sources
are form 1992 - (Schlaich and Schober 1992b) and (Schlaich and Schober 1992a). Technical description
of the structure occurred in 1991 in DETAIL magazine (DETAIL 1991). Conceptual Design of Long-Span
Roofs also contain the argumentation for application of doubly curved grid shells.

Hans Schober, a structural engineer cooperating on numerous PQ grid shell designs with J6rg Schlaich,
summarizes achievements and realizations in the field of doubly curved PQ grid shells in the article
A parametric strategy for free-form glass structures using quadrilateral planar facets?
(Glymph et al. 2004) and in his comprehensive and important in the field book titled Transparent Shells:
Form Topology Structure (Schober 2015a). The last position describes in details the various aspects
of designing PG grid shells, among which there are geometrical aspects of designing doubly curved
PQ grids. Selected case studies of doubly curved PQ grid shells, designed with Schober complicity,
are chronologically:

e Aquatoll in Neckarsulm, Germany, built in 1989, (Schlaich and Bergermann 1994)
and (Schlaich and Schober 1994);

e Rostocker Hof in Rostock roof, Germany, built in 1994, (Schober 2003a);

e House for Hippopotamus in Berlin Zoo, Berlin, Germany, built in 1997,
(Schlaich and Schober 1998);

e Bosch Areal roof over the pedestrian zone built in 2001, (Schober 2003a) and (Schober 2003b);

4 Hans Schober was a representant of Schlaich Bergermann & Partners structural engineering office, while other
authors represented Gehry Partners architectural office.
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e Schubert Club Band Shell, St. Paul, Minnesota, USA, built in 2001, (Schober 2003a);

e German Historical Museum inner courtyard roof, Berlin, Germany, built in 2002,
(Schober 2003a);

e Uniga Tower atrium roof, Vienna, Austria, built in 2004, (Woltron and Zugmann 2004);

e Cabot Circus Bristol roof built in 2007, (Schober and Justiz 2012).

Geometric solutions adopted by Schober and Schlaich may be described as bottom-up, whereas
majority of publications in the field of generating freeform PQ tessellations represent the other
approach, which is top-down. Among them, most are the theoretical works of a mathematician Helmut
Pottmann, a Professor of Geometry at Vienna University of Technology. His most important work
is the Architectural Geometry, published in 2007 (Pottmann, Asperl, et al. 2007). The content
of the book expands the methods invented by Schober by introducing to the field of architectural
geometry conepts like parallel meshes and conjugate curve networks. Both are derived from the fields
of discrete geometry and discrete differential geometry and are bases to further researches of Helmut
Pottmann. Prior to the Architectural geometry, a Geometric Modeling with Conical Meshes
and Developable Surfaces, (Liu et al. 2006) and Discrete Surfaces for Architectural Design
(Pottmann, Brell-Cokcan, and Wallner 2007) were published by Helmut Pottmann et al..
Also in 2007 the article titled Geometry of multi-layer freeform structures for architecture
(Pottmann, Liu, et al. 2007) was published, which was focused on the properties of parallel PQ meshes,
as well of those of other topologies.

Helmut Pottmann also introduced solutions derived from computer graphics in the subdivision method
of obtaining the PQ meshes. Originally, this method was created for the needs of 3D modelling in PIXAR
studio movies by Edwin Catmull and Jim Clark: Recursively generated B-spline surfaces on arbitrary
topological meshes (Catmull and Clark 1978).

Selected works of Helmut Pottmann et al., or those which he contributed in the field of obtaining
and optimizing PQ meshes are listed chronologically:

e Geometric modeling with conical meshes and developable surfaces, (Liu et al. 2006);

e Discrete surfaces for architectural design, (Pottmann, Brell-Cokcan, and Wallner 2007);

e Geometry of multi-layer freeform structures for architecture, (Pottmann, Liu, et al. 2007);

e Architectural geometry, (Pottmann, Asperl, et al. 2007);

e Geometry of architectural freeform structures, (Pottmann, Schiftner, and Wallner 2008);

e The focal geometry of circular and conical meshes, (Pottmann and Wallner 2008);

e Architectural freeform structures from single curved panels, (Schiftner et al. 2008);

e New strategies and developments in transparent free-form design: from facetted to nearly
smooth envelopes, (Baldassini et al. 2010);

e A curvature theory for discrete surfaces based on mesh parallelity, (A. |. Bobenko, Pottmann,
and Wallner 2010);

e Case studies in cost-optimized paneling of architectural freeform surfaces,
(Eigensatz et al. 2010);

e Edge offset meshes in Laguerre geometry, (Pottmann, Grohs, and Blaschitz 2010);

e Tiling freeform shapes with straight panels: algorithmic methods, (Wallner et al. 2010);

e Shape space exploration of constrained meshes, (Yang et al. 2011);

e  Freeform honeycomb structures, (Caigui Jiang, Wang, et al. 2014);

e Form-finding with polyhedral meshes made simple, (Tang et al. 2014);

e Interactive modelling of architectural freeform structures: combining geometry with
fabrication and statics, (Caigui Jiang, Tang, et al. 2014);
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e Architectural geometry, (Pottmann, Eigensatz, et al. 2015);

e Cell packing structures, (Pottmann, Jiang, et al. 2015);

e Geometry and freeform architecture, (Pottmann and Wallner 2016);

e Vertex normal and face curvatures of triangle meshes, (Sun et al. 2016);

e Measuring and Controlling Fairness of Triangulations, (Cagui Jiang et al. 2016).

In 2015 paper Architectural Geometry, (Pottmann, Eigensatz, et al. 2015) the authors summarize
the state of knowledge, that has been developed since 2006 — mainly focusing on the aspects
of the discretization problems of arbitrary freeform shapes. It is mentioned, that the other approach
for freeform designing — i.e. fabrication aware design, or as called in this work bottom-up approach —
poses more unsolved problems. The article also highlights different problematic aspects related with
the panelization and topology such as: the existence of parallel meshes (offsetting meshes),
geometrical torsion-free support structures, developable (single curved) panelling, optimization
of the doubly curve panelling, repetitiveness of elements and obtaining patterns in the panelization
of freeform surfaces.

A significant part of the mathematical theory used in the research on PQ meshes derives from discrete
geometry and discrete differential geometry, especially that represented by the top-down approach.
Robert Sauer is referred by Pottmann as the author describing the existence and geometry of planar
quadrilateral meshes since 1930’s, see (Pottmann, Brell-Cokcan, and Wallner 2007).
Differenzengeometrie (Sauer 1970) summarizes the knowledge of the time about PQ meshes. Recently
this area of knowledge is widely described in Discrete differential geometry. Integrable structure
(A. 1. Bobenko and Suris 2008) by Alexander I. Bobenko and Yuri B. Suris, in Discrete Differential
Geometry: An Applied Introduction (Desbrun et al. 2006) by Mathieu Desbrun and Konrad Polthier
and in the Discrete differential geometry (A. |. Bobenko et al. 2008) by Alexander I. Bobenko et al..
Alexander |. Bobenko cooperated with Helmut Pottmann et al. in the following articles dedicated
to the geometry of PQ meshes:

e Geometry of multi-layer freeform structures for architecture, (Pottmann, Liu, et al. 2007);
e A curvature theory for discrete surfaces based on mesh parallelity, (A. 1. Bobenko, Pottmann,
and Wallner 2010);

e Vertex Normals and Face Curvatures of Triangle Meshes, (Sun et al. 2016).

The subject of PQ meshes and their intrinsic properties is discussed and studied by Bobenko et al.
independently in the following articles and works:

e Discrete isothermic surfaces, (A. Bobenko and Pinkall 1996);

e Discrete conformal maps and surfaces, (A. Bobenko 1999);

e \Variational principles for circle patterns and Koebe’s theorem,
(A. Bobenko and Springborn 2004);

e Minimal  surfaces  from circle  patterns: Geometry  from combinatorics,
(A. I. Bobenko, Hoffmann, and Springborn 2006);

e Onorganizing principles of discrete differential geometry, (A. 1. Bobenko and Suris 2007);

e Quasiisothermic Mesh Layout, (Sechelmann, Rorig, and Bobenko 2012).

Important contribution of the differential geometry and discrete differential geometry into the field
of architectural geometry and the geometry of PQ meshes is the correspondence of the principal
curvature lines of the discretized surface with the alignment of the quads.
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Johannes Wallner, professor of Geometry affiliated with TU Graz and TU Wien, contributed to the field
with following works:

e Anangle criterion for conical mesh vertices, (Wang, Wallner, and Liu 2007);
e Designing quad-dominant meshes with planar faces, (Zadravec, Schiftner, and Wallner 2010).

However, most of articles and works published by Johannes Wallner were developed in cooperation
with Helmut Pottmann et al.:

e Geometric Modelling with Conical Meshes and Developable Surfaces, (Liu et al. 2006);

e Discrete Surfaces for Architectural Design, (Pottmann, Brell-Cokcan, and Wallner 2007);

e Geometry of Architectural Freeform Structures, (Pottmann, Schiftner, and Wallner 2008);

e The focal geometry of circular and conical meshes, (Pottmann and Wallner 2008);

e Tiling Freeform Shapes With Straight Panels: Algorithmic Methods, (Wallner et al. 2010);

e Interactive Modelling of Architectural Freeform Structures: Combining Geometry
with Fabrication and Statics, (Caigui Jiang, Tang, et al. 2014);

e Freeform Honeycomb Structures, (Caigui Jiang, Wang, et al. 2014);

e Form-finding with polyhedral meshes made simple, (Tang et al. 2014);

e Architectural Geometry, (Pottmann, Eigensatz, et al. 2015);

e Cell packing structures, (Pottmann, Jiang, et al. 2015);

e Measuring and Controlling Fairness of Triangulations, (Cagui Jiang et al. 2016);

e Geometry and freeform architecture, (Pottmann and Wallner 2016).

Helmut Pottmann, Alexander Bobenko and Johannes Wallner et al. published together following
works:

e Geometry of multi-layer freeform structures for architecture, (Pottmann, Liu, et al. 2007);

e A curvature theory for discrete surfaces based on mesh parallelity, (A. 1. Bobenko, Pottmann,
and Wallner 2010);

e Vertex Normals and Face Curvatures of Triangle Meshes, (Sun et al. 2016).

Quoted works of Helmut Pottmann, Alexander Bobenko and Johannes Wallner concern the intrinsic
properties of PQ meshes as well as case studies of structures the authors contributed to.
Other topologies of grid shells such as triangular and 3-valent are also discussed, together
with the form finding and optimization strategies. Recent practice of these authors is focused
on the discretization of freeforms into single curved and developable panels and unification of the
single and doubly curved panels.

Different to the top-down approach represented by Hans Schober (who has, nevertheless, occasionally
cooperated with Helmut Pottmann) is the one represented by Romain Mesnil. His approach, named
by him the bottom-up approach, promises new morphologies of freeform PQ grid shells and the change
of the way these are designed. Works of Romain Mesnil et al. are chronologically:

e Isogonal moulding surfaces: A family of shapes for high node congruence in free-form
structures, (Mesnil, Douthe, Baverel, Léger, et al. 2015);

e Mbébius Geometry and Cyclidic Nets: A Framework for Complex Shape Generation,
(Mesnil, Douthe, Baverel, and Léger 2015);

e Generating high node congruence in freeform structures with Monge's Surfaces,
(Mesnil, Santerre, et al. 2015);

e New shapes for elastic grid shells covered by planar facets, (Douthe et al. 2016);

e Marionette mesh: from descriptive geometry to fabrication-aware design, (Mesnil et al. 2016);
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Structural explorations of fabrication-aware design spaces for non-standard architecture,
(Mesnil 2017).

The position is the Doctoral Dissertation of Romain Mesnil summarizing the knowledge according
to the bottom-up approach (accurately called fabrication-aware design). Among others
his contribution to the field is the introduction of the Tchebycheff> networks for generating isoradial
meshes, Monge surfaces, Mobius geometry and his original method, i.e. Marionette projections.
This approach coincides in many respects with the one presented in this work.

Argumentation for the advantages of freeform shells and grid shells over conventional forms from
the point of view of statics is presented in the following works:

Conceptual Design of Long-Span Roofs, (Schlaich and Bergermann 1994);

Ethics and Structural Reliability in Free-Form Design (FFD), (Majowiecki 2007);

New Strategies and Developments in Transparent Free-Form Design: From Facetted to Nearly
Smooth Envelopes, (Baldassini et al. 2010);

Parapluie - Ultra Thin Concrete Shell Made of UHPC By Activating Membrane Effects,
(Eisenbach et al. 2014);

Non-parametric Free-form Optimization for Grid-shell Structures, (Shimoda et al. 2013);
Computational Techniques For Designing Shell Structures, (Tish 2015);

The end of Free-Form Design, long live Free-Form Design!, (Veltkamp 2015).

Argumentation for the advantages of PQ meshes over other topologies in case of glazed grid shells
is presented in:

Conceptual Design of Long-Span Roofs, (Schlaich and Bergermann 1994);

A parametric strategy for free-form glass structures using quadrilateral planar facets,
(Glymph et al. 2004);

Study of Panelization Techniques to Inform Freeform Architecture, (Hambleton et al. 2009);
Architectural Geometry, (Pottmann, Eigensatz, et al. 2015);

The end of Free-Form Design, long live Free-Form Design!, (Veltkamp 2015).

The following works in this field also deserve attention:

Reticulated Structures on Free-Form Surfaces, (Soeren, Sdnchez-Alvarez, and Knebel 2004);
Constrained planar remeshing for architecture, (Cutler and Whiting 2007);

Thrust Network Analysis: a new methodology for three-dimensional equilibrium,
(Block and Ochsendorf 2007);

Glazing Technology: the Hidden Side of Freeform Design, (Baldassini 2008);

On Vertex Offsets of Polyhedral Surfaces, (Liu and Wang 2008);

Planar hexagonal meshes by tangent plane intersection, (Troche 2008);

Study of Panelization Techniques to Inform Freeform Architecture, (Hambleton et al. 2009);

A new method of generating grids on free-form surfaces, (Ding and Luo 2013);

Form-finding  and  planarisation  of glass domes with quad elements,
(Estrada and Baldassini 2013);

Design  and  Construction of a  Free-Form  Reticulated Glazed  Canopy,
(Sanchez-Alvarez, Schwarnowski, and Wolkowicz 2013);

5 Pafnouti Lvovitch Tchebychev or Tchebycheff are transliterations of MadHyTuit /lbBosny Yebbiwés used
by French authors, whereas later in this work English transliteration will be used: Pafnuty Lvovich Chebyshev.
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Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy,
(Menard, Fayette, and Azzopardi 2013);

Shell Structures for Architecture: Form Finding and Optimization, (Adriaenssens et al. 2014);
Biomimetic Lightweight Timber Plate Shells: Computational Integration of Robotic Fabrication,
Architectural Geometry and Structural Design, (Krieg et al. 2014);

Surface Panelization Using Periodic Conformal Maps, (Rorig et al. 2014);

Exact face-offsetting for polygonal meshes, (Hambleton and Ross 2015);

Pattern and Form - Their Influence on Segmental Plate Shells, (J.-M. Li and Knippers 2015);
Planar Hexagonal Meshing for Architecture, (Y. Li, Liu, and Wang 2015);

Computational Techniques For Designing Shell Structures, (Tish 2015);

Face-offsetting polygon meshes with variable offset rates, (Ross, Hambleton, and Aish 2016).

Apart from the scientific works listed above there are also many others like those written by architects
and structural engineers who had been working on the design of completed structures. Number
of such structures and people cooperating during their design and construction processes is large
and still growing. However, in authors conviction, listed works represent the most important ones
in the field and those which contribute most to the scientific aspects of the PQ designing methods.
It is also worth noting, that there are situations, when the industry is ahead of the science
as it was during the construction of Museum Guggenheim Bilbao, see (Veltkamp 2015).
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2. A brief history of freeforms and their application in architecture

Freeforms were present throughout the history in various fields of science, technology and art, among
them also in architecture. Among the areas which are very important areas of their application should
be mentioned boatbuilding and naval industry. In this chapter selected examples are described
chronologically allowing to look at the modern freeform design paradigms in architecture from a more
general perspective. Since nowadays the empirical methods have started to be replaced by analytical
methods, ongoing evolution of freeforms shaping tools is subsequently described. Finally, selected
modern examples, relevant for further considerations are described.

2.1. Mudhif — an ancient example of the use of elasticas

Vernacular architecture have had more in common with curved, irregular forms than the modern
architecture. Limiting the materials used only to the most easily available, naturally occurring ones,
requires great ingenuity from the builders. Adjusting the form of the building to the specific features
of the material allows to obtain the most effective structural system, with the desired span and load
capacity.

The so-called bending-active structures attract nowadays more and more attention
due to the effectiveness of material usage in such forms and some specific aspects of the shaping
process, see (Lienhard 2014), (La Magna, Schleicher, and Knippers 2016). However the idea itself
is not new. Mad’an people, inhabitants of marshy areas in the south of Irag build their homes in the
same way their Sumerian ancestors did five thousand years ago, see Fig. 2.1, (Ochsenschlager 1998).
Buildings called Mudhif are made of flexibly bent reed bundles, see Fig. 2.2 and 2.3. Reed is the only
material abundantly available in the area, however, Mad’an (also called Marsh Arabs) did not use
it in a banal way, building simple huts, but were able to develop an unusual structural system that
has survived on this areas to this day. A straight reed bundle is easily deformable. But the initial
deformation of such bundle is done through applying force prior to any external loads are applied, thus
introducing pre-stress to the system. As with all prestressed systems, initially introduced stresses
superimpose with stresses resulting from the external loads, so that their final value is much smaller
than in non-prestressed components. Significant deformation of an initially straight, highly deformable
and elastic structural element results, paradoxically, in a more rigid and structurally effective element®.

The geometrical shape of those deformed reed bundles is close to the elastica, i.e. a curve representing
axis of an elastic rod deformed by bending. The mathematical concept of the elastica developed
by James Bernoulli at the end of XVII™" century and published in the article Curvatura laminae elasticae
(Bernoulli 1694) was later improved by Christiaan Huygens and Leonhard Euler (Goss 2003). Although
the mathematical concept for the shape of a bent elastic rod is well elaborated, in practice it’s not used
in computer aided design (CAD). The evolution of digital tools for creating curved forms brought more
comprehensive and reliable geometrical concepts. These forms, however, are purely mathematical
creations and do not directly relate to the mechanical properties of the materials from which they
would have been realized in reality and do not correspond to forms occurring in nature.

6 Julian Lienhard’s definition of bending-active structures (Lienhard 2014):
“Bending-active structures are structural systems that include curved beam or shell elements which base their
geometry on the elastic deformation from an initially straight or planar configuration”
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Seemingly simple Mudhif buildings are a great example of an intuitive connection of three important
architectural and structural concepts. First, their architectural form is based on double-curved
surfaces. Secondly, the use of these surfaces is not a purely formal procedure, but it is based
on the rational use of available resources. Thirdly, their construction is carried out by means
of the bending-active method, which allows to convert relatively slender plant material into
a fully-fledged structural element. This last aspect is at the same time a clasp linking these buildings
with one of the most creative structural ideas of recent years.

Fig. 2.2 Bending the bundles bufixed at the ends to the ground and tying them together at the top.8

7 Source: http://www.unc.edu/depts/classics/courses/clar241/UrukTrgh.jpg
8Source: http://www.arch.mcgill.ca/prof/sijpkes/abc-structures-2005/Lectures-2005/term-work/50-
questions/marsh-arabs-construction.jpeg
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Fig. 2.3 Interior of a finished Mudhif.°

2.2. Catenary forms in vernacular and contemporary architecture

Catenary forms are known to man for ages. They can be seen in the shape of hanging ropes, or in some
natural rock formations. Richard L. Handy also described the form of Rainbow Natural Bridge in Utah,
U.S.A, see Fig. 2.4, (Handy 1973). The shape of the bridge has been previously recognized as elliptical
in 1961 by Clifton W. Livingston (Livingston 1961). However, Handy states that just as accurately that
shape is described by the catenary curve, which is less general since it has only one constant instead
of two as in ellipse'®. He puts forward an interesting thesis about how nature prefers catenary forms:

“Perhaps nature dislikes tension almost as much as it abhors a vacuum, and microfractures held open
by tensile stress become localized sites for weathering with attendant expansion and spalling parallel
to the direction of tension [...]. Furthermore where tension does not exist as a boundary condition,
tensile crack propagation still occurs within a brittle material normal to the direction of compression
[...]; thus the shape of a weathered natural arch in uniform nonlayered material should describe
a trajectory of maximum compressive stress near the surface, i.e., a catenary.”

9 Source: http://www.arch.mcgill.ca/prof/sijpkes/abc-structures-2005/Lectures-2005/term-work/50-
questions/mars-arabs-mudhif-1.jpeg

10 Ellipses belong to the same class of curves — conical sections or second degree curves. Before Huygens
argumentation, Galileo’s opinion was widely accepted, that catenaries are equal to the parabola (which is also a
conical section curve).
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Fig. 2.4 Rainbow Natural Bridge, Utah, USA.11

No wonder then, that this form appeared at the earliest in the vernacular architecture created
by the Inuit. Although the Inuit tribes (native inhabitants of arctic regions of Greenland, Canada
and Alaska) never devised any mathematical methods to design optimal shape of an igloo, their trial
and error practice resulted in the structural perfection confirmed recently analytically by scientist
Richard L. Handy (Handy 1973). It reveals, that the shape of an igloo is nearly perfect approximation
of catenary curve®? that is revolved. While most ideas of domes picture spherical shape, they cannot
be constructed of snow and ice, as these materials are not able to carry tensile forces.
Ancient engineers building domes in the Mediterranean area introduced tensile rings and heavy
supports at the bases of their domes to prevent them from collapse, as the bases were loaded by forces
transmitted from the top of the structure that tried to push them outside. Due to insufficiency
of various construction materials, Inuit people had to use the only material available without
limitations — snow. Similarly to some other construction materials like stone and bricks snow has much
higher strength for compression than for tension or shear and bending. Thus they had to find a form
in which the whole structure is only in compression and there are no horizontal tensile forces
at the base. The catenary form is a perfect candidate for this purpose. Through subsequent attempts
they analysed if the built form performed well in its shape or not, having the possibility of evaluating
it almost immediately. Gathering experience and possibly by the way of evolution of form, the final,
perfect solution was achieved. In the catenary form the forces are in pure compression
and the performance is not related to the thickness of the walls since buckling is in practice eliminated
and mass increases proportionally to the thickness. The widespread occurrence of snow enabled easy
change of the place of residence, which corresponded to the nomadic lifestyle of the Inuit.

1 Source:

https://upload.wikimedia.org/wikipedia/commons/0/06/Rainbow_Bridge Natural_Arch_Utah_USA.jpg

12 Mathematical equation for catenary curve was derived by Gottfried Leibniz, Christiaan Huygens and Johann
Bernoulli in 1691, although earlier in 1646, seventeen year old Christiaan Huygens proves analytically that
catenary is not parabola.
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Catenary forms are often used in modern architecture as well. Probably the most well-known example
of their very wide use are the buildings designed by Antoni Gaudi. Their most notable application
was shaping the form of the structure of Sagrada Familia church by means of a physical model,
see Fig. 2.5. Antoni Gaudi, as an astute nature observer, noticed that the best performing forms
are those created by nature. Therefore, he let the nature to find the form for Sagrada Familia, limiting
himself to setting the external conditions for the form-finding®® (see Patrik Schumacher’s definition
in section 3.6).

Fig. 2.5 Catenary model of the structural system of the Sagrada Familia.*

Before the age of computer aided design, the empirical, i.e. physical methods were frequently used
for form-finding. Such approach allowed one for almost immediate judgement of structural properties
of obtained shape. Nowadays, so fashionable and popular designing of arbitrary “free” shapes often
deprives the form of structural and fabrication logic. What those quoted above examples have
in common, is firstly that the specific form is the main source of outstanding efficiency of the structure.
Secondly, these forms are derived from nature, i.e. they are not abstract concepts. Lastly, they fulfil
the criteria of freeform in terms of irregularity of curvature.

13 The term form-finding (ger. Formfindung) was first used by Klaus Linkwitz in 1974, see (Linkwitz, Schek,
and Griindig 1974), who developed the method of calculating membrane structures. In times Antoni Gaudi
the term was not yet used.

14 Source: https://commons.wikimedia.org/wiki/File:SagradaFamiliaStatikmodell.jpg
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2.3. Discovery of perspective and its impact on the architecture of
Renaissance and Baroque

The usage of freeform shape was not necessarily narrowed to the structural efficiency.
In the XVI*" century the development of sciences brought the shift from the empirical to the analytical
way of thinking due to the aforesaid scientists - Leibnitz, Galileo, Bernoulli etc.

The Renaissance brought Europe a refreshing return to the classic desire to learn about and describe
the surrounding world by the language of science. Classical thinking and the knowledge accumulated
on its basis in antiquity, has survived partly to modern times in Byzantine Empire, as well as in the Arab
world, which gradually took over this heritage. It has reached Western Europe thanks to the contacts
of Italian trade republics such as Venice and Genoa. The fall of Constantinople in 1453 brought
the final wave of this "transfer of knowledge".

2.3.1. Perspective

The beginnings of the aforementioned revolution took place in the art of painting, then artists’ talent
merged with their mathematical and geometric knowledge. Artists such as Paolo Uccello, Piero Della
Francesca and Filippo Brunelleschi searched for the rules that govern the perspective. Symbolism
began to be replaced by realism, and its achievement required an analytical approach.

Paolo Uccello (1397 - 1475) was a painter and perspective pioneer in painting. Changes in the approach
to the representation of the world are visible in differences between his early and late works.
The symbolic perspective in the sense of the Gothic art was replaced with a natural perspective,
this trend has remained in art for several hundred years. In addition to these discoveries, his studies
on the form itself in the perspective and manner of its recording are also important. His analytical
approach is surprisingly consistent with the approach currently common in computer graphics.

Paolo Uccello’s study of a vase, see Fig. 2.6, is a sketch showing the revolving body in perspective
as a collection of points connected by section lines. What he did over five centuries ago is today
the basis for the recording of spatial form and its presentation on the computer screen.
Instead of attempting to present the vase in a complete perspective, he made the discretization
of its form, i.e. dividing it into a finite set of points and edges, through which it is sufficiently
and unambiguously represented. Such approach allows for calculations or activities leading to the
creation of a perspective sketch, that could be done on a finite number of elements.

Later another artist - Piero della Francesca (ca. 1412% - 1492) was also a painter and a mathematician.
He was the author of the works: De prospectiva pingendi (On the perspective in painting,
(Della Francesca 1474)) and Libellus de Quinque Corporibus Regularibus (Short Book on the Five Regular
Solids). In addition to art, he was deeply interested in arithmetic, geometry of spatial solids
and perspective.

15 The year of birth of Piero della Francesca is not exactly known and vary depending on the source between 1410
and even 1420. Here the year of birth of the artist is taken from the introduction to the polish edition
of De prospective pingendi (Della Francesca 1474).
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In 1465, Piero della Francesca finished the Resurrection, a painting on which he placed his self-portrait.
The figure in the painting depicts the author and has an unnaturally deviated — by the standards of that
time — head, however, it is a realistically accurate image obtained by the artist through strictly
analytical approach, see Fig. 2.7, bottom, right.
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Fig. 2.7 Drawings from "De prospectiva pingendi" (Della Francesca 1474) including a fragment of the "Ressurection"
with autoportrait of Piero della Francesca.

16 Source: https://commons.wikimedia.org/wiki/File:Paolo_uccello, studio_di_vaso_in_prospettiva_02.jpg
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Fig. 2.7 — continued.

Piero della Francesca made a discretized record (like Paolo Uccello) for the set of points of his head,
written in the form of four orthographic projections’’, see Fig. 2.7, top, left. By projecting
any three-dimensional image on the plane, information about the position of elements of this object
in the direction perpendicular to the projection plane is lost. Francesca recovered this information and
recorded it by introducing orthogonal projection. Having unambiguous information about the position
in the space of points on the head, he could subject them to any manipulation (rotation around
the selected axis and perspective projection) thus achieving the position of the head captured
in the image.

Thus, Piero della Francesca confirmed the discovery of Paolo Uccello of the possibility of writing
a continuously curved object as a discrete set of points in space, interpolating the described shape.
However, a shift between the record of a regular rotary body and a shape as subtle as a human face
is worth emphasizing. At the same time, he proposed a form of representing spatial solids
in a two-dimensional form, very convenient and used until today in various areas when
a three-dimensional object is displayed in perspective on a flat screen, whether in CAD programs,
computer games, computer animation films and even in neuroimaging (Schott 2008). Also,
Piero della Francesca’s orthogonal projection is the oldest known example of this type of projection.

However, correctness of discoveries of the two discussed artists had still to be confirmed.
Although works of Paolo Uccello and Piero della Francesca looked to be correct, only an experiment
carried out by Filippo Brunelleschi (1377 - 1446) proved their utility.

Filippo Brunelleschi was an architect known primarily for the work of his life - I Duomo in Florence.
Like Paolo Uccello and Piero della Francesca he was deeply interested in mathematics, geometry
and perspective. He proposed a method of comparing the perspective image recorded on the panel
with the view of the image in nature, see Fig. 2.8. This comparison was to take place not by looking
at the object and its image separately, but by looking at both simultaneously. As objects for comparison
he chose the Baptistery and Palazzo Vecchio in Florence (unfortunately, paintings used
for the comparison has not survived until today). For the experiment he used a painting
of the Baptistery (in a mirror image) with a hole at the vanishing point and a mirror with a similar hole.
Filippo Brunelleschi held the mirror in front of him in an upright hand. The mirror was facing toward
him. The painting was held in his other hand, in front of his face, however it was facing the opposite

7 It is worth mentioning here that both the Cartesian concept of axis and coordinate system as well as the
Gaspard Monge’s orthographic projection (first-angle projection) were not known at that time. Piero della
Francesca was a precursor in this area.
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direction, i.e. toward the mirror. The architect was looking through both holes — in the painting
and in the mirror — at the Baptistery, while he was able to see the reflection of the painting
at the mirror simultaneously. Looking at the object and the reflection of his image,
he could immediately assess the similarity of both. This experiment confirmed the practical usefulness
of the perspective and correctness of geometrical principles developed by mathematicians and artists.

Painting
Mirror with polished
with ~~_
sighting

hole

Sight line
—~— - ——

Fig. 2.8 Brunelleschi linear perspective experiment.18

2.3.2. Renaissance and Baroque eras

Paolo Uccello and Piero della Francesca proved analytically that circles are transformed into ellipses
in the perspective projections’® and elliptical forms were willingly adopted in the architecture
of the Renaissance and Baroque eras. Rediscovery of works of Vitruvius changed the paradigm
of creation into a new one, which was focused on the search for beauty in the perfection of forms
and their proportions. Therefore, the newly constructed buildings were oriented on the human-scale
and their plan composition was centralized. They were intended for human perception in contrast
to the Gothic architecture, which was concentrated on the divine scale characterized by high rise
buildings with a structure brought to the limit. Altering the attention from the scale of the building
to its form allowed to design and built within fraction of an architect’s lifetime. That eventually led
to creation of individuality of architects henceforth conceived as artists. The new challenge among
architects was to search for unknown forms of expression —new proportions, details and compositions.
Initially, the antique architecture was a sufficient source of inspirations. The evolution of forms lasted
until breaking the strict geometrical rules of Renaissance, what have led to the development
of Baroque architecture.

Elliptical plans of churches allowed to combine the centralized plan with the traditional, linear division
of the temple. It also created an optical illusion that the objects at the opposite sites of an ellipse
qguadrants are closer to each other, e.g. an entrance of the church to the altar. The most famous

18 Source: https://maitaly.files.wordpress.com/2011/04/0328p_duomo6_b.jpg
1% |n fact, through a general perspective projection a circle can be transformed into any second degree curve —
i.e. acircle, ellipse, parabola and hyperbola, as well as into a line segment.
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example of deliberate use of perspective shortening the space is the elliptical part of St. Peter's Square
designed by Giovanni Lorenzo Bernini.

The Mascarino Staircase in Palazzo del Quirinale designed by Ottaviano Mascarino, San Giacomo
in Augusta designed by Carlo Maderno, San Andrea al Quirinale designed by Giovanni Lorenzo Bernini
and Santa Maria in Montesanto designed by Carlo Rainaldi and revised by Giovanni Lorenzo Bernini
all share elliptical plans. The ellipse can also be easily plotted both on the plan and on the construction
site.

2.3.3. Francesco Borromini

Francesco Borromini (1599 -1667) went a step further in creating of the freeform architecture.
He was a pioneer in the application of freeform lines, waviness, concavity and convexity and was able
to transfer his visions into full-size buildings. In the paper “Elasticas in shaping architectural form
—a hypothesis about Borromini’s approach” (Swieciak and Tarczewski 2018) author of this work argues
the hypothesis, that Borromini was familiar with elasticas and their usefulness in shaping architectural
forms. The most notable examples of his works, that match that hypothesis are the staircase in Palazzo
Barberini and the dome in San Carlo alle Quattro Fontane. The forms of both do not fit exactly
any analytical forms of ellipses, nor ovals as suggested in (Mazzotti 2014), while the elastica curve
could have been easily obtained in both: plan and full scale.

Flexible slat (i.e. spline) could have been used by Borromini due to an important fact: elastica curve
can be easily scaled between drawing and full-scaled object. Given the scale, the length of the slat,
positions and directions at its ends builders could have used wooden slat of length according
to the scale. Such method was widely used by shipbuilders tracing ship hulls and structures also
in Francesco Borromini’s time.

Digital tools currently available for architects allow them to design freeform curves and surfaces.
These tools had been evolving, starting from simple splines through Bezier curves ending at complex
NURBS surfaces. Nevertheless, the problem of scaling the freeforms, which Borromini could have
encountered, is still actual. Moreover, many designs fail due to the underestimated technological
threshold between what is possible to design and what is possible to be built.

Borromini might have used the splines to trace the shapes of his architectural works. Such tools were
already known and commonly used in the naval architecture, however, these might have also
be the subject of closely protected technologies, also due to their military applications.
The path of evolution of freeform design tools in naval architecture is described in the following
sections.

2.4. Naval architecture - spline curves

Free forms were present in the naval architecture ever since people started to taming the element
of water. The earliest archaeological findings are reed-bundled (compare with section 2.1 — Mudhif)
boats from sixth and fifth millennia BC (Carter 2006), located around the Persian Gulf. Another ancient
form of boat is Inuit umiak, i.e. boats intended for whale hunting, used by the inhabitants of the far
north (Greenland, Siberia). Due to the lack of resources like wood, these boats were made
of whalebones with seal skins stretched over the skeleton. These structures could have been classified
as hybrid — bending-active and membrane structures — naturally taking on a freeform defined
by the equilibrium of both counteracting forces caused by expanding skeleton and compressive
membrane.
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The slenderness and flexibility guaranteed the reed-bundle and umiak boats better performance,
i.e. stability, capacity and speed, than in case of rigid constructions. Early Viking ships were built
on similar principles. The hull was built independently from overlapping, cleaved along fibres planks,
with strut braces added later. Individual planks, divided with the use of an axe, were joined together
in the clinker-built style, creating self-supporting hull (Garrison 1998). The process of shipbuilding
in the reversed fashion, where the hull was built before the internal skeleton was dominant in Europe
in the first millennium. Usually ships were built without plans and hulls were assembled on moulds
(Rieth 2003), (Olaberria 2014).

Technological progress in the shipbuilding made by the Portuguese and Castilians in the XV century
brought to reaching America. A technique called carvel-built allowed for creating vessels that were
characterized by smoother hulls, lighter structures and faster speeds than common at the time
clinker-built vessels. The caravel type of ship (por. caravela) was able to navigate the ocean thanks
to the features carvel-built hull, which resulted from the arrangement of planks on the ship’s frame.
Instead of overlapping the planks like in the clinker planking, the carvel planking assumed tight
arrangement of planks one next to each other so that individual planks were touching each other only
along the narrow edges. Such hulls were thinner and smoother. Additionally, the planks swelling when
in contact with water expanded and clamped each other, enabling resignation from sealants.
Building ships in such a manner required more detailed planning, also the frame had to be prepared
before the hull was built. Each individual plank should have been prepared for its exact destination.

Rapid development of science since the XV century was present not only in mathematics,
art and architecture. In the shipbuilding industry new technologies were subjects of economic secrets.
Arsenale di Venezia, the Venetian shipyard and armoury complex, since its establishment in 1104 until
the industrial revolution was the greatest industrial complex in Europe. Technological secrets were
protected according to strict rules, e.g. a worker of a shipyard leaving Venice was obliged to leave
members of his family as hostages. Individual workshops in the complex were specialized
in prefabricating specific parts for ships, what on one hand allowed for faster production and storage
of components. The ship built of stockpiled parts took Venetians around eight months to finish,
comparing to four years per similar ship in the similar period for Maltans, see (Atauz 2005), p. 179.
The same source claims that Venetians managed to assemble a galley within 24 hours. On the other
hand such approach required specialized planners and draftsmen. Once prepared plan was the subject
of highest protection, yet it could have been divided into incomplete parts that were sent separately
to the corresponding workshops. Also, many ships could have been built according to the same plans.

One of many tools and methods used for drafting the plans for ships was the spline, see Fig. 2.9.
It was a long, flexible, wooden or metal strip fixed in position at several points. Passing through
that points the strip relaxes forming a smooth curve. The spline was very convenient for transferring
curves between drawings and scales, any curve drawn with the use of spline could be defined
by the position of control points and the length of the strip. The same technique could have been used
by Francesco Borromini at the San Carlo alle Quattro Fontane, according to the author’s hypothesis
(Swieciak and Tarczewski 2018). Draftsmen of boat and ship plans used splines to trace the courses
of wooden planks on the hulls. In the full scale the control points were placed at the frame sections,
and the planks running along the hull took the shape of elastically deformed splines. Drawings were
redrawn on greater scales in the only dry and spacious places in the shipbuilding workshops,
i.e. at lofts, hence the today’s name of a loft function commonly used in the computer aided design
software. However, the modern spline understood as a 3D CAD tool is not equivalent with the shapes
obtained by elastically deformed strips.
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In the 18" century boatbuilding draughtsmanship began to become naval architecture (Nowacki 2006).
The growing influence of the natural sciences (e.g. hydromechanics) left its impact also in the ship
design industry. Empirical methods usually supported by experience for designing hulls were since then
also supported by analytical methods. Gradually physical hull models were completely replaced
by drawings generated with use of other tools.

Fig. 2.9 A spline slat attached to a drawing board with pins?0.21

Naval architecture and draft methods were successfully adapted by the newly established aviation
industry in the first decades of 20" century. Boeing’s first production facility, Boeing Plant 1,
was located in wooden boat shipyard, whose previous owner became the master woodsman of Boeing
(Spitzer 1998). The draftsman spline curves were utilized at Boeing until the introduction of computer
aided design methods of interpolating curves (Grandine 2005). Although the same name
for computational curves is used -splines, these are not representations of elastically deformed
draftsman splines?2. Due to detachment from physical properties of the tool it’s possible to manipulate
their shape in a much larger range. This is also the cause of many problems related
to the constructional aspects of the realization of freeform objects.

2.5. Influence of naval and aerospace design on architecture

“For me as an architect it has been ideal to have been attached to a large shipyard, where all trades
were represented, and large-scale work was carried out. When | was about to draw the Opera House
in Sydney, | was not really worried that | had to convert sketches into curved surfaces towering
60 meters, define them geometrically and have them constructed. As a child | had seen huge ship-hulls.
My father helped me construct the large-scale models required. Without any specific agreement
he made the wooden models. After a couple of days the delicate forms were in the drawing room”

Jgrn Utzon?

20 Instead of pins so-called ducks are preferred. The name duck refers to the shape of a weight, which holds a pin
in position.

21 Source: https://en.wikipedia.org/wiki/File:Spline_(PSF).png

22 The broadly described history of splines is described in the article of Alastair Townsend On the spline
(Townsend 2014).

23 Jgrn Utzon about his father, Aage Utzon in the conversation with Bent Aarre, source:
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The history of construction of the Sydney Opera House* clearly emphasizes the threads
and opportunities accompanying the architecture of freeforms. Jgrn Utzon (1918-2008) was a son
of a naval architect. Naval design was also a subject of interest for young Jgrn Utzon who spent many
hours with his father designing ships and building models. Naval architecture, being merely one
of many sources of inspiration for Jgrn Utzon, took the primary role for the competition project
for Sydney Opera House in 1957. The competition drawings resembled the more of a free-flowing
and organic shapes than the actually built structure. Shell structures implemented at that time
by Pier Luigi Nervi, Felix Candela and Eero Saarinen convinced the legitimacy of the solution proposed
by Jgrn Utzon. However, Ove Arup, whose company was assigned as the structural and civil engineers
for the project, told Jgrn Utzon at their first interview that proposed shells are not structurally suitable.
Also, being unexperienced with projects of such scale Jgrn Utzon might have underestimated
the rationalization of the shape in terms of repetitiveness of structural elements. The shape
of the shells went through 12 iterations — including parabolic sections, circular ribs and ellipsoids.
It became clear to engineers that some form of unification of structural elements is essential in order
to rationalize the prefabrication costs and preform structural calculations correctly. Eventually each
shell took a form of the sphere section, each one was assembled of repetitive, convenient
for prefabrication ribs. For the structural analysis Arup used computer systems, which was one
of the earliest attempts of such use of computers. Nevertheless, physical models were also used
for verification of these calculations.

The completion of the construction and opening of the Sydney Opera House took place in 1973,
six years behind the planned schedule. Most of the technologies involved in the design
and construction of the shell were innovative at the time. The originally assumed cost estimate
was exceeded over tenfold. The building that had become one of the most iconic architectural works
of the modern times required unexpectable effort to complete. However, it also highlighted
the problems of implementation of freeform in architecture. Its construction revealed, that forms that
were previously available for the naval architecture occurred to be problematic in architectural
applications. The problems encountered were related to unification of used structural elements,
thickness of the shells and uniqueness of the design, all of which is characteristic for architecture.
Importance of these properties in context of mechanical industry and architectural design in further
explained in section 3.1.

Implementation of architectural freeforms, especially when talking about continuously curved, solid,
smooth surfaces require solutions so much sophisticated, that nowadays the most iconic
implementations are prefabricated by specialized shipyards, because only they have technical
capability to produce them. Manufacturer like Central Industry Group? (Veltkamp 2015) is a shipyards
specialized in architecture, which was the brain behind the construction of some iconic architectural
works like components for the Porsche Pavilion in Wolfsburg (Fig. 2.10, left), curved walls
in Central Station in Arnhem (Fig. 2.10, right) and link bridge at Yas Island in Abu Dhabi (Fig. 2.11).

http://www.utzonphotos.com/about-utzon/curriculum-vitae-and-biography/biography/aage-utzon-father/

24 The history of Sydney Opera House is broadly described in the book titled The saga of Sydney Opera House
by Peter Murray (Murray 2003).

25 CIG is also a manufacturer who produced freeformed claddings on topologically optimized supporting
structure in Qatar National Convention Centre, see more in introduction to chapter 3.
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Fig. 2.11 Link bridge in Yas Marina Hotel. Left: in CIG shipyard?é, right: completed structure®.

2.6. Digital freeform design tools

Aircraft design before the second world war was actually based on the similar drafting techniques
as the ones used in the naval industry. However, the requirements for the smoothness and streamlines
in the aircrafts was much more demanding, especially during the armaments race. North American
Aviation airplane manufacturer met the new challenges by introducing the conical sections
into the design and manufacturing process, (Wagner 1990), p. 57. The first plane designed in such
a fashion was the P-51 Mustang fighter. Its shape was based to a large extent on conical sections.
Conical sections are the curves obtained from the intersection of the surface of a cone with a plane.
Generally they include circles, ellipses, parabolas and hyperbolas. It is possible to represent these
curves as second degree equations, hence their other name second degree curves. Engineers working
at NAA had to find new solutions enabling a fast and reliable way of transferring and scaling shapes
of these curves, because in the contract with the British Government NAA was obliged to build
and test a prototype within 100 days, see (Wagner 1990), p. 55. Adapting a new technology gave such
opportunity due to several advantages. In order to solve this problem they developed
a new technology, which, as it turned out, had many advantages over previously used ones.

%6 Source: http://www.centralindustrygroup.com/mediadepot/779ccdaddf6/1024/EP02690-277.jpg

27 Source: http://www.centralindustrygroup.com/mediadepot/2160c3fflca7/1024/0VTArnhem?2.jpg

2 Source: http://www.centralindustrygroup.com/mediadepot/740a512f6¢5/1024/IGP1876SP.jpg

2 Source: http://www.centralindustrygroup.com/mediadepot/462323de003/678/480/LinkBridgeFinished.jpg
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The design recorded in the form of blueprints and formulations describing every curve on it was
scale—free. Typically the plans for the plane required redrawing into the 1:1 scale, what usually caused
some inaccuracies and errors. Scaling the formulations describing the shape was based
on multiplication in which the possible error was minimized. Therefore, it was possible to record
the design in form of encrypted numerical tables and send it by radio. Thanks to the reduction of scaling
inaccuracies, the plane segments like wings, tail, fuselage etc. could have been manufactured
separately and simultaneously, while ensuring that these parts will match each other perfectly. Hence,
the applied solution not only ensured greater accuracy but it also allowed to save production time.

National Advisory Committee for Aeronautics (an organization that was the predecessor of today’s
NASA) was involved in the project cooperating at designing laminar flow airfoils for the wing sections
and performing tests in aerodynamic tunnel, see (Wagner 1990), p. 18. Apart from delivering the first
prototype after 102 days after the contract was signed, the engineers managed to construct one
of the best performing fighters of the second world war. Roy A. Liming, the Head of Engineering Loft
Mathematics in North American Aviation published a book summarizing the theoretical concepts
behind the design of Mustang in Practical Analytic Geometry with Applications to Aircraft in 1944
(Liming 1944). Until the nineteen eighties different algorithms and CAD systems for spline evaluation
had emerged, with De Casteljau's algorithm and Bézier curves in early 1960s as the most notable
examples, see (Mortenson 1999), pp. 264-276. Paul de Casteljau was a physicist and mathematician
working at Citroén and Pierre Bézier was an engineer working at Renault. Both individually developed
CAD and CAM systems for their companies capable of plotting curves and doubly curved surfaces®.
In 1979 Boeing, which at the time used several separate CAD systems for different design tasks,
appointed TIGER Geometry Development Group whose goal was to unify several used systems for curve
and curved surfaces interpolation into one stable and compatible system. As the authors of the cited
source admit (Blomgren and Kasik 2002):

“Early commercial airplane design was derived from ship design. Both the terminology (airplanes have
waterlines; they roll, pitch, and yaw; directions include fore, aft, port and starboard)
and the fundamental design of surfaces (lofting to make airplanes fly smoothly in the fluid material
called air) are still in use today.”

Aerodynamic forms with the curvature degrees higher than G1 were required especially
for the airplane design industry, therefore the boundaries were pushed forward. The result of their
development were NURBS (short for Non-Uniformal, Rational B-Splines) which spread further
and became a standard for representing freeform curves and surfaces in CAD and CAM
(Blomgren and Kasik 2002). The NURBS documentation was published and further projects of Boeing
were carried on CATIA CAD CAM software originating from Dassault Systems — a French airplane
designer and manufacturer. CATIA was also the first CAD CAM platform used for the architectural
purposes, for details see section 2.8.

Nowadays NURBS have also spread into the architectural design world. Their applicability is constantly
growing. Their applications are not limited only to geometric problems, but they also entered the field
of mechanical calculations, through the emergence and rapid development of isogeometric analysis>Z.
The ease of use of NURBS surfaces results in appearing new building morphologies which, however,
are also the subject of “old” problems of which the Sydney Opera House is a great example.
They concern designing freeform shapes prior to the decisions how those shapes would be divided

30 After revealing the details of these systems the Bézier curves became standard geometrical objects available
in almost every CAD and graphical systems.
31 Abbreviation for Isogeometric analysis is IGA, in contrast to FEA for the finite element analysis.
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into parts, what materials should be used and generally, how could the freeform be built.
Such approach, called top-down (see section 3.4), dominates the architectural freeform design.
Unfortunately, some contemporary designs containing freeforms, which repeat the history
of Sydney Opera House, frequently win competitions, eventually creating unprecedented problems
in the realization phase. Nevertheless, as these designs may be very good from the other points
of view, they are the source of opinions about freeforms as risky, bringing them merely to the level
of temporary fashion. Whereas the source of the problem are not the freeforms themselves,
but the top-down approach to their design. The problems related with designing freeform architecture
according to the top-down approach is shown in the following section. Although it is a successful
realization, it highlights problems related to this approach.

2.7. POLIN - Museum of the History of Polish Jews

A freeform object representing the top-down approach to design is the Museum of History of Polish
Jews located in Warsaw. It is the embodiment of the competition winning design by Finnish design
studio Lahdelma & Mahlamaki. The details of the construction process are described more profound
in (Ferenc 2013).

The volume of the building is split by the 20 m high lobby. In contrast to the cubic volume
of the building, the lobby has the form inspired by a canyon formed by the flowing water as a reference
to the passage of the Israelites through the Red Sea. These walls of the lobby are designed as NURBS
surfaces. Additionally designers assumed, that these freeform walls will act as construction supporting
the roof. Designers began to look for the methods to implement them as reinforced concrete,
but quickly realized that there are not feasible and economically justified methods to design
and construct formwork for this type of surface.

The decision was taken to perform the walls as a steel, structural frame (shown during the construction
in Fig. 2.12), with fiber concrete doubly curved panels attached to it. Each corner of NURBS surface
replicating panel was given spatial coordinates. The starting material for the implementation
of cladding a digital model of the wall was made in Rhino 3D and was submitted to contractor.
Shortly after the start of construction, the contractor returned to the discussion on possible ways
to construct the wall, finally the sprayed concrete method was adopted. In the first phase the steel
structure that reproduces the pre-wall geometry was completed. The structure consists of vertical
and diagonal tubes with a diameter of 273 mm and horizontal transoms that were fire secured
to provide 120 minutes fire resistance.

Flat MDF panels and reinforcing mesh was mounted to the construction as a basis for 35 mm thick
layer of sprayed concrete. Finally, to obtain the desired geometry of wall, the dividing network
of horizontal, vertical and diagonal curves was designed on a freeform surface in the 3D model.
Such grid was implemented with flexible PVC strips trailed on the implemented wall. Specific
coordinates of the grid points taken from the model were used by the surveyors to verify the geometry
of the resulting wall. These moldings formed an expansion joints and act as guides during the final
modeling of the wall.

Although the final realisation was a success and the implementation of freeform walls does not diverge
from the assumed design, the insufficient recognition of the implementation methods led to some
uncertainties. The structural system had to be redesigned into heavy steel frame, which hidden behind
continuously curved cladding still impose problems of freeform grids. Final thickness of the wall
is higher than the assumed one, therefore some spatial and functional changes were also required.
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Fig. 2.12 Steel structure behind the freeform walls.32

2.8. The Bilbao Effect

The construction of the Guggenheim Museum has paved the way to modern methods of designing
and implementing freeforms in architecture (Gonzales-Pulido, Vaggione, and Ackley 2002).
In addition to the architect of the project - Frank O. Gehry, the executive architect and investment
supervisor was the IDOM office (Gonzales-Pulido, Vaggione, and Ackley 2002), (Skylakakis 2005)
pp. 11 - 15. The office was responsible for the execution of the project, including preparation
of detailed solutions and maintaining the flow of information between contractors. Without modern
digital recording and data processing methods, the implementation would probably take much longer.

All major design and implementation units involved in the project were equipped with the CATIA
software used as the platform for digital recording and processing of the geometry of the building,
see (Gonzales-Pulido, Vaggione, and Ackley 2002) pp. 16-18. Aerospace designers who had earlier
experience with CATIA were assigned to the key units in Frank O. Gehry’s office in Santa Monica
in California and at the construction site in Bilbao, i.e. SENER, the largest Bilbao-based engineering firm
concerned with aerospace, naval and industrial projects (Skylakakis 2005) pp. 11-12.

The general physical model of the Museum was created in California by Frank O. Gehry’s team.
It was then 3D scanned and transformed into a computer model. Recorded on several magnetic tapes
it was sent to Spain, where it was further processed. Based on the general 3D model engineers
prepared documentation for the structure of the building, substructures for cladding and detailed CAM
files for doubly curved cladding elements.

There are three types of pioneering implementations of freeforms in the Museum Guggenheim Bilbao
— developable metal sheet cladding attached to curvilinear latticework; CNC carved, doubly curved
stone cladding and triangular, glazed grid shell. In each of the implementation type specific problems
appear, which were recognized early in the design process. All types of implementations of freeforms
are discussed in (Gonzales-Pulido, Vaggione, and Ackley 2002) pp. 9-16.

32 Source: https://architektura.nimoz.pl/wp-content/uploads/2013/03/Budynek-7.jpg
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Cladding made of titanium sheets cover the area of over 25,000 m?. It was implemented in number
of steps beginning with the execution of regular, maximally modularized main structure. It consists
of steel, diagonally stiffened modules connected with reinforced strength bolts. Consecutive layer,
substructure for the cladding, was adapted for the final, freeform shape of the cladding. It consist
of horizontal steel profiles every 3 meters. The profiles are connected to the main structure
via consoles of variable lengths. These horizontal profiles are continuously curved according
to the data obtained from the main 3D model. Each profile was deformed by CNC bending machine
and marked with an individual barcode, which was used for the proper localization of the element
at the construction site. Horizontal profiles served as a support for the next layer, i.e. another set
of continuously curved profiles in oriented vertically, which were additionally in geometrical torsion.
The geometrical torsion was applied in order to ensure the tangency of profiles to the final freeform
surface. Available technology allowed for the maximal 4° of torsion. Subsequent layers of steel plates,
watertight insulation and laminated titan sheets were mounted on that freeformed construction grate.
Due to the fact that each titanium sheet is fixed to the structure at four points, that are not coplanar,
the sheets are slightly folded.

Second type of implemented freeforms was realized in the form of steel-reinforced concrete structure
covered with stone cladding. Similarly to the titanium cladded structure, the concrete structure
was rationalized and simplified in order to be casted in advance, before the documentation
for the stone cladding substructure was started being prepared. Each piece of the stone cladding
was individually prepared in the 3D model. Numerical data obtained from the models was used
to control CNC milling machine. The CNC machine used for that purpose was previously used
in the machine industry for milling metals. Its modifications, preparation and assemble
at the construction site lasted around six months. It worked continuously, 24 hours a day, 7 days
a week for two years (Gonzales-Pulido, Vaggione, and Ackley 2002) p. 18.

The scale of the project allowed for non-standard solution in the form of individual technological
solution at the construction site. The stone cladding is, however, the only realized as continuously
curved freeform.

Third type of the freeform implementation is the doubly curved, glazed, triangular grid shell.
The adopted form of implementation is by so far the most popularized in the field of architectural
freeform structures. The triangular shape of each panel gave the certainty, that each one is planar
and simultaneously reasonable freedom of design was assured — especially, when the initial form
was obtained from the physical, sculpture-like, arbitral model. Doubly curved, quadrilateral glass
panels would have been economically unreasonable in that case. Among the total number of 2200
glass plates, 2000 have unique shapes. Individually pre-prepared technical drawings of each panel
were sent to the construction site, where slight modifications were made according to the actual
surveys of the grid shell and executive tolerances. Finally each panel was cut by a CNC machine
and assembled at the right spot on the grid shell.
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The construction of the Museum according to the investor's assumption was associated with many
technical problems not observed previously in the construction industry. Javier Aja, being
a representative of a company dealing with the realization of interiors and building installations, stated
that:

“80% of the construction systems and materials used in the Guggenheim Bilbao project were totally
innovative in the building industry.”*

The investor's awareness led him to an attitude in which he insisted that the budget
for the construction should be used to the maximum extent in order to improve the quality
of implementation by seeking innovative solutions instead of seeking savings. Cooperation
and communication between engineers and managers from various industries resulted
in the development of new solutions forming the base for further architectural implementations
of freeforms.

The term Bilbao Effect appeared in the literature as a common name for bundle of various aspects:
social, economic and technological and has rather unfavorable connotation, see (Rybczynski 2002).
From the technological point of view, it was a conscious operation and cooperation on the interface
between investor, architect, executive architect and structural engineers®, which resulted in solutions
that are still used today. It should be emphasized that it was a planned activity was and included
in costs of the investment.

2.9. Latest generation of freeform design tools

An alternative to the described above method for shaping doubly curved surfaces was invented
for the purposes of entertainment industry. PIXAR studio working on the short motion pictures before
their first full-length featured movie - Toy Story, used NURBS models, see chapter 5 in (Chopine 2011),
which were controlled by a finite number of control points that revealed to be insufficient
for the animation purposes. Characters were made of several patches of NURBS surfaces which, during
animation, had the tendency to create creases and gaps between each other. The consistency
of curvature continuity between patches was also an issue. NURBS surfaces are also constrained
topologically into patches consisting of four edges (possibly an edge can be shrined into a singularity,
i.e. a point). The solution for that problem was the application of subdivided meshes. This method
was invented by Edwin Catmull, the founder of PIXAR studio together with Jim Clark and published
in 1978 (Catmull and Clark 1978). In the Catmull-Clark mesh subdivision method, a coarse mesh
with small amount of vertices is treated as a control frame. The control frame consist only of vertices
that are necessary to represent the object topology and characteristic geometrical feature.
In each frame of the movie the control frame vertices are animated (translated) and then the control
frame is subdivided into larger amount of vertices and facets. Each subdivision iteration is followed
by reaction of the vertices, so that new mesh is smooth and almost continuously curved. Such approach
eliminated the problem of mismatching the patches and allowed the usage of facets with more
complex topologies.

33 According to (Skylakakis 2005), p. 14.
34 Skidmore, Owings & Merrill (Petroski 1998).
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The subdivision method with slightly modified vertex relocation algorithm is also used for obtaining
PQ meshes of complex topologies, see (Liu et al. 2006), (Pottmann, Brell-Cokcan, and Wallner 2007),
(Pottmann and Wallner 2008), (Baldassini et al. 2010) and (Tang et al. 2014). A technology equivalent
to subdivision meshes that utilize NURBS patches is T-splines (Sederberg et al. 2003),
in which the problems of curvature consistency and complex topology were solved.

An invaluable contribution to the development of design techniques and the implementation
of freeforms can be attributed to Zaha Hadid. However, one must be aware that behind those
successes there was her former mathematical education, and the desire to create her designs with
the use of advanced CAD technologies.
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3. Problems associated with the use of freeforms in architecture

The importance of problematic aspects of freeforms may be emphasized by the case of Qatar National
Convention Centre, where part of the structure, the tree-like columns, was designed as freeformed
reinforced concrete structure. Particularly, the purpose of designing it as such was an effect
of ESO and topology optimization (see (Veltkamp 2015), (Cui, Ohmori, and Sasaki 2003)
and (Donofrio 2016)) which objective was to find the optimal shape for the tree-like, branched

columns. In fact, what had to increase the structural capability and reduce expenses turned out
to cause unacceptable technological issues. Eventually, the structure was built in more conventional
way with straight steel tubes and was covered by freeformed cladding to leave the visual impression
of what was originally intended, see Fig. 3.1.

Fig. 3.1 Tree-like structure at Qatar National Convention Centre. Internal, octagonal structure made of planar steel plates
partially covered by freeform cladding.3>

In cases like the described one the technical difficulties of constructing freeforms prevail over potential
benefits resulting from adopting them. Without prior consideration of problems that may occur during
the construction of freeformed structures it may never be construct as desired. Especially,
when designing methods and tools, which originate from mechanical industry but used for
architectural design may cause problems unknown before. These and other problems related
with freeforms in architecture will be discussed in this section.

35 Source: https://dohanews.co/wp-content/uploads/2014/05/Dohagncchov08.jpg
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3.1. Differences between freeforms in mechanical industry and architecture

Bearing in mind that the majority of tools and design methods available today originate from
the mechanical industry, there are several differences between the design methodologies
in mechanical and architectural design.

3.1.1. Thickness and layers of the walls

The bodyworks and hulls of vehicles are most often made of thin composite or metal sheets.
In the original form the metal, carbon fibre or fibreglass sheets are initially flat and they are subjected
to moulding. The thickness of the sheets of these materials is usually negligible, therefore their final
forms may be represented as parametrical surfaces, with no thickness at all (i.e. equivalent to NURBS
surfaces)®®. In architecture surfaces are usually associated with substantial thickness, which in turn
cannot be sufficiently represented by single surface — with the exception of membrane structures.
The external surface of continuously curved architectural surfaces made of metal (moulded claddings),
stone (CNC milled claddings), casted claddings (Enrigue Monzé and Schwartz 2017), curved glass,
and laminates may be defined by NURBS surface. However, cladding and glazing require substructure
that has to be hidden beside the external surface. The curvatures of corresponding surfaces
(sub and external) diverge. The external surface’s shape affects the substructure’s shape directly.
While the substructure’s shape is responsible for the structural performance it is largely defined
by aesthetical aspects of external surface.

Additionally, discrete, doubly curved surfaces constructed as glazed grid shells are related
to the offsetability problem, see chapter 19 in (Pottmann, Asperl, et al. 2007). Grid shells
are constructed with longitudinal®’ members whose cross sections have defined orientation
(rotation around the longest direction of a member) — usually normal to the doubly curved surface
they discreetly represent. Normal vectors of the ruled surface along a straight line drawn on that
surface have various directions. Thus, structural member drawn on that surface would
be in geometrical torsion, what is undesirable from the structural point of view. Most doubly curved
surfaces (not only ruled ones) have that geometrical torsion involved in their geometry and such fact
may be overlooked in the structural detail design process. Even when the constraint of member normal
to surface alignment is abandoned, the topology of second mesh may be inadequate to the original
one, i.e. corresponding edges adjacent to a point on the external side of the structure may not cross
in one point on the internal side. Those issues are more precisely described in section 3.5
and in selected works: (Liu et al. 2006) (Pottmann and Wallner 2008), (Wang, Wallner, and Liu 2007),
(Pottmann, Grohs, and Blaschitz 2010) and (Hambleton and Ross 2015).

Apart from the necessity of maintaining the geometrical structure of discrete meshes on several layers
of the free formed grid — architectural shells, walls, roofs and facades are divided into layers, each
of which has a separate function. From external, decorative function, trough thermal and hydro
insulation to structural support — each one has to be placed at some distance, preferably constant,
from the doubly curved surface describing the global geometry of the wall. Such problem was clearly
visible at the POLIN Museum (section 2.7), where the structural truss described by smooth and light

36 However, ever for sheets of materials with negligible thicknesses, applying curvature to them also require
folding or tearing.
37 Construction parts, in which one direction is dominant, i.e. significantly larger than two other.
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surface had to be construct of members whose diameters ranged up to 273 mm, eventually reducing
the usable area inside the building.

3.1.2. The scale of the building components

Unlike most of automobiles, planes and ships, buildings, due to their scale cannot be manufactured
in a factory out of their desired location. Each of building’s components has to be manufactured,
transported to the construction site and assembled on its destined place in the construction
separately. Every step of that process limits the size of the components: the production line,
transportation and construction cranes capabilities determine the reasonable size of the components.
The scale of these components is much smaller than the scale of the entire building — unlike in the case
of vehicles.

Also, in case of most vehicles, each component of its body is unique. In an automobile, plane and ship
the component destined for a specific place is shaped in such a manner, that it fits only there.
Minimalization of number of components is a result of production and mechanical aspects of vehicles.
Each component is designed individually, accordingly to its place of destination. Front and back doors
of a car are designed and manufactured as separate parts, although functionally and structurally they
are similar. In turn, the construction industry uses universal structural components which can be used
repeatedly even in different buildings although the final product of their assembly is very individual.
Therefore, designing freeforms in architecture require additional rationalization of component variety
in order to reduce the complexity and costs of the construction.

Concluding —freeformed structure of a building should be divided into a set of components
that are possible to manufacture, transport and place built in a desired place on the building.
Since the absolute regularity of the components is unobtainable, each component of the same type
(glazing, cladding, rods, nodes) should be as similar to other components of the same set as possible.
l.e. the facets (glazing, cladding) should be planar with varied outlines (possibly with similar external
dimensions®); bar elements should have the same cross sections and vary between lengths
and cut angles at their ends.

3.1.3. Aerodynamics and hydrodynamics

The level of complexity of the design tools for shaping the forms of air, water and land vehicles results
from the necessity to minimize frictions generated by movement. Shapes of these vehicles have
to be aero- or hydrodynamic. Although skyscrapers and large spanned structures are also objects
for aerodynamic optimizations, this characteristic is not always the most important one.
Unlike in vehicles, the structural load capacity, thermal performance and technological versality are
the priorities.

The technological leaps which led to the contemporary freeform design tools were dictated
by the necessity of more aerodynamic vehicles.

38 External dimensions of quadrangular glass panes of PQ grid shells described in (Schober 2015b), pp. 190-207,
range from 1000 mm to 2400 mm — depending on the construction.
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3.1.4. Production scale

Majority of vehicles are manufactured in large series. Thanks to this fact the cost of development
and implementation of the technology of production is distributed on numerous manufactured copies.
Whereas buildings are designed and built in their unique forms only once. In the second case the cost
of development of technology has much higher share in the total cost of constructing the building.

In order to avoid the necessity of developing new technology each time a free form is constructed,
system solutions are adopted. Such approach reducs freedom of shaping freeforms, in turn reducing
the technological difficulties. Moreover, the same system can be adopted in multiple buildings.

In conclusion, in order to reduce implementation costs of freeforms it is required to seek
for technological simplifications allowing their construction to be based on the common principles
and components.

3.1.5. Importance of freeforms in architectural challenge

Throughout the history architects had been searching for new ways to express their artistic visions
of buildings they were designing while competing between each other. A significant example
of such competition resulted in most extraordinary forms created by Francesco Borromini,
i.e. the dome of San Carlo alle Quattro Fontane and the Mascarino Staircase in Palazzo Barberini,
see (Swieciak and Tarczewski 2018). Apart from the structural and functional purposes architectural
designing allows for greater freedom of shaping the forms. In contrast to the vehicles, for which
the most important aim is to be safe, efficient, reliable — the imperative for representative buildings
such as palaces, churches, opera houses, stadiums, etc. is to be unique, however also safe and
functionally correct. The form is only one of the features of the building, however it may be more
important for the building than for the automobile, plane or ship.

The available unique morphologies for the buildings and the sources of inspiration are in the growing
deficit (Tarczewski 2011). Therefore, the architectural designers are demanding for even greater
freedom of design and new sources of inspiration. Freeforms open great opportunities in this area,
allowing to go far beyond routine design.

3.1.6. Conclusion

While designing freeformed architectural structures in modern CAD environments originating
from mechanical industry, previously mentioned differences have to be taken into consideration.
Depending on type, thickness and details of designed freeform structure, the designer have to know
what intrinsic properties the geometry he is creating possesses. With different set of issues requiring
consideration during designing of mechanical industry object, CAD environments can lead
an architectural designer on a wrong path at the end of which the designed structure is hard
and expensive to construct and may be a subject to failures. A different approach in which those
intrinsic geometrical properties related with details of freeformed structures in architecture are taken
into consideration right from the beginning of design process is called bottom-up approach and is more
precisely described in sections 3.4 and 3.7.
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3.2. The types of freeform implementations in architecture

Examples of freeforms shown in appendix A-3 allow to emphasize diversity of their applications
in architecture and richness of forms in terms of morphology. The following summarizes the most
important features, on the basis of which the initial general classification of freeforms was made.

Among forms several are distinguished:

e orthogonal — composed of elements in flat configuration;
e developable — composed of elements in single-curved configuration;
e doubly-curved - i.e. freeformed.

Among the doubly curved forms in architecture several types of implementation are distinguished.
Among the most important there are (see section 1.1.2):

e membrane,
* pneumatic,
e shells,

e grid shells.

The curvature of the form may be (see section 1.1.3.4):

e continuous,
e discrete.

Membranes and pneumatic structures are continuously curved, whereas shells and grid shells
can be discrete and continuous.

Types of grid shells are distinguished due to their topological structure (see section 3.2.5), i.e.:

e triangular,
e quadrilateral,
e polygonal.

Triangular grid shells always have planar facets, whereas quadrilateral and polygonal grid shell
can have all types of facets.

Among the grid shell type another typology is distinguished depending on the curvature of individual
facets, which can be:

e planar,
e single-curved,
e doubly-curved.

Triangular grid shells always have planar facets, whereas quadrilateral and polygonal grid shell
can have all types of facets.

Regardless of the above classification, the grid shells can be designed using two different
methodologies (see section 3.4):

e top-down,
e bottom-up.
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Arguing for particular types the scope of this research has been narrowed to: discrete, doubly-curved
grid shells in planar quadrilateral topology obtained using the bottom-up method, see Table 3.1.

Table 3.1 General classification of freeforms applied in architecture

|| Form || || Curvature || H Type H H Facets H H Topology H || Design method ||
I Discrete Doubly-curved Grid shells Planar Quadrilateral Bottom-up I
Continuous Developable Shells Developable Triangular Top-down
Orthogonal Membranes Doubly curved Polygonal
Pneumatic

A brief overview of differentiation of freeforms on the basis of these features is presented further
in this section.

3.2.1. Geometry

Implementations of Freeforms in architecture are firstly distinguished between continuously curved
and discrete, see Fig. 3.2. In the discrete form, the structures representing doubly curved surfaces
are composed of planar or straight components, which approximate those surfaces. Continuous forms
usually do not have visible divisions into segments. Examples of the continuous forms are membrane
and pneumatic structures. There are also examples of continuously curved concrete shells, composite
claddings (e.g. Heydar Aliyev Centre designed by Zaha Hadid) and glass facades (e.g. Emporia Shopping
Centre in Malmo).

Geometrically, freeforms may be synclastic, anticlastic or any composition of the previous two types.

Additionally, one more geometrical type may be specified. Discrete, reticulated shells
can be constructed as continuously curved networks of curves, i.e. curvilinear networks.
Examples of such networks are elastic grid shells designed by Frei Otto and rigid curvilinear grids
designed by Shigeu Ban, for example Centre Pompidou-Metz.

Fig. 3.2 Left: continuously curved shell (Crematorium in Kakamigahara)?, right: discrete lattice shell (Ztote Tarasy,

Warszawa)*.

39 Source: http://www.toyo-ito.co.jp/WWW/Project_Descript/2005-/2005-p_07/2-800.jpg
40 See appendix A-3, p. 268, source:
https://upload.wikimedia.org/wikipedia/commons/d/de/Zlote_tarasy_zima2011.jpg
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3.2.2. Structure

Freeforms are constructed either as building elements which have structural importance, or such which
carry only aesthetical value. In some cases a structure designed as freeformed is constructed
in the conventional manner and covered with freeform cladding resembling structural element
(see the introduction to section 3, i.e. the case of Qatar National Convention Centre). Economic
and technological factors may determine whether the structure is performed as freeformed
or the structure is conventional and is covered by freeformed cladding. Whereas other types
of structures like tensile, membrane, pneumatic, concrete shells and lattice shells have intrinsically
double curved shape.

3.2.3. Function

Functionally, freeforms may have various purposes — they can be constructed as walls, vaults, roofs,
shells etc. These are the examples of opaque building skins. From the other hand freeforms
are preferably constructed as transparent skins — facades, glazed canopies and roofs, reticulated shells
and space trusses. Transparent forms are necessarily discrete, i.e. flat glass panels are preferred
and they fill the holes in grid shell made of straight bar members (again preferably straight). However,
also in case of reticulated shells facets can be made of opaque cladding, which can be as well curved.

3.2.4. Material

There are various materials freeformed structures can be made of. Depending on the structural role
membrane structures are made of fabrics such as industrial textiles: PVC coated polyester, PTFE coated
fibreglass or silicon coated fibreglass. Pneumatic cushions are made of PVC, fibreglass and ETFE.
Shells are made of concrete (reinforced by steel or microfibres), brick or stone. Grid shells and space
trusses are made of structural steel, although timber structures are also common. Claddings are made
of metal sheets, GFRC panels, laminates, membrane, ETFE cushions and glass panes (as fillings), etc.

3.2.5. Topology

Topology is an important characteristic of discrete grid shells based on doubly curved surfaces.
In this respect, topologies of all layers within lattice structure and geometrical relations are also
a subject of interest (see section 3.5). Grid shells are represented by a polyhedral mesh, which consist
of facets, edges and vertices. Facets correspond to glass panes or ETFE cushions, edges correspond
to structural rods and vertices correspond to structural nodes. The topology describes the properties
of a mesh regardless of its shape. Such property can be for example the number of edges each vertex
is adjacent to or the number of vertices each facets is surrounded by. The topologies of the most often
implemented grid shells are as follows:

e Triangular meshes — each facet is triangular, the vertices are adjacent to 6 edges;

e Quadrilateral meshes — each facet is quadrilateral, the vertices are adjacent to 4 edges;
e Hexagonal meshes — each facet is hexagonal, the vertices are adjacent to 3 edges;

e Hybrid — combination of the above topologies*.

41 rregular topologies are least common. From over 50 representative cases listed in the appendix A-3, only six
belong to the group of irregular topologies.
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Itis possible that a vertex in a specific topology is adjacent to more or less edges than described above.
Hexagonal meshes are also called 3-valent — according to the number of edges each vertex is adjacent
to. Such topologies are adequate to the external layers of space trusses or to the plate stable shells.
For more information about plate stable shells refer to Structural order in space: the plate-lattice
dualism (Wester 1981), also (Swieciak and Tarczewski 2015) and (Swieciak and Tarczewski 2016).

3.3. Evaluation of lattice shell topologies

When designing a freeform grid shell one has to consider all aspects listed in the previous section.
Certain aspect of the design is topology of grid shell. Each of the available topologies has its pros
and cons. Every form of a shell requires tessellation for creation of a grid shell. From the point of view
of economy and feasibility the tessellation is equally important as the initial global form. Appropriately
shaped and discretized grid shell allows to avoid many technological problems, improve structural
properties and reduce the costs of construction and operation of the structure. Some tessellations
require specific methods for designing the global shape. Generally the more profits from the proper
tessellation, the more freedom of the design of the global shape has to be given up.

The most important available topologies are:

e triangular,
e quadrilateral with planar facets — PQ.

The first one is most frequently implemented. It gives designer great freedom of shaping since
any freeform surface can be discretized into a triangular mesh with significant freedom.
Sufficient conditions of a triangular mesh is planarity of facets and collinearity between edges of facets.
Firstly, the triangular facet is always planar, since any random set of three points in space always
constitute a common plane. Secondly, pairs of points forming edges are common between adjacent
facets, therefore the edges are colinear. The possibility of placing the vertices anywhere
on the discretized surface allows for many optimization criteria, like the best possible unification
of rod lengths and the best possible approximation of triangles into equilateral form, although these
criteria can never be fully met. Nevertheless, all are important both from the aesthetic (legible grid
layout) and static (flow of forces on supports on a regular grid of bars) point of view.

The second type of topology — the planar quadrilateral meshes (PQ) are more constrained.
The quadrilateral facet contains four vertices. Any selection of three vertices from the four constitutes
a plane - the fourth one is constrained to that plane, i.e. the freedom of its positioning is narrowed.
In case of discretizing the freeform surface the vertices of quadrilateral facets must lie
on an intersection of plane and the surface, or the positioning the vertices on that surface
has to be given up. In the following sections it will be explained, that while it is possible to discretize
arbitrarily shaped freeform surface into a PQ mesh, it is also possible to shape that surface
in the particular manner or shape the PQ mesh instantly.

The requirement of coplanarity of facet vertices can be met by detaching the vertices from
the discretized surface. The vertices are then projected onto a plane, e.g. tangent to that surface.
The requirement of collinearity of adjacent edges may still be not met. An example of such compromise
is the glazed roof over the Kogod Courtyard, see Fig. 3.3. It needs to be highlighted that despite
the design disadvantages, the PQ topology has several advantages improving feasibility.
Table 3.2 presents the most important differences between two major topologies of grid shells.
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Fig. 3.3 Planar, quadrilateral glass panels with non-colinear adjacent edges. Kogod Courtyard glazed roof, Smithsonian
Institution, Foster + Partners.*?

Table 3.2. Comparison between triangular and PQ meshes

Triangular PQ
+ Great freedom of shaping - Limited freedom of shaping

- 6 rods in the node, greater complexity of each
element

+ 4 rods in the node, less complexity of each
element

- Lower surface ratio of glazing to bar elements

+ Better surface ratio of glazing to bar elements

- Triangular glass panes increase the amount of
waste in production

+ Quadrilateral glass panes reduce the amount
of waste in production

- Higher risk of leakage through additional rods,

+ Lower risk of leaks through reduced amount

of rods, as well as through smaller nodes

+ Reduced amount of thermal bridges

+ Lighter structure

- Necessity to stiffen geometrically variable
four-sided facets

- Limited optimization possibilities

as well as through more complicated nodes
- Increased amount of thermal bridges

- Heavier structure

+ No necessity to stiffen geometrically stable
triangular facets

+ Numerous possibilities of geometry
optimization

- Less possibility of shaping parallel meshes

+ More possibility of shaping parallel meshes

Results of comparison from Table 3.2 allow each designer to choose which topology is more suitable
for a given project. Growing awareness of their benefits, PQ topologies are recently gaining increasing
popularity. The superiority of PQ topology is further reasoned in (Pottmann, Asperl, et al. 2007),
p. 676. Apart from the mentioned properties, additional properties of PQ meshes are claimed
in the cited source, i.e. the lesser costs per area of construction of PQ based glazed grid shells.
Additionally, the properties like torsion-free nodes and parallel meshes (see in sections 3.5) are only
available for simple forms of triangular meshes, while they can be obtained in PQ meshes.
In (Mesnil, Douthe, Baverel, Léger, et al. 2015) triangular meshes are qualitatively compared with three
types of PQ meshes. The results are presented on Table 3.3.

42 See appendix A-3, p. 317, source: https://www.fosterandpartners.com/media/2635088/1276_fp342827.jpg
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Table 3.3. Assessment of different methods of geometrical optimisation, table from
(Mesnil, Douthe, Baverel, Léger, et al. 2015), p. 39.

Optimisation Angles Length Panels Node Design
reception uniformity planarity complexity freedom
Triangular mesh - ++ ++ - ++
Scale-trans surface® - ++ ++ - -
PQ conical mesh* + + ++ + +
Edge offset mesh + - ++ ++ -

As seen from the table, triangular meshes have the worst node complexity in turn for the greatest
freedom of design. Other properties depend on the intrinsic properties, which might be obtained
by certain design methods or optimizations.

In (Hambleton et al. 2009) several discretization methods were compared, among others: triangulated
surfaces, primitively approximated PQ meshes, fitted rotational PQ meshes and PQ meshes obtained
by conjugate curvature networks (see section 3.7.1). Aassessment of the comparison is presented
on Table 3.4, where lower rating values mean inferior properties.

Table 3.4. Assessment of different methods of geometrical optimisation, table from
(Hambleton et al. 2009), p. 242.

Design solution comparison Node simplicity Structural Design intent Material
transparency efficiency
Triangulated meshes 1 1 3.5 2.5
Primitive approximated PQ 1.5 3 2 3.5
Fitted rotational PQ 4 3.5 2 3.5
Principal curvature PQ 4 4 4 3.5

Triangulated meshes in the comparison above have the worst properties in the field of node simplicity,
structural transparency and material efficiency. Again they have the advantage in freedom of design.

While the first cited comparison (Table 3.3) consists of PQ meshes exanimated through different
geometrical, intrinsic properties, the second one (Table 3.4) consists of few methods of obtaining PQ’s,
which do not include most of the methods presented and proposed in this work.

3.4. Top-down and bottom-up paradigms

In the context of designing freeform grid shells, the design paradigms apply to the order in which three
main aspect are considered, see Fig. 3.4. Generally, grid shells are characterized by:

¢ Global shape (form) — a continuously curved surface (usually NURBS) characterizing global
shape of the fagade or glazed canopy. Usually it is very convenient to design the shape
of the shell using NURBS surfaces in the initial stage of the design process. However, as it will
be explained further in the text, specifying the form by means of continuously curved surface

43 Scale-trans surfaces are continuously curved equivalents of scalar-translational meshes described
in the section 4.1.3.
4 Conical and edge offset meshes are described in the section 3.5.3.
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is not necessary for the design. The form may be a derivative of topologically specified mesh.
The form can also be a result of a form finding process.

¢ Discretization (tessellation or panelization) — the way the form is divided into finite elements
such as vertices, edges and faces. It also describes topologies of such division e.g. how many
edges are connected at each vertex, or how many edges each face consists of. The group
includes also properties such as: planarity or no-planarity of faces, possibility of concave
outlines of faces and coplanarity or no-coplanarity of corresponding node axes.
These properties will be described further in the section.

e Structural properties (mechanics) — contrary to the previous two groups describing
geometrical properties, this group deals with the mechanical properties of elements
representing edges, faces and vertices. Each vertex corresponds to the node, the edge
to the bar and the facet to the panel. Mechanical properties describe material, sections,
thickness, weight and other properties that affect the performance of a structure
and are not included in any of the previous two groups.

Structural performance of freeformed grid shell depends on those three groups of properties which
are interrelated one to each other in all possible ways.

With the use of these three groups, a grid shell can be designed and characterized. A design process
is a methodical series of steps that designer follow to find, optimize and make a decision over
properties in each group. Depending on the order between the groups, two different approaches
are possible: bottom—up and top—down, see Fig. 3.5.

/\
(TESSELLATION) (MECHANICS)

A

Fig. 3.4 Three interdependent properties of freeformed grid shells.

TOP - DOWN BOTTOM - UP

' t ¢

(TESSELLATION) (TESSELLATION) Or (MECHANICS

MECHANICS MECHANICS (TESSELLATION)

Fig. 3.5 The sequences of specifying the properties of the design, according to top-down and bottom-up paradigms.
The resultant design vary depending on the adopted paradigm.




First approach to the form finding process refers to a procedure with its aim to find an optimal
(or close to the optimum) form of the structure. Such a form is a subject for further tessellation
and mechanical decisions and optimisations. This is the top-down procedure.

Second approach to the form finding process refers to a process which goal is to find a form that will
be best suited depending on mechanical and tessellation decisions taken before. Thus, the freedom
of shaping form will be limited to some extent. This is the bottom-up procedure.

In the top-down approach form is assumed before tessellation and mechanical decisions are made,
whereas in the bottom-up approach mechanical and tessellation decisions are made preliminarily
and form is derived from them.

Some specific cases® require a specific approach. However, the common practice is the facilitation
of the top-down approach. We argue with this statement, what will be explained further in this section.
Top-down approach is not necessarily the best option for some cases of grid shells, therefore, some
new strategies based on bottom-up approach will be presented.

As fitting planar, quadrilateral facets to a freeform surface is significantly difficult, a bottom-up
procedure for shaping a mesh is more rational approach. However it is also possible to shape PQ nets
using top-down approach.

The state of the art method for generating PQ meshes according to the top—down paradigm utilizes
the conjugate principal curvature lines network — see section 3.7.1 and (Pottmann, Asperl, et al. 2007),
p. 684. The methods proposed in (Mesnil, Douthe, Baverel, Léger, et al. 2015), (Mesnil, Douthe,
Baverel, and Léger 2015), (Mesnil, Santerre, et al. 2015), (Douthe et al. 2016), (Mesnil et al. 2016)
and (Mesnil 2017) work according to the bottom-up paradigm. A particular one — Marionette method
is described in sections 3.7.2 and 4.1.6. Between the top-down and bottom-up paradigms stands
the subdivision method described in section 3.7.3, following papers (Pottmann, Schiftner, and Wallner
2008), (Pottmann, Brell-Cokcan, and Wallner 2007), (Pottmann and Wallner 2008), (Tang et al. 2014)
and (Pottmann, Asperl, et al. 2007), pp. 684-686.

Romain Mesnil, author of the Marionette method based on the bottom-up paradigm, uses the phrases
fabrication-aware design and construction-aware design. These phrases accurately reflect the nature
of bottom-up paradigms. According to fabrication and construction-aware design the designer should
concern the fabrication and construction aspects since the very beginning. The global form
of the structure should be result of those concerns. He also claims that: no new shapes for
fabrication-aware design have been introduced since the 1990’s (Mesnil 2017), p. 29.
Romain Mesnil also distinguish two modelling methods: surface-based and mesh-based (Mesnil 2017),
pp. 30-31. The first one is more convenient for the designer since available tools (i.e. NURBS surfaces)
allow him for great control over the global shape through the limited amount of control points.
On the other hand mesh-based modelling tools are limited and require more effort from the designer
— in turn mesh-based models contain information important for the fabrication and structural
behaviour of the grid shell.

The tools incorporating surface-based modelling are suitable for the top-down paradigm, while
mesh-based modelling tools are more suitable for the bottom-up paradigm. As claimed, the second
group of design tools is in deficit for modern requirements of freeform design.

% Such as bending-active grid shells, see section 2.1.
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The three stages division is also proposed in the chapter Multi-criteria grid shell optimization
in Shell structures for architecture (Adriaenssens et al. 2014), p. 265. The stages are defined
as follows:

1. Surface form — conceptual shape by the designer.
2. Grid layout — defining member layout (also referred to as ‘rods’) on a given surface.
3. Member size — section sizes are chosen once geometry is defined.

The optimization criteria are however narrowed to the grid layout in the cited source and the surface
form is arbitrarily given by a sculptor. In that case, the approach is top-down.

In his book, Transparent Shells: Form, Topology, Structure, Hans Schober defines the two approaches
in the following words:

“There are now computer tools available that generate grids with the desired properties on unmeshed,
completely freeform surfaces, thus producing homogeneous structures. Whilst this would be impossible
without this software, | do believe that simple, understandable principles, whose basic mathematical
and geometric concepts can be reconstructed and which therefore do not constitute a black box,
still have their place.” — from (Schober 2015b), p. 7.

The methodology of Hans Schober and methods described in his book can be classified as bottom-up.

Sections 5 and 6 present methods of obtaining (forming) and transforming PQ meshes in accordance
with the bottom—up approach. They cover only Form and Tessellation parts of the approach,
see Fig. 3.5. The Mechanics is not taken into consideration in this work. The recognition of the rules
of how to create PQ meshes according to the presented rules, allow to recognise what morphologies
are possible. From those geometrically appropriate possible morphologies mechanical optimums can
be searched and reached. Parametrization of the presented methods and rules of obtaining and
transforming PQ meshes is the base for creation of an interface, through which optimization methods
can be applied. The bottom-up methods give the designer narrowed freedom of design in which the
planarity of facets and geometrical consistency is guaranteed.

Descriptions of the methods of obtaining PQ meshes are contained in section 4, whereas section 5
contains descriptions of the methods of transformation of PQ meshes.

3.5. Parallel meshes

Two meshes are parallel, when corresponding edges and facets between them are mutually parallel.
The existence of parallel meshes* allows for designing multi layered structures, where each layer
is defined by one of the meshes.

3.5.1. Types of parallel meshes

Two parallel meshes can be defined by the distance between each other. That distance
can be measured in three possible ways: between vertices, edges and facets. A parallel mesh is called
a vertex, edge or face offset, when the distances between the respective elements is constant
for the whole mesh.

46 parallel PQ meshes and offsets are discussed precisely in (Pottmann, Asperl, et al. 2007) in section Offset
Meshes.
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In order to generate a specific type of an offset, the base mesh has to meet specific geometrical
requirements. On the Fig. 3.6 a simple PQ mesh is shown for which a set of four equally distanced
facets was generated. The corresponding facets and edges are parallel, however the topology
of the upper mesh is not PQ. The requirement for the vertex valence is not met, i.e. a 4-valent vertex
was split into two 3-valent vertices connected with an additional edge. The additional edge
can be reduced into a single vertex, then however, its adjacent edges will not be parallel to the base
mesh anymore, see Fig. 3.7.

Fig. 3.6 Two PQ meshes with parallel edges and facets and equal distance between facets. However the topologies
are different, since the upper mesh has an additional edge

Fig. 3.7 Additional edge collapsed into a single vertex. Right: the meshes situated closer to each other to highlight
the non-parallel edges.

3.5.2. Geometrical torsion in meshes

In real structures a single layered grid shell constructed of rods with rectangular®’ cross-sections also
requires consideration of meshes parallel to its base mesh. Edges of base PQ mesh indicate
the directions of rods, whereas orientation (rotation around edges) of rods’ also require consideration.
A second mesh, with respect to the base mesh, can be obtained by selecting two points over a cross
section of rods, see Fig. 3.8, right. The first point (e.g. at the bottom) will always lie along an edge
of the base mesh and the cross section will be aligned normal (perpendicular) to edges of that mesh.
Then, the second mesh can be obtained by drawing edges traced by the upper point on cross sections.
Depending on orientations of rods along edges of the base mesh two scenarios are possible:

e The second mesh has distorted topology, as in Fig. 3.6,
e Both meshes are parallel and have proper topologies.

47 Rods with circular cross sections are not subject to geometric torsion, however, rectangular cross sections are
preferred by architects in grid shells.
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The second case is highly unlikely without proper alignment of the rods’ orientations.

ol

Fig. 3.8 Two RHS members along parallel (green) and non-parallel edges. The red member is in torsion.

A different approach is possible, which may also lead to two scenarios. When normal axes of the base
mesh are assigned before orienting rods’ cross sections, see blue dashed lines in Fig. 3.9 to 3.11,
rods may be oriented alone edges by alignment with those normal axes. In such case the orientation
of normal axes has to be adjusted in such a way, that adjacent normal axes*® are co-planar.
Otherwise rods spanned between non co-planar normal axes would be in geometrical torsion®,
as in Fig. 3.7, red rods in Fig. 3.8 and Fig. 3.10.

Fig. 3.9 9-cell PQ grid shell (nom-circular and non-conical) with node axes.

48 pairs of normal axes that lie at both ends of each edge of a mesh.

4 Attempt to construct incorrectly designed grid shell with geometrical torsion in rods would lead to real,
structural torsion in members.
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It is desirable to design meshes and adjust cross sections and normal axes in such a manner, that rods
are not in geometrical torsion. Such solutions are possible only for simple forms of triangular meshes,
while in PQ meshes an optimal alignment can always be found. Eventually, when properly designed,
nodes in PQ meshes can have reduced complexity with respect to equivalent nodes in triangular
topologies, i.e. the geometry of these nodes may not take into account the yaw angles (rotation along
mesh edges) of rods. Figures 3.10 and 3.11 shows two cases of grid shells and nodes, where rods
are not in physical torsion, but the first one is in geometrical torsion. Both cases are based on the same
meshes and cross sections of rods. However, in the second case normal axes of vertices are optimized.

It may also happen, that two meshes describing the upper and down sides of the rods are not parallel
to each other, since their topologies were forced into PQ (pairs of 3-valent varices were collapsed into
single 4-valent ones). Then the rods are in geometrical torsion. When this fact is not considered while
determining the nodes it may cause implementation and operation problems. The solution to solve
that geometrical problem is to consider the rake angle of the rod with respect to the node axis.
The other solution considers the usage of circular cross section rods, which in turn complicate
the application of glass plates. Figure 3.12 show both pairs of normal axes for comparison.

-

Fig. 3.10 Node-rod-node connections in geometrical torsion grid shell (left) and torsion free grid shell (right). On the left side
the rod’s axis in not aligned with the axes of adjacent nodes. On the right side the node axes were oprimized
and corresponding ones lie on a common plane, therefore the axes of rods may be aligned with them.
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Fig. 3.11 Node from the grid’s from previous figure without and with optimized axes (blue) and axes of adjacent rods.

Red dashed line marks axis of rod without optimization, whereas green dashed line marks axis or rod with optimization.
Green axis lies on a common plane with corresponding blue axis of the node.

- -
-

!
i
!

Fig. 3.12 Planes between corresponding node axes of torsion and torsion-free adjustment. Red plane is in torsion,
whereas green one is planar.

When the mentioned intrinsic properties of meshes are not considered during the detailing of the grid
shell, a series of unexpected problems may occur during the fabrication, assembly and operating
the structure. The consciousness of those properties may result with better design and construction.
Generally, geometrical constructs favoured from the point of view of fabrication and assembly
processes are more available for the free formed PQ meshes than in the triangular ones. For example
torsion-free meshes in triangular topologies have very limited number of available morphologies.

Torsion-free meshes can be obtained by adoption of the constrained meshes described further
in this section, i.e. conical and circular meshes. However, it is also possible to optimize normal axes
alignment of PQ meshes to eliminate torsion.
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3.5.3. Conical meshes

In order to design a PQ mesh with torsion-free offset, a certain construction may be used. Generally,
face offsets (with constant distances between all pairs of corresponding facets) are torsion-free.
Mesh having a face offset has such property, that each quadruple of facets adjacent to the common
vertex is tangent to a cone. The angles between edges surrounding a vertex have to meet the condition
of the equation (3.1), see (Liu et al. 2006).

W1+ w3 = wy + wy (31)

Where w, are the angles and the n marks the consequent one. That is the sum of diagonally opposing
angles is equal. When the above condition is met a cone can be created, which apex is located
at the vertex of a mesh, and the surrounding facets are tangent to that cone. Such cone has an axis,
which is equivalent to the normal axis of a vertex. An offset of the quadruple of conical facets
can be then performed by translating them along the normal axis (axis of the cone). Doing so,
each facet will be translated by the same distance. Additionally, in the conical meshes the pairs of cone
axes located on the both sides of an edge are coplanar — therefore the mesh is also torsion-free.

Node axes are also equivalents of surface normal vectors in case of meshes devised according
to the top-down paradigm. In such case however, the corresponding normal axes (pairs adjacent
to common edge) are usually not coplanar. In case of triangular topologies each normal axis
has to be aligned with 6 more vectors (instead of 4 in case of PQ topology) and that limits the available
morphologies of torsion-free triangular meshes into the discrete equivalents of spheres and certain
types of anticlastic surfaces.

3.5.4. Circular meshes

Circular PQ meshes are such meshes, whose facets are cyclic quadrilaterals®, see Fig. 3.13, left.
Such meshes have families of parallel meshes with constant vertex distances (Liu and Wang 2008).
Additionally, circular meshes are allowed for some transformations that preserve the planarity
of facets — see sections 5.1.2 and 5.1.3. Examples in Fig. 3.13 and 3.14 show examples of circular
meshes obtained through diverse methods. On the right side of figures a constant vertex distance
offsets of those meshes are presented.

50 A cyclic quadrilateral is a quadrilateral for which a circle can be circumscribed so that it touches each polygon
vertex (Weisstein 2018f). The opposite angles of a cyclic quadrilateral sum to m radians (see Euclid, Book IlI,
Proposition 22).
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Fig. 3.14 Left: circular PQ mesh obtained as stereographic projection of planar isoradial mesh. Right: the same mesh
with vertex offset.

In Fig. 3.15 particular geometrical properties of vertex offset meshes are shown. All normal axes edges
marked by dark blue colour have equal lengths. There are infinitely many solutions for the directions

of the vertex normals®® which met the vertex offset requirements in circular meshes. These directions

can be chosen arbitrarily, however, vertex normal directions are conjugated, i.e. only one axis
can be chosen arbitrarily and the rest is derived from it. Examples of different alignment of normal

axes of equal lengths creating parallel meshes are shown in Fig. 3.16.

5! Vertex normal — normal axis of a vertex
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Fig. 3.15 Vertex offset of a circular PQ mesh. All edges marked by blue colour have equal lengths. Green facets are planar.

Fig. 3.16 Examples of allowed directions of the vertex normals.

Semi-transparent facets in Fig. 3.15 are planar and all their vertices are equally distanced to the original
mesh. Finally, faces marked in green colour are planar, i.e. adjacent vertex normals always line
on a common plane. Mechanically, RHS pipes from which the grid shell is built can be aligned with
those green, planar faces eliminating geometrical torsion. Therefore, the class of PQ meshes, to which
circular meshes belong, is called torsion-free.

Nevertheless, it is possible to generate torsion-free offsets for non-circular meshes. An example
isshown in Fig. 3.17. In the presented example all green facets are planar, therefore they can constitute
guiding planes for RHS*? rods without geometrical torsion. However, in such non-circular networks,
the distances between vertices, facets nor edges are not constrained to constant lengths.
Finally, vertex normals are less conjugated, i.e. in case of circular networks only one normal axis
was arbitrarily chosen and the rest was derived from it, whereas in case of non-circular meshes a whole
row or column of normal vector direction can be arbitrarily chosen.

52 RHS — Rectangular Hollow Section
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Fig. 3.17 An example of non-circular PQ mesh with torsion-free edges.

In general, torsion-free meshes exist only for very limited forms of triangular meshes,
what is an additional argument for the PQ meshes as bases for the glazed grid shell design.

3.6. Form and form-finding

General form of a shell is one of the factors determining static performance of a structure. Such forms
are preferred, for which normal forces in rods are dominant, i.e. compression and tensile forces.
Vectors of such forces should be tangent to the surface of a shell. In grid shells forces are transferred
by rods, which are optimal elements in transferring tensile and compressive forces. The presence
of bending moments and shear forces in rods require increase of the cross sections of the rods,
which is undesirable.

A form of a grid shell devoid of non-axial forces can be obtained using form-finding methods.
In (Hassel 2016), Patrik Schumacher explains:

“Form finding is a physical setup where form self-organizes and it is not drawn by hand or invented
or preconceived. It emerges in a physical process”.

Examples of form-finding methods are the funicular model, force polygon, funicular polygon,
force density method or thrust network analysis. Form-finding methods for shells are extensively
discussed in Shell Structures in Architecture: Form Finding and Optimization (Adriaenssens et al. 2014).
Diverse form-finding strategies are used for different grid shell requirements.

Arbitrarily shaped shells are also a subject of optimizations. A notable example of such optimization
is the shell roof of Crematorium in Kakamigahara (Pugnale and Mario 2007), see Fig. 3.2, left.
The shape of the shell was described with the use of NURBS surface with finite amount of control
points, whose positions were parametrized. The factor to optimize was a minimum deformation
of a shell under dead and live load. The genetic algorithm was used to find the optimal configuration
of control point positions. The form was optimized by finding the best positions for each
of the parametrized control points. The criterium of the optimization was minimalization of deflection
of the shell under load. Genetic algorithms are abstract models which have no physical equivalent
allowing for form-finding process in physical manner, whereas funicular forms and minimal surfaces
are possible to obtain through both computer and physical simulations.
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Apart from the form of grid shell, its tessellation also has influence on the static performance
of a structure. However, PQ shells are geometrically constrained and available form-finding processes
not considering those constraints are insufficient. The change of paradigm into the bottom-up one
is therefore proposed for this reason. The space of possible morphologies should be narrowed
by geometrical constraints in the first place, before the structural optimization of form-finding process
is performed. Optimizing methods should be then able to find the best solution within
the geometrically correct morphologies.

Tessellation of a form-found shape can result with less favourable result than optimizing
a geometrically consistent PQ mesh.

3.7. Designing PQ freeforms in context of bottom-up and top-down
approaches

In this section, three exemplary and selected methods are discussed for forming PQ meshes
representing top-down, bottom-up and intermediate approach.

3.7.1. Top-down method example — conjugate curvature network

As fitting planar quadrilateral facets to a freeform surface is significantly difficult, a bottom-up
approach for shaping a PQ grid shell is usually taken. However it is also possible to shape PQ grid shells
using top-down approach.

Among top—down approaches the state-of-the-art method utilizes curvature line networks
of predefined freeform surfaces (Liu et al. 2006), (Pottmann, Liu, et al. 2007). The method assumes
determining on the free surface such a curved grid, which consists of two families of curves marked
in red and blue colours in Fig. 3.18. Curves from the same family cannot cross each other,
but can intersect with the curves from the other family. The way the curves intersect is strictly defined.
A series of points along one curve (blue) is created by intersections with curves from the opposite
family (red). From these points a series of lines (green) are designated in such a manner, that these
are tangent to corresponding red curves (also, these green lines are tangent to the base surface).
If the neighbouring tangent lines (green) lie on a common plane, they create opposite edges of planar
qguad. A series of these quads along one curve is called PQ strip, see Fig. 3.19. The network of curvature
lines is proper, if the tangents create PQ strips. This condition is fulfilled, when the curves
are the principal curvature lines, i.e. lines that follow greatest (red) and the smallest or opposite (blue)
curvatures. The whole surface is panelized by assigning PQ strips along all curves from one family and
intersecting neighbouring strips. The distances between the curves of the same family can be varied,
therefore the dimension of the panels can be controlled.
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Fig. 3.18 Freeform surface covered by conjugated network of principal curvature lines

Fig. 3.19 PQ strip between lines (green) tangent to the consequent principal curvature lines

The weakness of this method is the inability to change direction of PQ strips, what may sometimes
be necessary. Secondly, when the previously designed free formed surface has transitions between
synclastic and anticlastic parts, the singularities occur. Finally, there are surfaces (and parts of surfaces)

in which the curvatures in all directions are equal (e.g. a sphere). Therefore, the network of curves
has to be assigned arbitrarily.
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3.7.2. Bottom-up method example - Marionette

In the Marionette method® the global form of the PQ mesh is obtained algorithmically, from the user
controlled parameters consisting of directrix and generatrix curves. In Fig. 3.20 each curve
is represented in a form of two projections — vertical and horizontal. Designer also have to define
quadrilateral mesh on plane. Each vertex of that mesh in planar configuration is iteratively projected
on a plane already containing three other vertices of the final mesh. The first set of three vertices
of final mesh is at the corner, where directrix and generatrix intersect. As new vertices are projected,
new planes for further projections are created until all vertices from the planar mesh are projected
and construct PQ mesh.

Fig. 3.20 PQ mesh designed with the use of Marionette method. Two profiles (blue and orange, directrix and generatrix)
are user defined.

In this method there is no necessity of defining the shape of a continuously curved surface.
The tessellation (topology) and user defined parameters control the final shape, therefore the method
works according to the bottom-up paradigm.

3.7.3. Mesh subdivision method

Other method, which stands between top—down and bottom—up method, uses mesh subdivision
and planarity optimization iterative algorithm. According to this method, a global shape of the roof
or facade is roughly defined by few facets (significantly bigger comparing to final ones),
which are iteratively subdivided and planarized (Pottmann, Asperl, et al. 2007), p. 684.
This method uses algorithm which was originally devised for the purpose of 3D animation
by Edwin Catmull®* and Jim Clark in Pixar studio (Catmull and Clark 1978). Its greatest advantage
is the ability to consider various topological properties of the global form like holes, funnels
or wormholes (see Fig. 3.22) between two meshes, what brings the consequences of topology change,
i.e. more or less than four bars connected in one node. In Fig. 3.21 some vertices in the last stage
are 3- or 5-valent, analogically to corresponding vertices from the first stage of subdivision.

53 Marionette method is described in [74] and [75], also in the section 4.1.6.
54 The founder of Pixar Studio.
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Fig. 3.21 Consecutive stages of subdivision and planarization steps.

Fig. 3.22 PQ mesh containing a wormhole.

Although the method is suitable for meshes, where the required morphology is complex, i.e. containing
holes, funnels or wormholes it also imposes the planarization step, what in case of doubly curved grid

shells based on planar perimeters would lead to solutions, in which the resultant mesh would
be completely flat.
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4. Methods of formation of PQ meshes

This section describe selected methods of shaping the PQ mashes representing the bottom-up
approach. They cover only Form and Tessellation parts of this approach. The Mechanics is not taken
into consideration. The recognition of the rules of how to create PQ grid shells according
to the bottom-up approach, offers the opportunity to recognise the possibilities and the range
of freedom of their design. Parametrization of the formation methods allows the optimization
algorithms (e.g. genetic algorithms) to be further applied.

The following section 5 describes the methods of transformation of PQ meshes, which preserve
the planarity and topology of meshes.

4.1. The existing methods of formation

The methods described in this section have been adopted previously for the design and construction
of glazed grid shells or have been proposed as methods for designing grid shells.

A PQ mesh is a system of vertices, edges and facets that are characterized by the following features:

e all facets are quads, i.e. they contain exactly 4 edges and 4 points;

e all points incident with a facet lie on the common plane, i.e. corresponding points
are co-planar;

e all edges incident with a facet create a convex, simple quadrilateral, i.e. non self-intersecting,
closed polygon.

One of the most simple objects that fulfil the above requirements is a cube, Fig. 4.1. It has 6 facets,
all of which contain exactly 4 edges and 4 points. All points that surround each facet are co-planar.
Finally, all edges that surround a facet create convex and simple quadrilateral polygon, i.e. a square.

Fig. 4.1 Cube

What is more, in this case all edges are incident with exactly two facets. That is because the cube
is a solid object and all facets tightly close the space within the cube. It is not required for the PQ form,
in which open edges which are incident with one facet are allowed.
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Figure 4.2 shows an example of the PQ form whose all facets are congruent and lie on the same plane.
Those two simple examples are important for the future considerations as a determinants of validity.
Any strategy that is valid for a complex case is inadequate if fails for a simple case.

Fig. 4.2 Planar PQ mesh

4.1.1. Translational method

A single quadrilateral created from two pairs of points, where the second pair is image of translation
of the first pair, fulfils all the requirements for PQ grids. Simplest case of such transformation is shown
in Fig. 4.3. Translation of the line segment AB by vector v produces another segment A’B’
which is parallel to the previous one. Together with two additional segments ( AA’ and BB’),
a facet surrounded by exactly 4 points and 4 edges is obtained. This fulfils the first requirement.

B' B'

Fig. 4.3 Parallelogram - a simple planar quadrilateral

The sufficient condition for coplanarity of lines is their parallelism. Segments AA’ and BB’ are parallel,
because they are directed along the same vector v. Also AB and A’B’ are mutually parallel, because
translation does not change the direction. Consequently, all segments and all points lie on the same
plane, what fulfils the second requirement.

Finally, the obtained quad is a parallelogram which is contained in a set of simple-quads. That fulfils
the third requirement.

This simple construction allows to be performed on more complex sets of line segments producing
strips of planar quads, see Fig. 4.4. Any pair from a set of line segments: AA’, BB’, CC’, DD’ and EF’
is mutually parallel.
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Fig. 4.4 PQ strip of parallelograms

Repeating the steps of applying new vector of translation to the lately created set of points, allows
to produce a whole mesh of planar quads, see Fig. 4.5.

Fig. 4.5 Translational PQ mesh

The same mesh would be obtained if the polygonal chain is created with the use of points: A, A’, A”,
etc. and would be translated with the use of the vectors ﬁ, E, Zﬁ, etc., see Fig. 4.6.
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Each vector can also be denoted as a pair of points on a curve. By shifting the positions of the points

on curves, the sizes of the facets can be manipulated, while preserving all of the required properties
for the PQ meshes.

Fig. 4.6 PQ mesh generated from continuously curved directrix and generatrix.

The PQ meshes described so far, lie on a plane but the objective is to construct a doubly curved grid
shell. As a matter of fact, if curves containing points do not lie on a common plane or are not even

planar, the method will still be valid for PQ meshes. In such case, the created grid is three dimensional,
see Fig. 4.7.

Fig. 4.7 PQ mesh from spatial curved directrix and generatrix

Such a mesh is also a discrete equivalent for a translational surface (Fig. 4.8), i.e. the surface which

is generated by sliding a generatrix curve along directrix curve. Both directrix and generatrix
can be treated interchangeably.
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Fig. 4.8 Translational surface

In architecture, translational PQ grid shells are used frequently. Important examples are the Museum
of Hamburg History glass roof shown in Fig. 4.9 and glass roof of the House for Hippopotamus in Berlin
Zoo, shown in Fig. 4.10.

Fig. 4.9 The glazed canopy over the courtyard of Museum of Hamburg History - an example of translational PQ grid shell.>>

5 The geometry was additionally optimized changing some parts of translational mesh, see appendix A-3, p. 293.
Sources:

http://www.gmp-architekten.com/typo3temp/_processed_/csm_06_L_2549-01_a79814d9a4.jpg,
http://www.gmp-architekten.com/typo3temp/_processed_/csm_05_L 2513-01_0f9457573f.jpg.
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It is worth mentioning, that most of the glass panels in the first example are planar quads obtained
through translational method, however some panels near the corners of the dome were divided
diagonally into two triangles for the sake of structural optimisations, see (Schober 2015b), p. 46.

Fig. 4.10 House for Hippopotamus, Zoo Berlin - an example of translational PQ grid shell.>®

Translational meshes are discussed in (Schober 2015b), pp. 51-52.

4.1.2. Translational with planar base method

A successful application of translational method was introduced in the design of glazed roof over
Rennes University Library courtyard, see Fig. 4.11. The glazed lattice shell was based on PQ,
translational grid, which was constrained by a planar, rectangular outline of the courtyard. The method
of its creation is described in (Menard, Fayette, and Azzopardi 2013) and was recreated by the author
for further analysis.

To ensure the planarity of panels for the grid, previously described translational method was applied.
The planarity of the grid base was ensured by a proper construction of the directrix and generatrix
curves used to create translational curvilinear network. According to (Menard, Fayette, and Azzopardi
2013), both directrix and generatrix curves are the same curves. Each one consist of 4 symmetrical
segments: C;, C,, C3, Cy4, see Fig. 4.12.

Segment C; is a point symmetry of C, the other two segments Cs;, C, are a mirror symmetry
of C; and C,. Each segment is a second degree spline curve interpolated between two points
and extrapolated by one point P, which position is parametrized, see Fig. 4.12, left and formula (4.1).

%6 See appendix A-3, p. 294, source:
https://www.sbp.de/fileadmin/sbp.de/projects/0559DF968B4E8CE1C1257E750035BD85 0 1 1642
97_a_MAX.jpg
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Fig. 4.11 Bibliothéque Universitaire Rennes — an example of PQ translational glazed canopy with planar base.>”
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Fig. 4.12 Left: construction of the C; segment curve, parametrized by the P¢(a,b) extrapolated point. Right: construction
of the profile curve composed of Ci, C;, C3 and C4 segments.

P,=[abl:a€(0,1),b € (0,1) (4.1)

By changing the P. parameters different shapes of the profile curves are obtained, see Fig. 4.13.
For values of b greater than 0 the profile curve breaks curvature continuity at the middle, see Fig. 4.13,
right, whereas if a = b the profile is composed of two straight sections.

Pe o o Pe

J P
e /\

Fig. 4.13 Examples of possible shapes of the profile curve according to the position of P. extrapolating point.
Left: for b = 0 the profile curve has G1 continuity at whole span; right: for b > 0 the profile curve has GO curvature continuity
(in the middle).

A curvilinear network created from the profile curves is trimmed by a horizontal plane, see Fig. 4.14.
That intersection is a perfect, planar square marked in blue color in Fig. 4.14, right. In order to fit

the base plane into a rectangular shape, the network can be scaled anisotropically®® along the selected
base edge.

57 Source: http://www.bruno-gaudin.fr/images/projets/352/357.jpg
58 See anisotropic scale transformation in section 5.1.1.5.

72



Fig. 4.14 Perspective views of a curvilinear networks obtained as a translational network with the profile curves as directrix
and generatrix (red and green). Blue rectangle (right) marks the intersection of a translational surface with a horizontal
plane.

Intersections of curves in created curvilinear network are points that create panels’ outlines.
A projection of this network on the horizontal plane is a regular square grid.

Possible shapes depending on the values of the a and b parameters are shown in Fig. 4.15.
The space of a and b parameters contain parts, where the shapes of curvilinear networks lack curvature
continuity along the diagonals. Also, pyramidal form is possible to obtain for particular combination
of a and b values.

PQ mesh is obtained from curvilinear network by circumscribing quads on the points of intersection
between directrix and generatrix curves of the network, theses quads are planar.

i”‘\“‘.“‘
.
RS SS S oSS
e

fr i“““:‘v
e

5
= S

2

%
Ka&&uﬁﬁ%ﬁg

e )
SO TRS

Sy
SIS

L
Gy S
sy S
Y

I <5
PR o
295950005
LSS ST

= S )
ey
S

S “
DTS S
COOTTIS T

e ey
| 5 -
’;ﬂ",";’::‘:::::‘
Lo 00000"“':“\:
S S

e

v

Fig. 4.15 The diagram of possible curvilinear networks depending on the values of a and b parameters.
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4.1.3. Scalar-translational method

Beside translation, there is another transformation that preserves parallelism of line segments, which
is a sufficient condition to construct PQ meshes. It is uniform or isotropic scaling. This transformation
is characterised by a centre point and a factor. In the following example a planar quadrilateral
trapezoid is created by scaling the line segment AB, see Fig. 4.16. Image of transformation, the A’B’
segment, is parallel to AB and therefore quad ABB’A’ is also planar. The opposing edges AA” and BB’
are no longer parallel as it was in the previous method. Nonetheless, the parallelism of the opposing
edges is only a sufficient but not necessary condition for PQ meshes.

A A
A A A
c, / C, /
B B B
B' B'

Fig. 4.16 Construction of a planar trapezoid obtained by scaling of a line segment.

Scaling can be combined with transformation of translation as both transformations preserve

parallelism. A”B” segment is an image of translation of A’B’ segment along vector v. The resulting
ABB”A” quad is still planar, see Fig. 4.17.

il

Fig. 4.17 Construction of a planar trapezoid obtained by scaling and translation of a line segment

Order of performing the transformations is important. Scaling before the translation will not result
with the same image as translation of a scaled object. In order to obtain the same result the centre of
scaling transformation has to be translated together with the object, if the desired order
is the translation and then scaling.
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In the reversed procedure, where the line segment, translation vector, scaling factor and centre points
are known, the centre of scaling has to be translated along the vector in order to obtain the same
results as in Fig. 4.18. Points A’, B’ and C’ are the images of translation the v vector. In the next step
line segment A”B” is obtained by the scale transformation of A”and B’ points from the C’ centre point.

The scale factor is preserved.

BII
Fig. 4.18 Construction of a planar trapezoid obtained by translation and scaling of a line segment

Performing scale-trans transformations on a chain of segments results in a strip of planar quads,
see Fig. 4.19. There should be only one centre point for scaling for all segments in a chain, however,

at each step different centre point and scale factor can be used.

f=1.3 _ 7 .
A A
B
So So
C C
D D
E E

d EII

Fig. 4.19 A chain o planar trapezoids obtained by translation and scaling

Instead of defining a centre point for scaling each PQ strip a different approach can be taken.
Scale factors, translation vectors and centre points can be derived from a continuously curved
directrices and a generatrix curves as in Fig. 4.20. Generatrix curve g can be a spatial curve.
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Fig. 4.20 Continuously curved directrices d', d2 and a generatrix g.

In Fig. 4.21 the generatrix curve g contains a set of points Go to G,, whereas from two directrix curves
d* and d? only the first one contains points: from Do’ to D,!. Subsequent translation vectors are created
by the pairs of points D and Di.1*. The g curve, together with the points it contains, is translated along
these vectors. The scaling centres for the following g, — gn+: curves are corresponding to D/ points.

In order to get scaling factors, another set of points has to be created on the second directrix curve d°.
These points are projections of D! points on the d? curve along the G,Go vector. The scaling factors
are equal to the quotient between |GoG,| and |DZD/*|. The resultant PQ mesh is shown in Fig. 4.22.

D3

Fig. 4.21 Consequent Dn?2 points derived from projections of D,! points along the d! directrix curve.

The corresponding edges G/Gi./ and G/*'Gi,/*! are parallel. As a result of this fact the sufficient
condition for PQ mesh is fulfilled. The curve g not necessarily has to be planar.
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Fig. 4.22 A scalar - translational PQ mesh. Right: the same mesh with shading.

This approach allows to obtain a PQ mesh with user specified shape of the boundary. The global form
is the result of these user controlled parameters and the scaling—translation rules. Most notable
example of this approach is Sage Gateshead building, see Fig. 4.23.

Fig. 4.23 Sage Gateshead - architecture: Foster + Partners. An example of scalar - translational PQ mesh.>?

Presented scalar translational PQ meshes are also partially described in (Glymph et al. 2004)
as scale-trans surfaces, and more widely in (Schober 2015b), pp. 124-131.

%9 See appendix A-3, p. 301, source:
https://upload.wikimedia.org/wikipedia/commons/4/49/The_Sage_Gateshead.jpg
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4.1.4. Rotational method

The last presented basic transformation that allows to create PQ meshes is the rotation.
A planar rotation is characterized by a centre point and an angle. In 3D space a centre point is
insufficient, therefore an axis or a centre point and a plane of rotation have to be additionally defined.

The image of rotation of the line segment AB around the centre point O by the angle a (or 8) is the line
segment A’B’, see Fig. 4.24. Neither AB and A’B’, nor AA’ and BB’ are parallel, therefore resulting quads
are neither parallelograms, nor trapezoids. The ABB’A’ quad is planar due to the fact that both:
line segment AB and the centre of rotation O lie on a common plane.

B'

B
Fig. 4.24 Planar quadrilateral obtained by a rotation of a line segment.

For a rotation in space, the resultant quads are not parallelograms or trapezoids without additional
constraints. In order to produce quad with at least one pair of parallel edges the required condition
is that the centre of rotation and the primary line segment lie on a common axis, see Fig. 4.25.
Newly created quad is a isosceles trapezoid since AB and A’B” have the same lengths, and AA” and BB’
are parallel one to another.

Bl
A'
—
o  —
“a|
~
A
B

Fig. 4.25 An isosceles trapezoid obtained by a rotation of a line segment. The rotation point O is colinear with the rotated
line segment.

In 3D space, a rotation is performed around an axis. In order to produce two line segments that
are parallel one to another, the original points have to be placed on plane which contains the axis
of rotation, see Fig. 4.26, right.

The rotation in Fig. 4.26 is performed around the vertical axis r, which is perpendicular to the horizontal
plane of projection. The intersection of the r axis with the horizontal plane is marked with the point O.
The projection of line segment AB on the horizontal plane is a line segment that is not colinear with
the O point. The AB segment is not co-planar with the r axis. The resultant ABB’A’ quad in the Fig. 4.26,
left, is not planar.
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Fig. 4.26 Rotation around an axis. Left: non-planar quad. Right: planar quad - the AB line segment and r axis lie
on a common plane.

In the second case (Fig. 4.26, right), A, B and r lie on the common plane and projections of A and B
are co-linear with 0. The image of rotation creates A’B’ segment, whose projection on the horizontal
plane containing O is a line segment, also co-linear with O.

The projected quadrangle AsA,’By’B, in Fig. 4.27 is an isosceles trapezoid with pair of points Ap-A,”
and B,-B,’ equally distanced to the point O. Line segments ApA,” and BB, are parallel. Points A and A’
lie on the same level over the horizontal plane, i.e. |A,A| = |A,’A’|. Also |B,B| = |B,’B’|.
Therefore, pairs BB’ and AA’ are also parallel. Finally the quad AA’B’B is planar and has circumcircle.

Fig. 4.27 Isosceles trapezoid obtained by a rotation

Rotating chains of segments around the axis by sequences of angles, create rotational PQ meshes
which are discrete representations of rotational surfaces, see Fig. 4.28.
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Fig. 4.28 Left: rotational surface, centre: the same surface discretized, i.e. the PQ mesh obtained by rotation.
Right: rotational PQ mesh with shading.

In Galeria Katowicka shown in Fig. 4.29 the vertical axis of rotation lies within the glazed facade.

Fig. 4.29 Galeria Katowicka, Katowice.®0

In Pearl River Tower shown in Fig. 4.30 the vertical axis of rotation is situated in front of the building.
The form of the building’s elevation is simple and balanced, i.e. the glazed facades are doubly curved
and maintain significant repeatability of glazed panels and nodes.

60 See appendix A-3, p. 322, source:
http://pl.apsysgroup.com/wp-content/uploads/2015/12/GaleriaKatowicka_12.jpg
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Fig. 4.30 The Pearl River Tower, Guangzhou.®!

In Jaca Ice Pavilion (Fig. 4.31) the axis of rotation is horizontal and lies underground. The rotated chain
of segments is inscribed in circle and the whole figure of rotation is a torus.

Fig. 4.31 Jaca Ice Pavilion, Spain. Right: scheme of the mesh.®2.

61 See appendix A-3, p. 308, source:

http://legacy.skyscrapercenter.com/class-image.php/userpics/10005/?width=1000&height=800&
image=/images/albums/userpics/10005/PearlRiverTower_ext-LookingUp6(c)TM.jpg
62 Sources: https://www.arup.com/-/media/arup/images/projects/j/jaca-ice-pavilion/2000x1125-jacaicerink.jpg
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Additional advantage of the rotational mesh is the fact, that all facets are isosceles trapezoids
and therefore are also cyclic quadrilaterals®®. This geometrical property has mechanical meaning,
which is explained in the section 3.5.4 Circular meshes.

The method of creating PQ meshes with rotations is described in (Schober 2015b), pp. 64—66.

4.1.5. Sweep method

Following presented method is further discussed in (Pottmann, Asperl, et al. 2007) pp. 431-433
and (Mesnil, Douthe, Baverel, Léger, et al. 2015). In (Schober 2015b), pp. 67-69 part of the method
using rotations is named arrays of surfaces of revolution. In the following method a freeform guiding
(or directrix) curve not necessarily have to be planar. A directrix curve contains a point which is also
a common point between that curve and a vertical plane. The projection of that plane on a horizontal
plane intersects with the projection of the curve perpendicularly, see Fig. 4.32.

\

Fig. 4.32 The chain of segments lies on a vertical plane, which is perpendicular to the projection of the directrix curve.

The vertical plane also contains a profile chain of segments, i.e. a generatrix. These segments need
to be transformed along the spatial directrix curve in such a manner, that the corresponding vertices
of consequent generatrix chains produce planar quads. In order to specify the following generatrix
chains it is required to generate the vertical planes that will contain them. Those planes should
contain selected points lying on the spatial directrix curve and their projections on the horizontal plane
should intersect perpendicularly with the projection of the directrix curve, see Fig. 4.33.

The intersections of consequent pairs of planes are vertical lines, which can be used as axes
of rotations, see Fig. 4.34, left. Since the directrix curve is spatial and the planes are vertical, the image
of a rotation of the generatrix chain of line segments is not incident with the point contained
on the directrix curve. The resultant generatrix profile requires translation on its plane in order
to touch the directrix curve, see Fig. 4.34, right. However, the resultant composition of rotation
and translation transformations results with non-coplanar pairs of line segments generated by original
points and their projections.

https://www.arup.com/~/media/Images/Projects/J/Jaca_Pavilion/Jaca5218x275CreditsArup.ashx?bc=ffffff&as
=1&mw=218&thn=0&w=218

63 The opposite angles in isosceles quadrilateral sum to m radians, therefore meet the condition for cyclic
quadrilateral.
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Fig. 4.34 Left: vertical axes of intersection of consequent pairs of planes. Right: a chain of segments rotated around
the intersection axis and translated along the vector lying on the plane.

In this case neither the rotation, scaling and translation give the proper solution,
nor any of their combinations. The proper solution assume facilitation of parallel projections,
where each point of the profile chain is projected on the adjacent plane along the same direction
creating pairs of parallel edges. That way, each pair of original and image points will create
a line segment. All line segments between corresponding planes will be parallel to each other.
The parallelism guarantees the planarity of created quads.

The direction of projection is determined by the consequent points contained on the directrix curve,
see Fig. 4.35. All points along the generatrix chain are projected on the neighbouring plane along
the same direction. The procedure is performed for all plane pairs, see Fig. 4.36, left.
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Fig. 4.36 Left: consequent projections of line segments. Right: the last projection results with a chain of segments which
is not similar to the first one.

What has to be noted is the loop closure. The first and the last profile chains are not equivalent,
i.e. points creating those profile chains lie on a common plane, however, these are not congruent.
In Fig. 4.37 two profile chains at the left side of the mesh are co-planar, but no congruent.

Fig. 4.37 A PQ mesh obtained by projections, with shading of facets.
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By so far the presented method assumed, that all profile chains lied on vertical planes,
what is a reasonable solution from a constructional viewpoint. Structural elements of the facade
can be fastened to a corresponding, vertical structural elements of the building, e.g. column or truss.
On the other hand, PQ meshes obtained according to the presented solution lack a certain geometrical
property, i.e. the mesh is not circular (see section 3.5.4 Circular meshes). Almost similar PQ mesh
which are also circular are possible to obtain by adoption of the method described in the further
part of this section.

The rotations of the profile chains produce strips of isosceles trapezoids, see section 4.1.4.
Such figures are always cyclic quadrilaterals. Additionally, the following generatrix profiles should
be rotated in such a manner, that the image of rotation is coincident with the directrix curve
at the adequate point. Since the points on the guiding curve are on various levels, the rotations cannot
be performed around vertical axes. Therefore, the axes of rotations are defined by the intersections
between corresponding neighbouring planes. The question remains how to select the positions
and orientations of the planes. Such planes should be incident with points contained on the directrix
curve and the rotations between the consequent planes should generate proper images
of the generatrix line of segment chains.

The first plane containing the generatrix chain of line segments is perpendicular (normal) to the spatial,
directrix curve, see Fig. 4.38. Since the directrix is a spatial curve, the plane is not necessarily vertical.
Rotational PQ meshes are created around axes, that lie on a common plane with the generatrixes, see
section 4.1.4. Therefore the path of rotation of a point on generatrix chain is an arch,
which is perpendicular to the plane containing generatrix chain of line segments. One pair of original
and image of rotation points is known, i.e. the neighbouring points contained on the directrix curve.
Those points and the tangent direction at the start determine the arch, from which the centre point
is derived, see Fig. 4.39. The centre of rotation and a point on the directrix define the bundle
of planes®. In order to finally determine the second plane one more constraint is required.

Fig. 4.38 A non-vertical plane containing the generatrix profile (chain of line segments). The plane is incident with a point
contained on the directrix curve and is perpendicular to the directrix curve at that point.

64 A set of planes which intersect at a common line.
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Fig. 4.39 The path of rotation determined by the tangent vector at start and two points.
The point at the apex is the centre point of the arch.

The centre point of the arc, together with its endpoints constitute a plane. A line that is normal
to that plane, and starts at the centre point of arc is the rotation axis - Fig. 4.40. That rotation axis
explicitly determines the position and orientation of the second plane. The axis of rotation is also

the intersection line between two neighbouring planes.
The next plane contains the next point on the guide curve and the axis of rotation. All the other points
on the original generatrix chain of segments land after rotation on that newly created plane

Trough rotation a series of cyclic isosceles trapezoids is created, Fig. 4.41.

Fig. 4.40 The arch which is the path of the rotation lies on a plane.
The axis of rotation is perpendicular (normal) to that plane.
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Fig. 4.41 Left: a series of rotations of a chain of line segments. Right: cyclic quadrilaterals are obtained by rotations.

Figure 4.42 shows a series of planes containing generatrix chains of segments. Between each pair
of adjacent planes auxiliary extension lines and a rotation axis is shown. In Fig. 4.43 a PQ mesh created
according to sweep method is shown. The result is visually similar to the one in Fig. 4.37.
However, here an advantage is that facets are cyclic in exchange for the fact, that generatrix sections
are not vertical. In this case, as in the previous one, the loop of generatrix profiles in not congruent,
i.e. the first and the last profile is co-planar but no congruent.

Fig. 4.42 A series of planes containing generatrixes. Between all the corresponding pairs of planes the paths of rotations
and the rotation axes are shown.
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Fig. 4.43 Circular PQ mesh obtained by rotations shown with shading of facets.

Although the planes containing the profile chains are no longer vertical, the shape of the profiles
achieved through this alternative of sweep method give significant geometrical and technological
advantages, see 3.5.4 Circular meshes.

4.1.6. Marionette method

Marionette meshes are the proposition for constructing PQ meshes according to the bottom-up
paradigm (fabrication-aware design) presented in (Mesnil et al. 2016) and broadly in (Mesnil 2017).

For each facet of a PQ mesh there is a constraint that refers to the co-planarity of 4 adjacent points.
For 3 points any configuration of their positions fulfils the co-planarity constraint, since any 3 points
constitute a plane. If there is 4™ point added, its position is limited to the plane of previous 3 points —
the 3D space of solutions is limited to a 2D plane. However, within that plane there are infinite
solutions for the 4™ point location.

In the previously presented methods, the final plane was a result of rotation or translation.
The co- planarity of all four points was guaranteed by the parallelism of any of two pairs of opposing
edges. Since the parallelism is only the sufficient condition, there is another possibility to obtain planar
quad. It assumes that the plane on which the quad will eventually lie is known before all the points
are transformed. The necessary condition of the planarity of quad is the situation of all four points
lying on a common plane. Therefore, the sufficient condition has not to be met, i.e. the resultant quad
is not restricted to be trapezoid or parallelogram. Although the method does not exclude the possibility
that the resultant quads are cyclic, usually they lack that property contrary to isosceles trapezoids.
The Marionette method enables different approach to the PQ mesh design according to the external
guiding parameters. Methods presented before were defined by directrix and generatrix curves
with the additional information defining the allowed transformations. In this method the resultant
mesh is parametrized by two directrix curves (or chain of line segments) and a quad mesh in the flat
configuration on the horizontal plane.

The procedure of generating PQ mesh according to Marionette method requires a quadrilateral mesh
defined in horizontal projection. For better understanding the method, let that initial mesh consist
of one, horizontal quad ABCD, see Fig. 4.44. The positions of A%, B° and C’ are selected arbitrarily along
the vertical axes passing through the corresponding points A, B and C. Line segments A°B* and B°C°
are in this simplified example equivalents of arbitrarily defined directrix and generatrix profiles,
where the parameters are the vertical distances of points over the quad in horizontal configuration.
Points A°, B° and C° constitute a plane. Finally, the position of D* is defined by an intersection of a
vertical axis passing through the corresponding point D and a plane defined by A°, B° and C°. From that
definition the A%, B°, C° and D° point create a planar quad, which points are situated directly above the
points A, B, C and D, see Fig. 4.45.
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Fig. 4.44 ABCD quad lying on the horizontal plane.
Correspongind points As, BS and C are situated directly above A, B and C points creating two edges.

BS

Fig. 4.45 Point Ds is situated directly above the point D and lies on the plane determined by points As, BS and Cs.
Newly created spatial quad AsBsCsDs is planar.

The name of the method Marionette refers to the procedure of raising the fourth point to the plane
of destination - like a marionette on a string. The procedure for a single cell is expanded by adding
more quads in planar configuration and two directrix chains of line segments, Fig. 4.46.
Each quad requires three defining points and results with one additional point, which will define
the construction of following quads in following iterations. That inequality makes it necessary
to add more defining points externally. Those external points are defined by the directrix chains
situated on two vertical, mutually perpendicular planes.
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Fig. 4.46 Expansion of the basic definition described before.
A PQ mesh in flat configuration is expanded and two directrix profiles are added.

Quad projections Qo; and Qo already have two adjacent points in space, so there is one missing
for each. In order to determine the position of those missing points, two vertical planes are introduced,
perpendicular to each other (Monge projections). Each of those planes contains a directrix chain
of segments. The third point is constructed by the intersection of a vertical axis passing through
the corresponding point on the vertical plane and another, horizontal axis passing through
the corresponding point on the directrix chain. The second axis has to be perpendicular to a vertical
plane with which it intersects, see Fig. 4.47. As the missing point altitude is defined, the fourth point
of Qo1 and Qo is projected on the plane constituted by the previous three points. Eventually the quad
Qi: will have 3 adjacent points in space that are required to define the quad position in space.
The whole procedure is repeated until the whole projection of a PQ mesh is raised into space,
such as a marionette.

Fig. 4.47 Missing third points of two quads are defined by the intersections of vertical axes with the axes that
are perpendicular to the vertical planes and pass through the corresponding points on the directrix chains of segments.
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In Fig. 4.48 more complex PQ, Marionette mesh is shown together with projection on horizontal plane
and projections of directrix and generatrix curves.

Fig. 4.48 An example of Marionette mesh. Left: the construction with parameters as directrices and planar mesh,
right: the same mesh with shading.

The designer has the control over the shape of mesh in planar configuration and the directrix
chains (or curves). However, the network in planar configuration has so many parameters (the position
of each of its points), that it would be difficult for a manual control. Additionally, the designer is given
control only over the shape of the two edges (not directly), whereas the shape of two another edges
of resultant PQ mesh are hard to predict.

4.1.7. Isoradial meshes from Chebyshev nets

A mesh composed of planar isosceles trapezoids is called circular mesh, since any isosceles trapezoid
is cyclic. Circular PQ meshes can be obtained by rotations according to the methods described
in sections 4.1.4 and 4.1.5. Circularity of a mesh is required for certain types of transformations
described in sections 5.1.2 and 5.1.3, in order to keep planarity of individual facets after
the transformation. Those transformations allow to obtain spatial PQ meshes from planar, circular
meshes. Therefore, a method for formation of planar, circular meshes is also useful. Potentially useful
concept is the Chebyshev net (Bazylev 2002), i.e. a mesh composed of edges of constant length.

Chebyshev nets covering three dimensional, doubly curved surfaces also exist and are used
for the estimation of shapes of elastic grid shells, see (Masson and Monasse 2017). However, in context
of obtaining circular meshes only planar Chebyshev nets are concerned.

Both meshes in Fig. 4.49 are constrained to a plane and consist of segments of lengths. Each cell
is a rhombus or a square — having all edges equal in lengths. This construction can be obtained
according to the translational method (section 4.1.1), where the directrix and generatrix chains
are divided into sections of equal length. As translation transformation preserves the distances
between points, the resultant edges maintain the original length. Therefore, the whole mesh
is composed of edges with equal lengths.
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Fig. 4.49 Chebyshev nets - two examples of quadrilateral meshes in planar configuration composed of edges of equal enghts.

Each vertex of a Chebyshev net can be used as a centre point of a circle, whose radius is equal
to the lengths of surrounding edges, see Fig. 4.50, left. Four points adjacent to the centre point
of the circle lie on that circle. Connecting these points with line segments will result in cyclic quad.
The pairs of opposing edges of the resultant quads are not necessarily parallel, however the quad
is planar, since the whole construct was performed on a plane. Also, since all edges have equal lengths,
all circles have the same radii. Therefore, the resultant mesh is also called isoradial mesh.

Planar, isoradial mesh obtained from Chebyshev net is shown in Fig. 4.51.
Fig. 4.50 A circle drawn around a vertex of Chebyshev net with radius equal to the length of its edge is incident with all four
points adjacent with the centre point. Right: quad created from the four points adjacent to the centre one is cyclic.

Fig. 4.51 Planar, isoradial mesh obtained from Chebyshev net shown separately, left and with corresponding Chebyshev net
and circumcircles, right .

The construction described above uses only half of the mesh vertices as the centre points of circles,
whereas a denser isoradial mesh can be obtained. Two neighbouring cyclic quads intersect creating
new quad, which is also cyclic, see Fig. 4.52. The newly created quad is inscribed into a circle, whose
diameter is an edge of the Chebyshev net.
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Fig. 4.52 A quad obtained by intersection of two other neighbouring quads. The small quad is also cyclic.

Filling all the points on the initial mesh with circles and cyclic quads will result in an isoradial mesh
with 4 times more cells, see Fig. 4.53.

Fig. 4.53 Left: a mesh of quads obtained by intersections of neighbouring quads. Right: the same mesh with translational
mesh and circles. The meshes obtained by this method are circular meshes.

Edges of isoradial mesh are also diagonals of facets of Chebyshev net. This example was based
on planar isoradial meshes and spatial isoradial meshes will not be further explored in this section.

Although potential of Chebyshev nets for generating PQ meshes has already been reported
in mathematics, e.g. in (Douthe et al. 2016), they have not been used in design and construction
of PQ grid shells yet.

4.2. New methods of formation of PQ meshes proposed by the author

The methods of shaping PQ meshes described in this section are propositions and modifications
proposed by the author of this work.

4.2.1. Circular Marionette method

To some extent, the Marionette method proposed by Romain Mesnil in (Mesnil et al. 2016),
briefly described in section 4.1.6, may be modified in order to obtain circular PQ meshes,
i.e. the meshes, which facets are planar quadrilaterals, that are also cyclic. This modification
is an author’s proposition. Having the initial constraints, i.e. the projected mesh and the vertical
projections of the profile chains - the procedure is carried out in a standard manner. The first triple
of points are raised and the fourth is projected on a plane set by those. However, as it is shown
in Fig. 4.54, the last point is not coincident with the circle that contains three previous points.
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In order to construct cyclic quad the fourth point has to remain on the plane defined by the three initial
points and additionally has to be placed on the circle containing those three points.

Fig. 4.54 First three points define a circle, which is not coincident with the fourth point.

As a circle is a planar shape which is already on a plane defined by first three points, the fourth point
is projected onto a closest point on the circle to meet all the defined constraints, see Fig. 4.55.

Fig. 4.55 Closest projection of the fourth point on a circle.

Iterative process of creating PQ mesh according to the Marionette method is carried with
the additional step of projecting each fourth point onto a circle until all points are projected.
In Fig. 4.56 a simple circular PQ mesh obtained with the described method is shown together with
projection on horizontal plane in two versions: thicker line segments indicate the user defined mesh,
whereas thin lines indicate the projection of actually obtained mesh. The difference between both
can be observed. That difference in general shape can also be observed between PQ meshes shown
in Fig. 4.57 and 4.58.
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Fig. 4.57 Comparison of two meshes derived from the same parameters. Left: conventional Marionette,
right: circular modification. A difference in regularity is visible.
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Fig. 4.58 Two marionette PQ meshes with shading applied. Left: conventional, right: circular.

The presented modification have certain limitations. After several iterations a vertex projected
vertically onto a desired plane may have be closer to the wrong side of the circle, resulting with
concave or self-intersecting quad. Due to that disadvantage, further work on this modification
is not carried. Instead, different ways of obtaining the circular PQ meshes and the ways of their
deformation will be discussed in the following sections. However, it is possible that the mentioned
limitations will be eliminated in future and the presented method will turn out to be useful tool
for creating PQ meshes, therefore its description is included in this work.

4.2.2. Super-ellipsoids

‘Man is the animal that draws lines which he himself then stumbles over. In the whole pattern
of civilization there have been two tendencies, one toward straight lines and rectangular patterns
and one toward circular lines. There are reasons, mechanical and psychological, for both tendencies.
Things made with straight lines fit well together and save space. And we can move easily,
physically or mentally, around things made with round lines. But we are in a straitjacket,
having to accept one or the other, when often some intermediate form would be better.
To draw something freehand, such as the patchwork traffic circle they tried in Stockholm, will not do.
Itisn't fixed, isn't definite like a circle or square. You don't know what it is. It isn't aesthetically satisfying.
The super-ellipse solved the problem. It is neither round nor rectangular, but in between. Yet it is fixed,
it is definite — it has a unity.’

Piet Hein%

Discrete representations of spheres (as in Fig. 4.59), i.e. networks of points at the intersections of their
longitude and latitude lines, are also a proper PQ meshes. Discrete PQ sphere is in fact a rotational
mesh, where the rotation axis is an axis or of the sphere and the profile chain is interpolated between
a family of consequent points lying on a single longitude line of that sphere. Such PQ mesh
is also circular — since obtained by rotations.

85 Quote from (Hicks 1966).
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Fig. 4.59 PQ mesh obtained by a discretization of a sphere.

A sphere is defined as the set of all points in three-dimensional Euclidean space R® that are located
at a distance (the "radius") from a given point (the "centre") (Weisstein 20180). If the centre point
is at the beginning of the 3-dimensional cartesian coordinate system and the radius of the sphere
is equal to 1, then all the points whose x, y and z coordinates satisfy the equation (4.2).

The equation above is the 3 dimensional generalization of Pythagorean theorem. If the exponents
of x, y and z are replaced by parameters r, s and t the possible solutions of the equation become
a family of super-ellipsoids (Weisstein 2018p). It is a 3—dimensional version of super—ellipse,
a mathematical concept popularized by Piet Hein®®.

General implicit equation of a super-ellipsoid has a following form of formula (4.3).

x| + 1yI° + |zI* =1 (4.3)

Exponents r, s and t replace square exponents from the sphere equation. Since the values of exponents
can be fractions and irrational positive numbers, the values of x, y and z parameters are absolute.
The value of each exponent is responsible for bulging or denting the form in each corresponding
X, y or z direction. For values larger than 2 the shape is bulging outwards. When the exponent
is approaching infinity, the shape becomes two perpendicularly intersecting surfaces.
For values smaller than 2, the form dents inward becoming two perpendicularly intersecting surfaces,
when the exponent approaches 0.

The symmetry of super-ellipse is increased by reducing the exponents to two as in formula (4.4).
In such form, the form has 4-fold rotational symmetry around vertical axis.

(" + [yID) 7t + 2]t =1 (4.4)

The super-ellipsoid in Fig. 4.60, middle, is a discrete representation of the above equation with
the exponents r = 2 (thus the same as for sphere, therefore latitudes are circular) and t = 3.
As the r exponent is responsible for the x and y coordinates, the horizontal, latitude chains remain
circumscribed in circle. Different values of parameter t are responsible for the shape of meridian chains
of segments. Changing the value of t below 2 makes the form pinched at the equator (Fig. 4.60, left)
and as t strives to infinity, the form becomes tubular, see Fig. 4.60, right. The t exponent is therefore
responsible for the shape of meridian chains of segments in super-ellipsoids.

%6 pjet Hein was a Danish mathematician, inventor, designer, author and poet, who, for the first time in history
used the concept of Lamé curves in a design and popularised them as super-ellipses.

97



Fig. 4.60 Available forms of super-ellipsoid depending on value of the t exponent with the same values of the r exponent.

Shapes of latitudes are controlled by the value of the exponent r, see Fig. 4.61.

Fig. 4.61 Available forms of super-ellipsoid depending on value of the r exponent with the same values of the t exponent.

Various combinations of r and t exponents result in extensive family of various shapes.
The example in Fig. 4.62 represents the shape for r = 2.5 and t = 3. Overview of possible super-ellipsoid
forms depending on r and t exponents is in Fig. 4.63.

Fig. 4.62 A variant of super-ellipsoid with exponents r and t larger than 2. This discrete version is an example of PQ mesh.
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Fig. 4.63 Space of possible super-ellipsoid shapes depending on r and t exponent values.

All discrete forms of super-ellipsoids are PQ meshes due to the fact, that between each pair of latitude
chains of segments there are pairs of parallel line segments. In fact, each latitude in a super-ellipsoid
is the same super-ellipse which is scaled and as it was already mentioned in section 4.1.3,
scaling transformation preserves parallelism. Also, each chain of segments is a projection of previous,
neighbouring longitude profile, therefore can be constructed according to sweep method described
in section 4.1.5.
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5. Methods of transformation of PQ meshes

This section describes methods of transformation of PQ meshes, which preserve the exact planarity
of all facets. PQ meshes obtained according to the methods described in the previous section
can be transformed increasing the spectrum of available forms. In some cases of transformations,
the base PQ mesh is required to meet some geometrical conditions in order to keep planarity of facets
after the transformation. These requirements are described for each type of transformation.
However, most of the basic transformations have no restrictions.

The mechanical aspects are not concerned in this chapter.
5.1. The existing methods of transformation

The methods described in this section have been adopted previously for the design and construction
of glazed grid shells or have been proposed as methods for designing grid shells. Nevertheless,
these transformation methods require definition and systematization as complementary for other,
more complex transformations proposed in this work.

The presented description of existing methods includes only the basic principles of described methods,

omitting the detailed mathematical formulations that can be found in (Gallier 2011).

5.1.1. Affine transformations

The planarity deflection of a single quad can be measured as the proportion between the distance
between two diagonals and the sum of their lengths, see formula (5.1) and Fig. 5.1.

d (5.1)

P=—
Dy + D,

Fig. 5.1 Diagonals D1, D2 and the distance between them —d.

If a quad is exactly planar, then d is equal to 0, so is the P.

Figure 5.2 shows three cases of quads — one is planar and two are non-planar. In planar quadrilateral
two conditions must be met: diagonals must intersect at a single point and diagonals must be a straight
line segments. Therefore a transformation preserving planarity must transform lines into lines
(preserves linearity) and be a one-to-one correspondence function (a bijection). Preserving linearity
excludes situations like in Fig. 5.2, centre.
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Bijection is a function transforming elements from one set into another one, where each element
of one set is paired with exactly one element of the other set, and each element of the other set
is paired with exactly one element of the first set. i.e. a single point is transformed into exactly one
point (it cannot be transformed into a line like in Fig. 5.2, right) and two points cannot be transformed
into one point.

Fig. 5.2 Left: planar quad, diagonals are straight and intersect at single point. Centre: distorted, non-planar quad, diagonals
intersect in one point, but were deformed into curves. Right: non-planar quad diagonals do not intersect at one point.
The shortest distance between them is marked by two points and a line section.

Both requirements are features of all the affine transformations, see (Weisstein 2018a)
and (Sung, Shirley, and Baer 2008), p. 209. That is the transformations transform line segments into
line segments and they are bijections. Therefore, all affine transformations and their combinations
preserve planarity of facets.

Additional properties of the affine transformations are: preserving parallelism and preserving
proportions. Images of affine transformation of two parallel lines are always parallel and have the same
proportion of their lengths as their original forms. The proportion is preserved between any pair
of chosen segments.

Among the affine transformations in 3D space, the following are distinguished:

e Translation (Weisstein 2018q), (Sung, Shirley, and Baer 2008), pp. 194-198
e Rotation (Weisstein 2018m), (Sung, Shirley, and Baer 2008), pp. 204-208
e Reflection (Weisstein 2018I)
e Scaling (Sung, Shirley, and Baer 2008), pp. 198-204:
o Isotropic
o Anisotropic
e Shear (Weisstein 2018n)

5.1.1.1. Translation

Translation is the most obvious method of transforming a PQ grid in such a manner, that the planarity
of the facets is preserved.

Figure 5.3 shows an object an its translated image, the following convention is used:

e v -the vector of translation
e T,-the translation

e T,1 - the inverse operation when the transformed object needs to be displaced back
to its original position
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Fig. 5.3 Translation of a PQ mesh along the vector. All vertices are translated along the same vector.

5.1.1.2. Rotation

The rotation is a transformation that preserves the similarity of figures and preserves planarity
of facets. It is characterized by an axis of revolution (rotation) and an angle.

Figure 5.4 shows an object an its rotated image, the following convention is used:

* a-the axis of rotation
* O -the angle of rotation
* R, e-the rotation

R, o1 the inverse operation

Fig. 5.4 Rotation of a PQ mesh around the axis of rotation.
5.1.1.3. Reflection
The reflection is a transformation, in which objects are reflected on the other side of a reflection axis
(in two dimensional space) or plane (in three dimensional space). Each pair of original and image points

is equally distanced to the axis or plane of the transformation. Reflections will be denoted as M,, where
p will denote the plane of reflection, see Fig. 5.5.
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Fig. 5.5 Reflection of a PQ through the plane p.

5.1.1.4. Isotropic scaling

Isotropic scaling is a transformation characterized by a centre point and a factor. All points of the object
are moved along individual axes passing through the centre point. The proportion of the distances
between centre - original point and centre — image point is equal to the factor of scaling.
This transformation will be denoted as S¢ 5, where C is the centre point of the transformation
and f is the factor, see Fig. 5.6. Isotropic means that the transformation is ‘the same’ regardless
of the direction in space, contrary to the next described transformation, i.e. anisotropic scaling.

Fig. 5.6 Isotropic scale of a PQ mesh.
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5.1.1.5. Anisotropic scaling

Anisotropic scaling is characterized by a factor and a plane. A plane can be deconstruct
into a point (like in previous isotropic scaling) and a direction, i.e. a point and direction define a plane.
Objects are stretched or shrank along the direction. The further from the transformation plane
the transformed objects are, the more they are translated outward or inward (depending on factor).
When a transformed point is on the transformation plane, it is incident with its image
of transformation. Therefore a slice of a PQ mesh intersection with a plane of scaling remains
unchanged. The factor of scale denotes the proportion between point-to-plane and image-to-plane.
This transformation will be denoted as Cp 5 further in the text, where P denotes the plane
and fis the factor, see Fig. 5.7.

Fig. 5.7 Anisotropic scale of a PQ mesh.

Scaling transformation, both isotropic and anisotropic is described in (Schober 2015b), pp. 137-139.

5.1.1.6. Shear

Shear is a transformation which translates each point of an object along a specified direction d
by a factor that is proportional to a distance of that point to a specified plane P. The direction d
of the translation is always parallel to the plane P. Given 3 parameters the shear transformation
is denoted as Hp, 4, Where P is the plane, f is the factor and d is the direction, see Fig. 5.8.
All points contained on the plane P are preserved.
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Fig. 5.8 Shear transformation of a PQ mesh

Shear transformation is described in details in (Schober 2015b), pp. 113-121.

5.1.2. Stereographic projection

The illustration form the Opticorum Libri Sex philosophis juxta ac mathematicis utiles (Aguilén 1613),
Fig. 5.9, drawn by Rubens figuratively presents the principles of stereographic projections, which were
already known by Hippoarchos (c. 190 — c. 120 BC) (Howarth 1996). The book, among other terms
widely accepted in the optic’s nomenclature, introduced the term stereographic projections, although
these projections were known before. Stereographic projection is a projection of points on a sphere
onto a plane, which is tangent to that sphere at its ‘south’ pole. Each point from a sphere is projected
along a line that passes through the ‘north’ pole. The terms ‘south’ and ‘north’ are used to emphasize,
that these points are on the opposite sides of the sphere.

Fig. 5.9 Peter Paul Rubens, an illustration for Six Books of Optics, by Frangois d'Aguilon. Source: (Aguilon 1613).
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Stereographic projections are mapping functions, in which surface of the sphere is projected onto
a plane. These projections were historically known by the cartographers, as on maps portions
of the Earth’s surface are represented on planar map sheets. Construction of such function is based
on two, basic assumptions:

e The plane and the sphere are tangential, i.e. share one and only one common point;
* Projected points lie on the plane and the axis passing through original point on the sphere
and the point at the top of the sphere.

Although stereographic projections are neither isometric nor area preserving (distances and areas
are distorted), they have one particularly useful property which is preserving the circles unchanged,
see Fig. 5.10. Such property means, that if a closed curve is circular on the sphere, it will remain circular
after projection, although points on that circle are shifted along the curve. It is also important
to accent, that a circle on a surface of a sphere constitutes a plane. It is the only shape possible
to obtain from the intersection between a plane and sphere apart from a point, when the plane
is tangent to a sphere.

Fig. 5.10 Stereographic projection of a circle onto a plane results with a circle. A circle on a sphere is planar. Apart from
a point (singularity) it is only possible shape that can be obtained by an intersection between sphere and plane.

An intersection between a sphere and a plane, if exist, is either a point or a circle. Consequently,
as acircle is a planar construct, circle lying on a surface of a sphere can always be a result of intersection
of sphere and plane. By mapping a circle with a stereographic projection from a surface of a sphere
onto a plane, geometries from the intersection surface are simultaneously mapped onto a projection
surface. The following Fig. 5.11 show the procedure of mapping from a plane intersecting with
the sphere onto a stereographic projection plane. Except for the circle the image of Poland’s boarder
is visibly distorted.
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Fig. 5.11 Boundaries of Poland stereographically projected on a plane.
Distortion are visible, however the circular shape was preserved.

Another important feature of the stereographic projections is that these are bijective functions,
i.e. all mapping are unambiguously reversible. That means that the shape on a plane can be projected
back onto the surface of the sphere to create the exact image as the original one from the first,
stereographic projection. For the purposes of the transformation of PQ meshes, only the points lying
on a common circle, that constitute a quad are concerned. Since circles are preserved, so are their
planarity and the co-planarity of points lying on those circles. Therefore, stereographic projections
of circular PQ meshes in flat configurations preserve planarity, see Fig. 5.12.

Fig. 5.12 Cyclic quad projected onto a surface of a sphere preserves planarity.
Vertices of the quad lie on the surface of a sphere, whereas in order to maintain the straight edges of projected quad,
the edges were reconected after the projection.
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Any planar, circular PQ mesh can be raised up onto a surface of a sphere with facets planarity preserved
(see Fig. 5.13), not only isoradial ones like in the example above. Only one method of obtaining circular
PQ meshes was presented in this work in section 4.1.7%”. Those are isoradial meshes, whereas the radii
of circumcircles do not have to be the same. A circular PQ mesh can be obtained from isoradial mesh
by adoption of the method described in the following section. However, the applications of that
transformation are much wider.

Fig. 5.13 Left: stereographic projection of isoradial mesh in flat confuguration obtained from Chebyshev net.
Right: the resultant PQ mesh with shading.

Stereographic projection method have not been used for design and construction of PQ grid shell yet.

5.1.3. Inversions

Inversions (Weisstein 2018g), (Lachlan 1893) are conformal, i.e. angle preserving (Weisstein 2018d),
geometric transformations, which are defined by a circle of inversion on a plane or a sphere
of inversion in space (Weisstein 2018h). Points that are situated inside the circle of inversion
are reflected outside and vice versa — from outside to inside of the circle. One particular point inside
the circle, its centre point, is reflected into infinity and vice versa — points at infinity are mapped onto
the centre of inversion circle. When a point in the centre of a circle of inversion is inverted,
the direction is not specified — it is all around at infinity. Whereas image points (except of the point
at infinity, and points placed at the circle of inversion) lie at the straight axes passing through
the original points and the centre point of the inversion circle. Points that lie on the circle of inversion
remain at the same place.

Each inversed point is reflected along the direction perpendicular to the circle of inversion,
i.e. along the direction defined by the centre point of inversion and the inversed point. The distances
between original point X, its image of inversion X’ and the centre point of inversion circle O must meet
the equation (5.2).

l0oX||0X'| = r? (5.2)

Where r is the radius of the circle of inversion. In other words — the distance from the centre point
of inversion to the original point times the distance from the centre point of inversion to the image
point is equal to the radius of inversion circle squared. From this equation the distance of the image
from the centre point is derived. The exact position of the image point is defined by that distance
and the line along which the centre and original points lie.

57Among others, a lot of methods for obtaining non-isoradial, planar, circular meshes belong to the wide scope
of circle covering theorem, see (Rocha et al. 2013).
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Figure 5.14 presents inversion of two points with defined distances.

Fig. 5.14 Inversion of points X, Y and Z by a circle with the centre point O and radius r = 15.

The product of absolute distances from the centre of inversion to original and image points are equal
the radius of the inversion circle squared, see equation (5.2). Knowing, that points: O, X and X’
lie at a common line, all parameters are given to clearly specify the location of the image point.
While if the point Y lies on the inversion circle, the equality (5.3) takes place.

joY| =71 (5.3)

Therefore, additional equality (5.4) must also be satisfied in order to satisfy equation (5.2).

|oY'| = |oY]| (5.4)

It proves the statement, that if a point lies at the circle of inversion, it is coincident with its own image.
Whereas, when the original point lies at the centre point of the inversion circle, then the equality (5.5)
takes place.

|00| =0 (5.5)

Therefore, the image point must be placed at infinity, see equation (5.9).

|00'| = (5.6)

The above reasoning is intuitive. However, the assumption that inversion of a point placed
at the centre of inversion circle is a point at infinity gives very reasonable solutions in terms
of geometry. The argumentation and intuitive explanation is given on the example of an inversion
of a straight, infinite line, which is tangent to the inversion circle, see Fig. 5.15. Thirteen points were
assigned on along the line a. An inversion of each of these points was calculated and placed inside
the inversion circle. As it happens, image points lie on a common circle, which is tangent
to the inversion circle at the same point as the line a. The extension of arc created by image points also
passes through the centre point of inversion circle O. It is also noticed, that points more distant from
the tangent point on the line a, have images closer to the point O, which are also closer and closer
to each other. By continuing adding points on the inverted circle a’ closer to the point O the axes
passing through O and image points would become almost parallel to the line a. Eventually,
at the infinitesimal distance to the point O, the axis would be parallel to line a and by definition,
two parallel lines intersect at infinity.
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Fig. 5.15 Inversion of circle a’, tangent to circle of inversion c and passing through its centre point O is line a, which is also
tangent to the circle of inversion at the same point and spans into infinity.

Figure 5.16 shows a simple case, when the object of inversion is a circle b, which is concentric with
the circle of inversion c. Since all points on that original circle are equally distant from the centre point
of inversion, all the image points will also be equally distant from the centre point O. Hence, the image
will be a circle ¢’ with the same centre point as the original one.

b

Fig. 5.16 Circle b is inverted by circle c. All circles are concentric.

Circle bin Fig. 5.17, which is randomly placed inside the inversion circle ¢, was divided into eight points.
The inversions of those points were calculated, resulting in image points that lie on a common circle,
i.e. b’. The b’ circle is an image of inversion of b. However, the inversion of the centre point B of original
circle bis not the centre point B’ of image circle b’. Consequence of that is the fact, that although circles
are preserved, their internal structures are not, i.e. the position of the centre point image is not
in the centre of circle image and distance ratios between original and image points are not preserved.
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Fig. 5.17 Inversion of circle b, randomly placed inside the inversion circle.

Concluding, if the subject of inversion is a circle, the image is also a circle (Lachlan 1893), p. 221,
except for the case, when the original circle intersects with the centre of inversion circle®.
In such a case the image figure is a line which has points at infinity®®, see (Lachlan 1893), p. 235.
Any other shapes are distorted as shown in Fig. 5.18.

Fig. 5.18 Distortions in images of inverted non circular shapes.

For the purpose of planarity preserving inversions, only circular PQ meshes’™ are useful. Inversion
of a straight line segment between two vertices of a quad generates an arch, therefore discrete
transformation is performed, i.e. such that inverses only the vertices and connects their images with
a straight line segment. The resultant quads are also cyclic.

%8 |t not necessarily have to be tangent with the inversion circle as in Fig. 5.15.

59 Such line by some interpretations is also considered as a circle, which has an infinite radius.

70 Circular PQ meshes are PQ meshes in which all facets are cyclic quadrilaterals, i.e. all four vertices of each
single facet lie on a common circle.
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In Fig. 5.19 an isoradial’* PQ mesh in planar configuration, obtained from Chebyshev net”? (left)
is inversed (right). Inversed mesh remains circular but individual line segments are deformed,
i.e. straight edges have been inversed into arches. Those sections of arches can be replaced by straight
line segments by connecting end points of the arches, which lie on the circles, see Fig. 5.20. The result
of that replacement is a proper circular PQ mesh.
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Fig. 5.19 Left: isoradial PQ mesh in flat configuration obtained from Chebyshev net. Right: inversion of that mesh.
An image is also isoradial, with circles of various radii.

Fig. 5.20 Replacement of arched (red) edges into straight line segments (black).

By using inversions, an isoradial mesh in planar configuration” can be deformed into a planar, circular
mesh with circles of various radii. Inversed, planar circular PQ meshes can be successfully projected
stereographically according to the method described in section 5.1.2. Combination of both of these
transformations increase the freedom of design of PQ meshes.

! |soradial — all circles have equal radii.
72 See section 4.1.7
73 For example obtained by the method described in section 4.1.7.
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Circular PQ meshes in planar configuration are also easily obtained in a manual manner. In such a case,
the designer draws consequent circles, specifying their radii. Such approach would however require
to specify many parameters manually, whereas combination of inversions and stereographic
projections limits the necessary parameters, i.e. the initial parameters of isoradial mesh described
in section 4.1.7, the parameters of inversion and the parameters of stereographic projection.

Combination of the two transformations: inversion and stereographic projection, and their potential
for shaping meshes of reticulated shells is shown in the following figures. A simple, orthographic,
planar, isoradial mesh in Fig. 5.21, left, is transformed by means of inversion, Fig. 5.21, right.
Then, both original and inversed meshes are transformed by stereographic projection, Fig. 5.22.
Comparison of both meshes after the last transformation is shown in Fig. 5.23.
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Fig. 5.22 Left: stereographic projection of simple, orthographic PQ mesh. Right: stereographic projection of that planar mesh
after inversion.
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Fig. 5.23 Top view at stereographically projected meshes: the original one (left) and previously inversed (right). Previously
inversed mesh (right) has more homogeneous radii of circles.

Inverse geometry on a plane allow to differentiate the radii of PQ circular meshes in planar
configuration. However, the method can be expanded into third dimension. Then, inversion is made
through the surface of a sphere, which is defined by a centre point and a radius — therefore the same
parameters as in planar inversions. In this case, all points are reflected on the other side of the surface
of a sphere. Similarly as in planar inversions, the points coincident with the centre of the inversion
sphere are inversed into infinity, whereas point that lie on the surface of the sphere remain in place.
Spherical inversion also preserves circles, if they do not intersect with the centre point.
Moreover, spheres are also preserved under the same condition. Spheres intersecting with the centre
of the sphere inversion are inverted into planes. A circular PQ mesh in planar configuration
can be inversed by a sphere, resulting in discrete spherical PQ mesh — similarly to the meshes obtained
through stereographic projections. Those transformation in the context of PQ meshes are studied
and described in (Mesnil, Douthe, Baverel, and Léger 2015).

Two dimensional, circular inversions also have three dimensional equivalent in which an object
is inversed by an inversion sphere. In spherical inversions all the rules from circular inversion
are preserved, i.e.:

e centre point of the inversion sphere, original and image point are always colinear;

e equation (5.2) is still valid, i.e. quotients of distances between pairs of original and image
points to the centre point of the inversion sphere is equal to the radius of the inversion
sphere squared.

Spherical inversions also preserve circles and therefore preserve planarity of circular PQ meshes
as well. These circular PQ meshes not necessarily have to be planar. Any spatial, single or doubly curved
circular PQ meshes can be inversed by a sphere while preserving planarity of its facets. Figures
5.24 to 5.27 show a circular PQ mesh obtained according to the sweep method”. On the left side
of each figure an original mesh is shown, whereas on the right side the mesh after inversion is shown.
Additional transformations of reflection and scaling were performed on the inversed mesh in order
to unify its size with the original mesh, so that both can be compared visually.

74 Method described in section 4.1.5.
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Fig. 5.24 Inversion of a circular PQ mesh obtained with the use of sweep method discussed in section 4.1.5.
Original mesh located on the left side, within the inversion sphere.

Fig. 5.25 Comparison of circular, sweep PQ mesh from Fig. 5.24 - before (left) and after inversion (right). Axonometric view.
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Fig. 5.27 Comparison of circular, sweep PQ mesh from Fig. 5.24 - before (left) and after inversion (right). Front view.

Inversions as a method for transforming circular PQ meshes are described in details in context
of designing PQ meshes in (Mesnil et al. 2017). However, the described method have not been used
for design and construction of PQ grid shell yet.
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5.2. New methods of transformation proposed by the author

In this section new methods of transformation of PQ meshes preserving their planarity, developed
by the author of this work, are presented and explained. All this methods significantly increase
possibilities of transforming and adjusting PQ meshes.

5.2.1. Spherical-cylindrical (SC) mapping

Spherical-cylindrical mapping is a function developed by the author of this work. It belongs
to the groups of projection maps and outputs exactly one value for each element in the input set
(Weisstein 2018i). In this case, an input and an output sets contain points in 3D space that form
the mesh. Projection maps are well known from cartography. Their purpose is to assign individual point
on a plane to a point on a sphere, i.e. the globe. There are many types of projection maps.
Each one has its specific advantages and disadvantages. There are types of map projections
that preserve angles (conformal maps), distances (equidistant) or areas. Mapping is always associated
with distortions and it is impossible to map a sphere onto a plane without distortions,
i.e. preserving all three properties (angles, distance and areas) with one particular mapping.

Whereas projection maps in cartography concern transformations between surfaces (two dimensional
domains), mapping of a doubly curved PQ mesh requires a function that will map every point
in the three dimensional domain into another one, also three dimensional. Such 3D mapping
transformation assigns exactly one point in the three dimensional image space to each point from
the original three dimensional space. The assignment has to be done is such a manner, that point lying
on a common plane will remain co-planar after the mapping. Hence the SC mapping transformation
can also be called iso-planar.

5.2.1.1. Systems of coordinates

As mentioned above the essence of spherical-cylindrical mapping is transformation of points from
Cartesian system of coordinates to spherical-cylindrical system of coordinates. These systems
of coordinates and relations between them are discussed below.

Cartesian system of coordinates

Location of points in three dimensional space can be specified by means of three coordinates
of the Cartesian system of coordinates, i.e. x, y and z), see Fig. 5.28.

Fig. 5.28 Location of the point P relative to the point O in Cartesian coordinate system.
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Cylindrical system of coordinates

In a cylindrical system of coordinates (see Fig. 5.29) the position of a point, measured relative
to the beginning of the coordinate system in point O, is defined by three coordinates - p, ¢, z.
Coordinate p describes the distance of P from the central, vertical axis passing through the point O.
Coordinate ¢ is the angle between the red axis and the vertical plane containing point O, on which lies
the point P. The last coordinate — z, is the distance of the point P from the horizontal plane containing
O. The real distances increase proportionally to the increment of coordinate values,
i.e. when coordinate p is doubled, the distance of P to the central axis is also doubled.

Fig. 5.29 Location of the point P relative to the beginning of the coordinate system in cylindrical coordinate system.
Spherical system of coordinates

In the spherical coordinate system (see Fig. 5.30) the position of point P measured relative
to the beginning of the coordinate system in point O, is defined by three coordinates - p, ¢ and 0.
Coordinate p describes the distance of P from the central point O. Coordinate ¢ is the angle between
the red axis and the vertical plane containing point O, on which lies the point P. The last coordinate ¢
is the angle between the horizontal plane containing point O and the axis passing through points
O and P. Again, as in cylindrical coordinate system, the real distances increase proportionally
to the increment of coordinate values.

Fig. 5.30 Location of the point P relative to the beginning of the coordinate system O in spherical coordinate system.
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Spherical-cylindrical (SC) system of coordinates

In the spherical-cylindrical system of coordinates (see Fig. 5.31) coordinate ¢ is similar to the both:
cylindrical and spherical coordinate systems, i.e. it is an angle of rotation around the point O.
Coordinate z is similar to that in the cylindrical coordinate system — it is the distance above
the horizontal plane containing point O. Coordinate A resembles coordinate p from both previously
described coordinate systems, which measure the distance from the centre point O. However, contrary
to the coordinate p, the measure of coordinate A is heterogenic, i.e. the real distances increase
disproportionately to the increment of coordinate value. It can be seen comparing distances between
successive green circles in Fig. 5.31 — the further from the centre point, the closer to each other
are the circles.

Fig. 5.31 Location of the point P relative to the beginning of the coordinate system O in spherical-cylindrical coordinate
system. The coordinate system has additional property — R, which stands for the radius of the edge of the coordinate system.

The real distances between consequent green circles are derived from the spherical coordinate system,
see Fig. 5.32. However, it is required to determine one particular parameter R, which is the radius
of the sphere in the spherical coordinate system. To measure the distance between point P
to the beginning of the coordinate system O, point P is firstly vertically projected on a sphere with
radius R, resulting with the P’ image point. Then an angle is measured between the horizontal axis
containing point O and the axis passing through points O and P’. In the particular case shown
in Fig. 5.32 the angle is equal 30° and the same is the value of the coordinate A. The domain
of coordinate A is limited to the range [0°, 90°]. At the edge of the coordinate system, coordinate A
is equal 90° and cannot exceed that value.

00 100 200

Fig. 5.32 Hemisphere of spherical coordinate system projected onto a plane containing O.
The values of angle o determine the value of coordinate .
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5.2.1.2. Transformation of coordinates between SC and Cartesian systems

Spherical—cylindrical mapping transforms objects by mapping between Cartesian and SC coordinate
systems (see Fig. 5.33). Position of original point is defined by three Cartesian coordinates: x, y and z,
whereas in the SC system of coordinates, the position of a point is defined by the coordinates
A, @ and z. SC mapping is a linear function, which outputs the values of SC coordinates from the values
of Cartesian coordinates. New points created by SC mapping require conversion back to the Cartesian
coordinate system, i.e. new coordinates x’, y’ and z’ are calculated for each SC mapped point.
Both steps: mapping and conversion are represented in (5.7), where first symbol - denotes mapping
and the second one denotes conversion.

Fig. 5.33 SC mapping is a transformation between orthogonal and spherical-cylindrical spaces.
xy2z)- (4ez)- (x,y,2) (5.7)

Mapping of the first coordinate: x - A requires setting some additional constraints. It is crucial
to emphasize the fact, that the values of A are within the range of angles: [0°, 90°] (see Fig. 5.32),
where A is directly related to a), whereas a point in orthogonal space can be placed in unbounded
domain of x values (-oo, +o0). Therefore, in order to assign proper mapping, the bounds of x domain
have to be set. Precisely, if the domain of x is within closed interval [X1, Xz], then any value of x between
X: and Xz can be linearly mapped to a value of A within closed interval [0°, 90°], see formula (5.8).
Values of X; and X; are derived from the shape of the original object, see Fig. 5.34 top.

[X1,X2] - [0°,90°] (5.8)
If the boundaries given by right side of equation (5.8) are exceeded, the mapped object would wrap
and turn back to the origin of the coordinate system after mapping — see Fig. 5.32 and Fig. 5.34.
However, it is not necessary to use the whole domain of A given by (5.8). By changing the domain

of A values different final forms of transformed object can be obtained. Narrowed domain
of A coordinate is expressed by interval (5.9).

1 € [Ay, 23] (5.9)

Where A; is the distance from the origin point, and A; is the distance from the external boundary
of SC space. Eventually, mapping of coordinate x has a form of expressed by (5.10) and is calculated
by the formula (5.11).

[X1,X2] = [A1,45] (5.10)
A=aX+bh (5.11)
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Parameters a and b are computed by solving the system of two equations with values
of X1, X2, Azand A,. Then, the cylindrical distance of any point represented by coordinate A to the vertical
axis passing through central point O is calculated from the formula (5.12), where R is the real radius
of SC space which can be defined arbitrarily.

p=RsinA (5.12)

Additionally, mapping of y coordinate: y = ¢ also requires determination of narrowed domain of ¢.
Absolute boundaries of the domain of ¢ are within the closed interval [0° 360°]. Thus, narrowed
domain of ¢ is expressed by formula (5.13), where ¢; is the value of angle between lower boundary
and main axis of the coordinate system (¢ = 0°) and ¢ is the value of angle between upper boundary
and main axis of the coordinate system (¢ = 0°), see Fig. 5.34 bottom.

@ € [@1,92] (5.13)

Values Y; and Y, are analogically to the x coordinates derived from original object, see Fig. 5.34 top.

The boundaries of coordinate y are set as before in the form of closed interval: [Yi1, Ya].
Coordinate y of each transformed point is mapped to a value from range [¢1, 1], see mapping (5.15).
The formulation of this mapping is given by formula (5.15).

[Y1,Y2] = (@1, 9] (5.14)
=cY+d (5.15)
Finally, the z coordinate remains unchanged as an isotropic distance above horizontal plane containing
point O.

Cylindrical coordinates (p, ¢, z) are calculated with the formula (5.12) or taken directly from
SC coordinates (A, ¢, z). Finally, cylindrical coordinates of mapped points are converted into
Cartesian system of coordinate (x’, y’, z’). Conversion between systems is calculated according
to the formulations (5.16), (5.17) and (5.18).

X=pCcos¢Q (5.16)
y=psing (5.17)
zZ=12z (5.18)

Example of two dimensional SC mapping

Example shown in Fig. 5.34 shows mapping of the shape of Poland’s boundaries between two-
dimensional Cartesian space and two-dimensional SC space. The third coordinate stays unchanged,
therefore it is omitted in this example. The bounds on the SC space along the A direction are chosen
arbitrarily as:

d /\1 = 200,
d /\2 = 700,

and bounds around the coordinate ¢ are:

° Q1= -300,
o ©2= 300.
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The domains of x and y coordinates are set by the external parts of the original shape
and are represented by closed intervals [X;, X2] and [Y3, Y2].

!
\\: 7@ @, =-30°=330°

"~ 320°

Fig. 5.34 SC mapping of a planar shape.

5.2.1.3. Extension of the methodology to 3D PQ meshes

Previous paragraph of this section described the details of SC mapping on plane. The following part
of this section will explain how, why and when such mapping may be applied to a three dimensional
PQ mesh in such a way that it preserves planarity of its facets.

The SC mapping transformation preserve facets planarity in two particular cases. The first case
is a SC mapping of a translational PQ mesh with straight directrix, see Fig. 5.35, left. The image
of mapping is a rotational mesh with slightly deformed generatrix, see Fig. 5.35, right. Planarity
is preserved since individual pairs of opposing edges remain parallel after the transformation.
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Fig. 5.35 Planarity preserving case of SC mapping: a simple, translational mesh.

The SC mapping maintains planarity of facets of PQ meshes if parallelism of opposite edges of each
facet is maintained. There are two conditions that have to be fulfilled together in order to preserve
this parallelism:

1. Within one of the two families” of edges in the mesh for each facet two opposite edges
has to be of equal length.
2. Alternatively:
2.1. If the edges from the concerned family are horizontal, they must be:
2.1.1.Parallel to the y axis, or
2.1.2.Diagonal to x and y axes (the angle between the edge and the axes is equal 45° or -45°).
2.2. If the edges from the concerned family are not horizontal, their projection on the horizontal
plane (normal to z axis) must be diagonal to x and y axes (the angle between the edge
and the axes is equal 45° or -45°).

In continuous form of cylindrical-spherical space, for chosen value of ¢ all tangents to the green circles
are parallel, see Fig. 5.36. Therefore, if edges of a PQ mesh are parallel to each other and to the y-axis,
then they remain (discretely) parallel after the SC mapping. In other words, the green, parallel lines
in Fig. 5.35 and every line segment which is parallel to them is transformed into green circles
and circular segments concentric with them in plain projection, see Fig. 5.35 right. Knowing, that some
edges remain parallel in the plan view, it is only required to keep their heights above the horizontal
plane, i.e. coordinate z. In cylindrical-spherical space, the parallelism is considered discreetly.
Tangent directions of the green circles in Fig. 5.36 along particular A direction are parallel to each other.

75 A family of edges is composed of edges lying on the same type of profile chains of segments or profile curves.
For example one family of edges is composed of those edges that lie along directrix profiles, whereas second
family is composed of those edges that lie along generatrix profiles. Within individual facets two edges
of the same family are not adjacent and are situated on opposite sides the facet. Edges from two families
are in alternate array around each vertex in mesh.
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Fig. 5.36 The red, A axis intersects with green ¢ circles.
All dashed, that are tangents to the green ¢ circles at the points of intersection with the red A axis are mutually parallel.

Second case when SC mapping preserves planarity of facets is when conditions described before:
(1 and 2.1.2) or (1 and 2.2) are met. In Fig. 5.37, top, line D is diagonal with respect to the orthogonal
coordinate system, sois the set of lines d. Line D intersects with lines d perpendicularly. Lines T indicate
the tangent direction of consequent d lines at the points of intersection with D. This system
is SC mapped, see Fig. 5.37. In the result of that mapping, the D line becomes circle D’ and lines d;
become circles d/. All the circles D’ and d’; pass through the centre point of the SC space
and are tangent to the external boundary of that space. Consequent tangent directions T/
in the mapped system, which are the tangents of d at the points of intersections with D’,
are also mutually parallel. Consequently, these intersection directions remain discretely perpendicular
after mapping.
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Fig. 5.37 Top: a set of diagonal lined d and one line D, which is diagonal in opposite direction.
Bottom: images of D and d becomes circles, which pass through the centre point of the SC space, and which are tangent
with its external boundary.

An example of application of previously presented method is SC mapping of a translational PQ mesh
diagonally aligned with the orthogonal coordinate system, see Fig. 5.38. All edges of that mesh which
are parallel to each other and diagonal to the system of coordinates preserve parallelism after mapping
and therefore also the planarity of faces they define.
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Fig. 5.38 Planarity preserving SC mapping of a translational PQ mesh with straight directrix.
The PQ mesh is aligned diagonally to the orthogonal system directions.

When parallel to the y axis of the Cartesian coordination system, the edges change their lengths after
mapping. It can be noted in Fig. 5.35 to 5.40 that the lengths of green segments vary. The z coordinate
of vertices (edges’ endpoints) is preserved, thus initially parallel edges of the same length
are not parallel after mapping, unless the z coordinate is the same for vertices at both sides of each
edge, i.e. edges remain horizontal. However, the parallelism is preserved also for non-horizontal pairs
of edges, when they are aligned diagonally (condition 2.2 on page 122), see examples
in Fig. 5.40 and 5.40. It is determined by the fact, that all diagonal of SC coordinate system are of equal
length, see Fig. 5.41.

Fig. 5.39 Planarity preserving SC mapping of a translational PQ mesh with spatial directrix.
The PQ mesh is aligned diagonally to the orthogonal system directions. Axonometric view.
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Fig. 5.40 Planarity preserving SC mapping of a translational PQ mesh with spatial directrix.
The PQ mesh is aligned diagonally to the orthogonal system directions. Top view.

Fig. 5.41 Lengths of green segments vary along the coordinate A, so do lengths of red segments around coordinate .
Whereas purple, dotted diagonals have constant lengths all over the SC space.

5.2.1.4. SC mapped quasi-PQ meshes

In section 5.2.1.3 conditions for proper SC mapping of PQ meshes are given. This conditions are source
of limitations in the use of presented method. However, if constraints are released within some
reasonable limits, SC mapping results in meshes with non-planar facets which distortion of planarity
is also within reasonable range. These meshes will be called quasi-planar quadrilateral (quasi-PQ)
meshes. Despite the fact that their facets are not planar, these meshes are still useful for design
purposes. This is due to the fact that they can be further optimized by means of an algorithm and finally
become a proper PQ meshes. This procedure will be called planarization and is discussed further
in this section. Usage of the quasi-PQ meshes is justified because it extends the catalogue of available
PQ forms.

Measure of the planarity distortion

The planarity measure P is a proportion between the distance between facet’s diagonals and half
of their summed length given in percent, see formula (5.19) and Fig. 5.42. It represents credible
planarity, regardless of the shape of the facet and its size. Green colour means exact planarity, colours
between yellow and red represent distortions values between 0,0% - 2,0% and above.
In further examples facets are colorized according to the planarity measure.
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Fig. 5.42 Distance - d - between two diagonals - D; and D,.

(5.19)

Table 5.1 shows examples of PQ meshes in their orthogonal form and SC mapped in aligned
and diagonal versions. All images of diagonal mapped PQ meshes show negligible distortions
in planarity of facets. The same meshes occur slightly higher distortions, when aligned
for the SC mapping. In both cases, quasi-PQ meshes are eligible for optimization.

Table 5.1. Results of SC mapping of different types of original PQ meshes.

Type of initial PQ
mesh

Shape of initial PQ
mesh

Image of aligned SC
mapping

Image of diagonal
SC mapping

Translational mesh,
with straight
directrix

Translational mesh
with horizontal,
planar directrix

Translational mesh
with vertical,
planar directrix

Translational mesh
with non — planar
directrix

Scalar —
translational mesh

Sweep mesh

Distortion
of
planarity

2,0%

1,5%

1,0 %

0,5%

0,0 %
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Super-elliptical-cylindrical mapping

As it was shown previously in this work (section 4.2.2 Super-ellipsoids) the concept of sphere
can be extended into super-ellipses. An example of that proposition is shown in Fig. 5.43.
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Fig. 5.43 Proposition of the extension of SC mapping: Super-elliptical-cylindrical mapping.
The resultant meshes are quasi-planar, however capable of planarity optimization.
The mesh (scalar with planar base) in the middle is in orthogonal configuration.

The SEC mapping (Super-elliptical-cylindrical) is a specific subgroup of quasi-PQ mappings extending
further the catalogue of available PQ forms. More deep exploration of possibilities offered by
SEC mapping are out of scope of this work.

Planarization of SC mapped quasi-PQ meshes

In this work quasi-PQ meshes are planarized by the Kangaroo Live Physics engine
in Grasshopper/Rhino. In such optimization process each vertex has a goal to land on a plane defined
three other vertices, with whom it creates a common facet. The goal is defined by a vector indicating
the desired position of the vertex. As each vertex of a quadrilateral mesh (not including those on edges)
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is adjacent to four facets, the goal is an average of four vectors. For each vertex the goal vector
is computed and scaled down by a certain factor. The optimization is an iterative process. When each
vertex is translated along reduced goal vector, the calculation of new goals is repeated. The iteration
steps are repeated until, the system converges, and all facets are planar.

Figure 5.44 shows some iteration steps of planarization. The initial mesh was highly distorted,
i.e. most facets revealed over 2% of distortion. The result of the planarization is a PQ mesh with
all facets exactly planar. Moreover, the global shape of the mesh was preserved with slight shifts
of the vertices, whereas positions of all vertices on the edge of the mesh were preserved.

Fig. 5.44 Steps of the optimization of quasi-PQ mesh. The initial mesh (translational with planar base) was diagonally SC
mapped. The resultant mesh is exactly planar and preserved the global form.

In the above example all supporting points (vertices) of the mesh are fixed. It is not a necessary
condition. In the example below this condition was released for two of the four edges (arched edges
in Fig. 5.45 to 5.48).
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Fig. 5.45 Quasi-PQ, diagonally SC mapped scalar-translational mesh and the result of its planarization.

Fig. 5.46 Quasi-PQ, aligned SC mapped sweep mesh and the result of its planarization.

Fig. 5.47 Quasi-PQ, aligned SC mapped scalar-translational mesh and the result of its planarization.

Fig. 5.48 Quasi-PQ, diagonally SC mapped sweep mesh and the result of its planarization.
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Depending on a design constraints any combination of fixed points can be selected for the optimization
process. However, the more points are fixed, the greater displacements occur in other points
(vertices).

As shown in the Fig. 5.49 the attempt to planarize an arbitrarily shaped quadrilateral mesh results with
highly distorted shape. That fact emphasizes usability of SC maps, even when it results in quasi-PQ
meshes. That particular planarization attempt shows the complexity of the quadrilateral panelization
of arbitrarily shaped forms as it is in the top-down approach and the strong relationship between
the form and the tessellation — proving one of the claims of this research.

Fig. 5.49 Attempt of planarization of non-planar, quadrilateral mesh, resembling the glass roof over the Kogod Courtyard,
see Fig. 3.3. The result is PQ mesh, which has highly distorted form.
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5.2.2. Perspective transformation

The following method of perspective transformation facilitates rules of perspective in the sense
of mathematics, computer graphics and modern digital tools, which allow displaying three dimensional
objects on a computer screens. Although this transformation has been known for a long time,
it has not been used for shaping PQ meshes yet. Perspective transformations used by Paolo Uccello
and Piero della Francesca (see section 2.3.1) were based on discretization of continuous objects
(surfaces) into sets of points comprehensively defined by three Cartesian coordinates — x, y and z.
The way in which three-dimensional objects are displayed in perspective on computer screens today
are based on the same principles. Every single point, which builds a mesh of three-dimensional object
is transformed according to certain linear algebra formulations in order to create a perspective image.

A projection of an object from three-dimensional space onto a two-dimensional plane, whether
orthogonal (see Fig. 5.52) or perspective (see Fig. 5.52), changes the values of two of its points
coordinates: x and y, while the information about the third coordinate z is discarded. It is impossible
to reverse such projection without maintaining the information about the third coordinate,
i.e. it is impossible to ambiguously project a two-dimensional image of three-dimensional object back
to its original, three-dimensional form without some additional information, basin only on the final,
planar image. However, Piero della Francesca was able to record the information about the third
coordinate on two-dimensional, planar paper. Apart from introducing orthogonal, side-views,
he assigned numerical values to each of the points in order to store additional information for further
computations. Thanks to these ‘hidden’ data (or meta-data in modern terms), he was able
to mathematically raise the two-dimensional image into the virtual three-dimensional space,
manipulate with it (rotate) and project it back on the two-dimensional paper (see Fig. 2.7 on page 28).

The same happens when the three dimensional image is displayed on the two dimensional computer
screen. The computer stores in its memory additional information about the position of each point
(vertex) of 3D object, even though that finally it is displayed as 2D image, in order to allow
for numerous transformations of that object without the necessity for excessively complex
calculations. However, in order to generate perspective projections of PQ meshes in the presented
method, a fourth coordinate was introduced. In practice it means storing the information about
3D objects as four dimensional. Adding an extra dimension for the computations allows for obtaining
3D objects from transformation, as eventually 3D PQ mesh is required to design grid shell upon it.
An explanation of the importance of this solution is given later in this section.

5.2.2.1. Justification of the method’s usefulness

Two features of perspective projections are important from the point of view of planarity preserving
transformations of PQ meshes. Firstly, perspective transformation preserves lines, i.e. straight line
is transformed into a straight line (or a point in specific cases), thus a straight line segment always
be straight after perspective transformation.

Secondly, perspective projection is a function, which means, that for each argument (original point)
there is exactly one value (image point). This fact excludes the possibility of generating more than
one image points by perspective projection of a single point, in another words: perspective projection
of a point cannot produce a line.
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These two aspects of perspective projections: linearity preservation and point preservation lead
to the following conclusion: if a spatial quadrangle is planar, its diagonals intersect each other
at a singular point. After perspective projection both diagonals remain straight and a point
of intersection remains a singular point. Therefore projected quadrangle meets the necessary
conditions of planarity.

Figure 5.50 shows comparison between two types of transformations that externally result with
the same shapes (red and blue grids), however, the internal structure decides whether
the transformed object will preserve linearity.

“a N

Fig. 5.50 Left: a square with diagonals in original form described on auxiliary orthogonal grid.
Centre: deformation of the square and grid by means of tapering transformation’®, the result is a quadrilateral with curved
edges and diagonals.
Right: perspective transformation (planar) of the square and auxiliary grid, edges of the square remain straight, whereas the
distances between red lines of auxiliary grid vary unlike in case of tapering transformation.

Perspective image of an object can be obtained by means of two possible approaches.
Firstly, as a central projection onto a plane of original object as in Fig. 5.51. In this approach each point
of the object is projected along the line, which also passes through the projection centre point.

In the second approach exactly the same image as in Fig. 5.51 is obtained by parallel projection
of previously deformed original object, see Fig. 5.52. In this case, all projection lines (blues) are parallel.
In order to obtain exactly the same image as before, the original object is deformed by the perspective
transformation.

76 Tapering is a transformation similar to scaling (i.e. anisotropic scaling, see section 5.1.1.5) where the factor
of scale differentially changes along axis. For more details see (Barr 1987) p. 23.
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Fig. 5.51 Central projection of three dimensional object.

=
4

Fig. 5.52 Parallel projection of previously deformed object.

5.2.2.2. Transformation of the viewing frustum

Both images in Fig. 5.51 and Fig. 5.52, although obtained through different approaches are exactly
the same, regardless of the used method. However, the second one is more convenient
for computations in computer graphics due to the application of linear algebra methods
and performing all the computations for each vertex simultaneously.

In order to obtain perspective image with respect to the second approach, the 3D object
has to be initially deformed. Such transformation is a perspective transformation and utilizes
the idea of a viewing frustum’’, which is a volume that defines how 3D models are projected.
For mathematical details of perspective transformations utilizing viewing frustums see
(Sung, Shirley, and Baer 2008) pp. 379-408.

77 Another name appearing in the literature is the pyramid of vision, see (Parekh 2006), p. 413.
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Essentially the viewing frustum is a cut-off pyramid with a camera (observer) positioned
on its cut-off apex, see Fig. 5.53. The side facets of viewing frustum define field of view of the camera,
beyond which projected objects will be not visible (beyond the edges of perspective projection image).
In order to obtain perspective image through parallel projection a viewing frustum
has to be transformed into a canonical viewing volume together with all 3D objects within viewing
frustum, see Fig. 5.53, right. Such transformation is computed according to following properties:

e position of the camera in 3D space,

e direction of the camera,

e field of view of the camera (opening angle of viewing frustum),

e distances of far and near facets of viewing frustum to the camera.

projection matrix
r maps frustum
to canonical

Y\g volume
near
canonical
viewing
volume \

Fig. 5.53 Viewing frustum (left) and canocnical viewing volume (right).”8

viewing
frustum
t

© www.scratchapixel.com

Depending on those properties the projection matrix transforming viewing frustum into a canonical
viewing volume (a cube) is calculated. A 3D object contained within viewing frustum is transformed
by that projection transformation defined by matrix and then it is parallelly projected onto
a plane resulting with perspective image as in Fig. 5.52.

Perspective transformations used for the purpose of transforming PQ meshes work according
to the same principles as in 3D graphics, however in reversed order, i.e. a 3D object (e.g. PQ mesh)
is contained within canonical viewing volume (a cube) and then it is transformed into a different shape
defined by the viewing frustum, see Fig. 5.54. It is assumed, that the initial and final shapes
(canonical viewing volume and viewing frustum) are positioned at the beginning of the coordinate
system, hence the properties such as the position of the camera, its direction and its field of view
are not considered, what in turn simplifies all the calculations.

78 Source: http://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-
matrix/projection-matrices-what-you-need-to-know-first
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Fig. 5.54 Three dimensional object deformed within viewing frustum. All straight lines and planes are preserved.

In Fig. 5.54 viewing frustum and an object inside are shown in two configurations. On the left side,
the object in original configuration is embedded in viewing frustum in orthogonal configuration.
All lines in particular colour are parallel (only those on the edges and back wall of frustum are shown,
however they fill all the space inside of it). The space in such configuration is isomorphic, meaning that
all distances, areas and surfaces are proportional between corresponding steps (lines).

On the right side viewing frustum is deformed. The near, right face is enlarged. The faces adjacent
to the enlarged one are now trapezoids, which are filled with deformed grid (such as on the Fig. 5.50,
right). The distances, areas and volumes are no longer isomorphic in that configuration.
Object embedded within that frustum was deformed simultaneously. All points of the object, which
were incident to the particular intersections of lines (red, green, blue) before the transformation,
remain incident with the intersections of the same lines, which are now deformed by the frustum.

5.2.2.3. Example of two dimensional perspective transformation

In order to intuitively understand the structure of homogenous matrix its two dimensional equivalent
is used as the example below. This 2D example will help to extend the problem to 3D objects.

If a two dimensional object (shape) is raised above the plane by adding a third coordinate,
it can be point projected back onto a plane resulting with image, which is a scaled version of the original
object, see Fig. 5.55, right. When the object is additionally manipulated above the plane
(e.g. rotated in 3D space), the central projection results with perspective image of that object,
see Fig. 5.56, 5.57 and 5.58. In order to mathematically perform such manipulations in the extended
dimension, the transformation matrix is expanded by additional (homogenous) row and column,
see equation (5.20) on page 138.
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Fig. 5.57 Central projection of two dimensional grid rotated in third dimension.

Fig. 5.58 Comparison of original shapes (light grey) and images of their homogenous transformations.
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This analytical way of applying a perspective transformation is a composition of several
transformations: raising an object above the plane, rotating the object around an axis (or several axes)
in 3D space and point projection back onto a plane. Equivalent of this procedure for three dimensional
object is raising it to the fourth dimension, rotating it in that fourth dimension, and projecting it back
onto the three dimensional space.

5.2.2.4. Perspective transformation matrix

The perspective projection matrix used for the purpose of 3D computer graphic has diverse forms
depending on applied technology. It may be a composition of several matrices which are additionally
responsible for transformations such as rotations (considering the rotation of the camera)
and translation (considering the position of the camera). For the purpose of transforming PQ meshes
in this work only the essential form of the perspective transformation matrix, derived by the author,
is used’®, i.e. the positions of transformed points are calculated by the multiplication of two matrices
by the formulation as in equation (5.20).

- 1/f 0 0 0 (5.20)
Xe 0 1/g 0 ofr*
Yel| y
z|=| o 0 1/h  0l|7
we| |1=f 1-g 1-h |1
L f g h |

The left side of the equation is the matrix record of the coordinates after the transformation.
The 4x4 matrix is the homogenous matrix of perspective transformation. The 1x4 matrix on the right
side is the matrix record of the coordinates of an original object. The fourth, w, is called homogenous
coordinate, see (Sung, Shirley, and Baer 2008), p. 214 and (Foley et al. 1995), pp. 253—258, was added
to a conventional record containing three coordinates (x, y, z). Therefore the transformation matrix
is called homogenous and consists of additional row and column. The deformation of viewing frustum
is parametrized by f, g and h parameters. Each parameter corresponds to the scaling of one of three
(from six in total) faces of frustum.

From the equation (5.17) results a 1x4 matrix containing the vectors of coordinates. These coordinates
are the real ones if for their given values the fourth coordinate w. is equal to 1. This form is calculated
by the equation (5.21), where the real coordinates are x’, y’ and z’.

x' Xc (5.21)
y’ _ i Ye
z' B W, Zc
1 We

The final form of the homogeneous matrix used for perspective transformation is the composition
of transformation matrices of all used basic transformations (rotation, translation, orthographic
projection). The matrix in (5.17) is simplified by the author of this work into such form, that
the deformations driven by change of factors f, g and h can be intuitively understood.

79 perspective and orthographic projection matrices used for the purpose of computer graphic are more broadly
explained in several publications under the link:
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-
matrix/orthographic-projection-matrix
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Each one of these three factors is responsible for rotation around particular axis in the fourth
dimension. The fourth axis of rotation has no impact for the shape in three dimensional projection.

Fig. 5.59 Left: original PQ mesh in cuboid frustum. Right: homogenous rotation around f-axis.

Left image in Fig. 5.59 is the original object embed in orthogonal frustum. All factors are equal to 1,
hence resulting in unit homogenous matrix, see equation (5.22).

r1/f 0 0 0
0 1/g 0 0
0 0 1/h 0|~
1-f 1-g 1-h X
f g h |
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(5.22)
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In the same figure, right (Fig. 5.59) the value of factor f is different from 1 resulting with changed form
of PQ mesh. Then the matrix multiplication has a following form of equation (5.23).

[l/f 0 0 0]

Xe o 1 o oll¥
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The result of equation (5.23) is then normalized by dividing the right side by the value of w,, the right

side of the equation gets the form of equation (5.24).
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The last row in the matrix has to be equal 1, in order to get the real values of x, y and z coordinates.
In that form the positions of points along y and z coordinates are also influenced by their position along
the x coordinate, and the factor f. The same principle applies to two other parameters: g and h;
each one responsible is for perspective deformation along axes y and z, see Fig. 5.60 left and right.

Fig. 5.60 Left: homogenous rotation of PQ mesh around g-axis. Right: homogenous rotation of PQ mesh around h-axis.

Analogously to equations (5.23) and (5.24), changed values of parameters g and h result with equations
(5.25) and (5.26). Normalized values of resultant vectors have the forms of equations (5.27) and (5.28).
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As changes of the f, g and h parameters influence the shape of a 3D object in particular manner
it can be assumed, for the ease of use of the method, that the object is rotated around some f, g or h
axes in fourth dimension. Rotation around f axis in 4D space deforms an object along x axis,
whereas analogously rotation around g axis influences deformation along y and h along z axes.

Fig. 5.61 Composition of homogenous rotations around all f, g and h axes. The resultant mesh have all facets preserved
planar.

When all parameters have values other than 1, the rotations are combined and the frustum
is deformed along each direction, see Fig. 5.61. The resultant form is always a valid PQ mesh, regardless
of the intrinsic properties of the initial PQ mesh. It is not required for the initial mesh to be circular,
isoradial or conic. Although SC method proposed in the previous chapter is much more constrained,
it allows for other deformations, which are not available for the perspective transformation.
Therefore it is possible to combine both transformation. Due to the fact, that the SC mapping
is geometrically constraint to particular types of PQ meshes it is performed as the first one.
Then the perspective transformation can be applied. A particular geometrical application for that
combination of transformations is proposed in the section 5.2.2.9, where PQ meshes with circular base
shapes, that are possible to obtain by SC mapping, are perspective transformed to align their base
shapes into forms of conical sections.
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5.2.2.5. Perspective transformation matching

In the computer graphics the perspective transformation matrix parameters relate to the parameters
of the camera, i.e. the focal lenght. Generally, for obtaining natural, human eye views, only one
parameter is changed. The scene is transformed, so that one with its main axes aligns with the axis
of view. Although, perspective transformation meant for PQ mesh transformations is based
on the same principles, it is controlled by different constraints. It is not important for the designer
what values does the f, g, h or any other parameters have. From the designer point of view,
it is important to set the positions of few, key vertices of transformed PQ mesh and automatically
perform the transformation for all the other vertices.

For a praticular case study described in the section 7.1, a translational PQ mesh with planatr,square
base (from section 4.1.2) is selected for the perspective transformation matching , see Fig. 5.62, left.
The assumption is that the designer specifies the four vertices of the desired quadrilateral base,
and the transformation is calculated automatically according to the rules described below.
These user defined vertices are allowed in any planar configuration in wich they construct
non self-intersecting, convex quadrilateral.

Further discussion concerns the case study mentioned above (from the section 7.1). The perspective
transformation matrix is convenient to work with, when the transformed object is unitized,
i.e. the centre of the mesh lies at the beginning of the coordinate system O(0,0) and its corners
are at points A(1,1), C(1,-1), E(-1,-1) and G(1,-1), see Fig. 5.62, right. Auxilary points: B(0,1), D(-1,0),
F(0,-1) and H(1,0) are also introduced at the middle points of the edges of mesh. The height
of the mesh is temporarly negligible, therefore point locations are specified without z coordinates,
assuming it is equal zero.

C(1.1) B(0,1) ALY

D (-1,0)¢ (H (1,0 x

E (-1-1) Eo G (1-1)

Fig. 5.62 Translational PQ mesh with planar, square base. Right: unit dimensions and orientation of the mesh.

When performing a perspective transformation on any mesh in space, it can be unitized before
by the adoption of all the planarity preserving transformations. The most convenient are affine
transformations, described is the section 5.1.1, which include translations, rotations, shear, isotropic
and anisotropic scaling. Once object is unitized, the perspective transformation is performed
on it and the result is transformed by the inversion of unitizing transformations used before. By means
of linear algebra all the transformations are represented by matrices. All performed transformations
can be combined into one by multiplying their matrices. The inversion of that combined matrix
correspond to the inversion of all combined transformations. The combinations of matrices
is convenient for reducing the computation time — instead of computing all the transformations
for all the vertices step by step, one combined transformation is calculated for all the vertices at once.
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When changing the parameter fin the perspective transformation on the unit mesh, some points stay
invariant, i.e. the centre point O and edge midpoints B, F and H, see Fig. 5.63. Points A and G
at the right corners change only their y coordinates, which are equal to the f and -f values.
Midpoint D changes its x coordinate and points C and E change both of their coordinates, which values
are shown in Fig. 5.63. For any values of f parameter, the opposing edges |AG| and |CE| are always
parallel. It is assumed, that their intersection is at infinity (at the vanishing point).
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Fig. 5.63 The effects of changing the value of f parameter. Left: for f > 1. Right: for f < 1.

Changing the parameter g gives similar results as it is in the case of the parameter f, however
the deformation happens along the y axis, see Fig. 5.64. The other pair of edges stay parallel
and intersect at infinity. Appropriate coordinates of points are derived with respect to the vale
of g parameter. In perspective transformation by changing the g parameter three points stay invariant,
i.e. B, D and H. Two of these points are also invariant in the perspective transformation in which only
the f parameter is changed, i.e. B and H. Both of these points lie along the poistive sides of x and y axes
of the coordinate system, at their invariant markers.

Fig. 5.64 The effects of changing the value of parameter g. Left: for g > 1. Right: for g < 1.
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The impact of the h parameter is omitted in further considerations, since it has no impact on the shape
of the base of mesh. The base of the mesh, when located on the z=0 plane is invariant for such
perspective transformations.

Table 5.2. Shapes of unit PQ mesh as in Fig. 5.62 after perspective transformations with various values
of parameters fand g.
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The coordinates of corner points of transformed unit mesh, with respect to the parameter f,
are derived by the author and shown in Fig. 5.63. Analogous relations of the corner point positions
with respect to the parameter g can be derived®. Knowing these formulations the exact positions
of corner points with respect to the parameters f and g can be calculated and vice versa,
the parameters f and g can be derived from the positions of the corner points.

8 The exact formulations for each point are not necessary for the final calculations, only the positions
of the midpoints of two edges expressed by equations (5.40) and (5.41).
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However, by the sole adoption of perspective transformation it is impossible to obtain
any quadrilateral shape, hence in order to allow the designer to choose any configuration
of four corner points for the final mesh, additional adoption of affine transformations is required.
The following part of this section concerns on the utilization of affine transformations for obtaining
any quadrilateral shape for the base of PQ mesh. The composition of perspective transformation
with affine transformations discussed in section 5.1.1, all of which preserve planarity,
allows for creating a comprehensive system for transforming a PQ mesh with planar square base
into a PQ mesh with a base perimeter in shape of any irregular quadrilateral shape.

By so far it is known, that for any combinations of f and g parameters, the B and H points are invariant.
There is another invariant point which always stay at the same coordinates, i.e. point O, which is always
located on the intersection of diagonals of quadrilateral base. There is also known that the intersection
of extensions of opposing edges of perspective transformed quadrangle is always located along
the x or y axes of the coordinate system, see Fig. 5.65, apart from the situation, when the edges
are parallel (for f or g equal one). In such a case, the edges are also parallel to the x or y axis
and intersect at their vanishing points located at adequate x and y axes.

2

Fig. 5.65 Two example cases of perspective transformations for various combinations of parameters f and g.
In any case, the intersection of extensions of opposing edges is incident with the adequate, x or y axis.

The properties mentioned above, i.e. invariant points and incidence of intersection points of opposing
edges with coordinate system axes, are always true for perspective transformations of unit shapes.
However, these properties also limit possible configurations of quadrangles obtained through
perspective transformations. For example there are quadrilaterals whose axes (passing through
the intersection of diagonals of the quad and intersections of extensions of its opposing edges,
as in Fig. 5.67) are not mutually perpendicular. Therefore, in order to devise a transformation
for any quadrilateral shape, a combinations of affine and perspective transformations is required.
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5.2.2.6. Affine transformations

Affine transformations are chosen in such a manner, that they transform any quadrangle into a form
that is possible to obtain through perspective transformations. Any quadrangle can be transformed
by affine transformations into a form in which:

e the intersection of its diagonals is located at the beginning of the coordinate system O(0,0);

e the intersections of extensions of opposing edges are incident with x and y axis;

e the points at two edges intersecting with positive parts of x and y axes lie at points B(0,1)
and H(1,0).

The way all those properties are met is obtained according to the procedure described further
in this section. Notations for each transformation are adopted so that their final composition could
be expressed in single formulation, i.e. the equation (5.32).

The planar, ACEG quadrangle in Fig. 5.66 is an example of geometrically unconstrained quadrangle
which will be transformed into a unit square by the adoption of affine and perspective transformations.

A

E
Fig. 5.66 Exemplary, geometrically unconstrained, planar quadrangle ACEG.

First step assumes the assignation of ACEG quadrangle characteristic points, see Fig. 5.67. Point O iles
at the intersection of the diagonals — CG and AE. Points V and W are the vanishing points
of the opposing edges: AG and CE for V; AC and EG for W. Points B, D, F and H not at the midpoints
of corresponding edges in this configuration of the quadrangle. In order to assign their positions
auxilary lines are instroduced — WO and VO. Points D and H lie at the intersections of WO with two
edges, whereas points B and F lie at the intersections of VO and the second pair of edges.

First transformation is a translation along the vector T, = 00’, where O’ lies at the beginning
of the coordinate system at point (0,0). The ACEG quadrangle and all of its characteristic points
are translated by the same vector. In this way, the first requirement of aligning point O
with the begining of the coordinate system is met.

Translated quad ACEG is further transformed by rotation around the point O. The angle of rotation
has such a value, that the rotation image of H’ lies on the x axis, see Fig. 5.68. The rotation
transformation has a Rg, ¢ notation, where O is the centre of rotation and 6 is the angle of rotation.
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Fig. 5.67 Left: assignment of characteristic points of ACEG quadrangle. Point O lies at the intersection of the diagonals.
Points W and V lie at the intersections of AC - EG and AG - CE edges. Points D, H and B, F lie at the lines passing through
points W — O and V — O. In this form points B, D, F and H are not located at the midpoints of the edges.

Right: first transformation is the translation of all points along the vector OQ’, where O’ is at the beginning of the coordinate
system at point (0,0).

Fig. 5.68 Rotation of ACEG quad around point O by the angle ©, aligning point H’ with the x axis.

There are two anisotropic scale transformations used in the presented method. The first one
is anisotropic scale transformation which has a notation Gy, .
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Ponit H” still has to be located at (1,0) coordinates. A transformation through which it can be obtained,
while preserving the position of point O’ is the anisotropic scale along the axis x, see Fig. 5.69.
In this praticular anisotropic scale the invariant points lie along the direction perpendicular
to the direction of scaling. While O is invariant, the invariant line runs along the y axis.
Therefore, according to the notation assumed in section 5.1.1.5, the first parameter of anisotropic
scale transformation is the y axis of coordinate system. The scale factor is inverse of |O’H”| line
segment length, see equation (5.29).

Fig. 5.69 Anisotropic scale transformation aligning point H' with the point (1,0) while preserving the position of point O.

1 5.29
fr= ( )

[0'H"

The Cy, s transformation changed positions of all other points (apart of O), together with the position
of B”, which image (point B’ in Fig. 5.69) still requires the alignment with point (0,1).
One transformation adopted previously, i.e. rotation is no longer suitable, since it would distort
the required locations of points O’ and H””. The parameters of point B’ can be adjusted to the required
values by two separate transformations, which will preserve the positions of points O’ and H””.
First of these two transformations is again anisotropic scale. However, in this case, the invariant
is the x axis and the factor of scaling is equal to the reciprocal of the y coordinate of point B,
i.e. equation (5.30).

1 (5.30)
fy= B_y

The second anisotropic scale transformations has a notation C,, 5. Point B”””” has y coordinate equal
to 1 and x coordinate is the last one to be adjusted. Last transformation should preserve points lying
on the x axis of coordinate system and the y coordinate of point B””””. Shear transformation, described
in section 0, meets these requirements, see Fig. 5.70.
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Fig. 5.70 Second anisotropic scale transformation, which aligns y coordinate of point B with the value of 1, while preserving
locations of points O' and H"".

The shear transformation (see Fig. 5.71), noted as Hp, 1, 4, consists of three parameters: P—the invariant
plane of transformation, which is the plane that intersects with the x axis of the coordinate system.
The x axis containts points O’ and H’”’, which are already on the required positions. Therefore, P will
be denoted as x. Parameter d refers to the direction of transformation, which in this case is the vector
of translation between point B””” and its desired position at point (0,1), see equation (5.37).

d=B""(0,1) (5.31)

Parameter h is the factor of shear, i.e. the distance of transformation at along the vector
d at the distane of one unit from the invariant plane P. Since both points: B””” and (0,1) are located
one unit from the invariant plane, the h factor is simply equal to the lenght of vector d.

The effect of the last transformation is shown in Fig. 5.78Fig. 5.71. Although final positions of points
V and W are invisible on that figure, these are already aligned with corresponding coordinate system
axes x and y. After application of previously described affine transformations, the resultant quadrangle
meets all the requirements of quadrangles allowed by perspective transformation of an unit square.
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Fig. 5.71 The last of described affine transformation, shear, which aligns point B with (0,1) coordinates.

5.2.2.7. Combination of affine and perspective transformations

All the affine transformations discussed so far are allowed for the transformation of PQ meshes
and preserve planarity of their facets. These transformations combined together are noted
as in equation (5.38).

T = Hx,h,dCx,fny,fyRo,gT,, (532)

Consequent transformations are performed from right to left. The inverse transformation, which
will be required later for the application of PQ mesh transformation has a form of inverse
transformations combined in the inversed order as in equation (5.39).

F=T, "Rop "Cpp,  Cpp " Hypg ™ (5.33)

Where:

F denotes the composition of affine transformations,
T denotes translation,

v denotes vector of translation,

R denotes rotation,

O denotes centre of rotation,

0 denotes angle of rotation,

C, denotes anisotropic scale in x direction,

f x denotes the factor of scale in x direction,

C, denotes anisotropic scale in y direction,

fy denotes the factor of scale in y direction,

H, denotes the shear transformation with eigenvector along x axis,
h denotes the factor of shear transformation,

d denotes the direction of shear transformation.
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The ACEG quadrilateral in Fig. 5.72, initially transformed by affine transformations, is in configuration,
which is possible to obtain by perspective transformation of a unit square. The inversed perspective
transformation can be derived from that configuration, i.e. the exact parameter values of f and g,
for which the ACEG quadrilateral can be transformed into unit square. From the coordinates of points
D and F the values of parameters f and g can be calculated, from which the inversed perspective
transformation matrix can be derived. These relations were initially explained in section 5.2.2.5
and in Fig. 5.63.

Fig. 5.72 The ACEG quadrangle after all affine transformations and the dashed silhouette of a unit square.
Points around the quadrangle were named anew for clarity.

The f parameter is derived from the x coordinate of point D, which position is defined by formula (5.40).

N

Whereas the g parameter is derived from the y coordinate of point F, which position is defined
by formula (5.41).

F= (O'Zg_1 1) (5.35)

The inversed perspective transformation can be denoted as a function: M‘l(f, 9)-
Finally, the transformation that transforms the unit, translational PQ mesh with planar base into any,
user defined quadrilateral is a set of perspective transformation and inversed combination of affine
transformations and has the form expressed by (5.36).

FIM(f, 9) (5.36)
where F~1 part is the inversed combination of affine transformations and M (f, g) is the perspective

transformation. In Fig. 5.73 and 5.74 these two steps are visualized. Planarity of individual facets
of the PQ mesh is preserved at every step.

151



Affine
transformations

5(0.1) Perspective TR

.....

transformation

P KIS AT
RIS
& 4’4‘6“2‘2“:"

AN

X

Fig. 5.73 Two steps of transforming the unit PQ mesh into any quadrilateral form.

Fig. 5.74 Result of the two-step transformation in perspective view with shading.

This proposed by the author procedure of fitting PQ meshes into any quadrilateral forms assures
the exact preservation of facets planarity. This method has a great potential in designing glazed grid
shells especially over courtyards of historical buildings in centers of cities, where the outline
of courtyard is usually distorted.

5.2.2.8. Aditional perspective transformation adjustments

The h factor of perspective transformation had been ignored in previous -calculartions.
As the horizontal plane at z=0 is the invariant plane of perspective transformation with h parameter
changed, it had no influence on the shape of base quadrilateral. However, the h parameter
has an impact on the vertical deformation of the mesh and can be utilized as an optimization factor
or a parameter through which the user (e.g. an architect) can adjust the final shape of the grid shell.

Figures 5.75 and 5.76 show translational PQ meshes with planar base perimeter, which have been
transformed by means of perspective transformation with varied values of the parameter h while both
parameters f and g are equal to one. The wireframe box around the mesh is the viewing frustum, which
is also deformed showing the outline of each deformation and giving a sense of how the h parameter
influences the final shape. The top views of the mesh show how does it shrinks or expands according
to the h parameter.
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Fig. 5.76 Top view at the meshes perspective transformed with varied values of parameter h.
Left: h<1, centre: h=1, right: h>1.

Along with the possibility of changing the value of h parameter, the user also has the ability to control
the deformation through the location of the centre point of the perspective transformation.
Depending on the location, the user can control the ‘leaning’ direction, see Fig. 5.77.

Summarizing, the combined methods of shaping the translational, PQ mesh with planar base
and the perspective transformation, the designer has the control over intuitive, from his point of view,
parameters. These parameters include the control over the global shape of the initial mesh
(through the parametrized location of Pe(a,b) extrapolating point, see Fig. 4.12 on page 72)
and the density of the mesh. Also, he can define the outer boundary by defining control points.
There is also the possibility to apply further planarity preserving transformations, e.g. anisotropic scale
in vertical direction to adjust the height of the mesh and shear transformation, also in vertical direction
(see transformations described in section 5.1.1). Diffeomorphism can be applied in order to adjust
the distribution of edges and distances between support points. In the following chapters the concept
of a designing tool and the explanation of a design process using these tools is described.
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Fig. 5.77 A group of PQ meshes transformed by means of perspective transformation along vertical axis
(with parameter h different from one).
Shapes of the resultant forms also depend on their location relative to the centre of coordinate system -point O.

5.2.2.9. Perspective transformation of conics and second degree surfaces — conic transformations

This section describes author’s proposition of matching PQ meshes with 2" degree base curves.
The method is based on perspective transformations. In order to simplify the term ‘perspective
transformation matching second degree curves’ the term conic transformations will be used further
in this work.

Conic curve or conic section is a curve obtained by intersecting the conical surface with a plane,
see Fig. 5.78. Conical surface is a surface formed by a set of all lines passing through a point called apex
and a closed directrix curve. In the right conical surface the directrix is a circle and the apex is located
directly above the centre point of that circle. A line passing through the apex and any point
on the directrix is called generatrix. The axis of a cone is the line passing through the apex
and the centre point of directrix.

Depending on the orientation of the plane to the conical surface, the intersection curve can have
several generic forms, see (Weisstein 2018e):

e a circle is obtained, when the intersecting plane is perpendicular to the axis
of the conical surface;

¢ when the angle between the axis and plane is smaller than the right angle and larger than
the angle between the axis and generatrix, then the resultant intersection curve is an ellipse;

e when the angle between the axis and plane is equal to the angle between the axis
and generatrix, then the resultant intersection curve is a parabola;

* when the angle between the axis and plane is smaller than the angle between the axis
and generatrix, then the resultant intersection curve is a hyperbola.
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Fig. 5.78 A cone and the conic sections obtained by intersection with a plane.
Red: circular section, the plane is perpendicular to the axis.
Orange: ellipse, the plane is between the axis and generatrix.
Green: parabola, the plane is exactly planar to the generatrix.
Blue: hyperbola, the plane is between the generatrix and axis.

Apart from four types of conic curves that can be obtained by intersecting the right conical surface
with a plane there is also an exceptional case, when the intersecting plane contains the apex of conical
surface. In such a case the intersection is a point or two straight lines.

All these curves are also plots of second degree formulations, therefore also the term second degree
curves is used. All points on the unit circle satisfy the equation (5.37). Ellipse is the affine image
of circle, i.e. it can be obtained by affine transformation (anisotropic scale, shear) of a circle.
The equation of ellipse has a form of (5.38), parabola has the equation (5.39) and hyperbola
has the equation (5.40), where a and b are shape parameters.

xZ+y2=1 (5.37)
x? . y: 1 (5.38)
a? b2

y=ax?+bx+c (5.39)
x_Z B y_Z _4 (5.40)
a? b2

In all the equations above, the exponents of x and y are equal to two, therefore all these curves
are of second degree. This property is used for the parametrization of NURBS curves of second degree,
which are composed of segments of second degree curves, i.e. circles, ellipses, parabolas
and hyperbolas, see (Weisstein 2018j). Each second degree curve can be therefore decomposed into
second degree segments, which can be then used as the base shapes for conic transformations
of PQ meshes. The concept of this method is to allow the designer to control the shape of the PQ mesh
by adjusting the control points of a second degree NURBS curve.

That concept utilizes yet another property of second degree curves: all the conical sections
are perspective images of circle (see (Bradley 1834), pp. 196—206). Following consideration will explain
why and how.
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The fact, that circle has an elliptical shape in perspective view was well known to artists and architects
since at least Renaissance era, see section 2.3.2 and (Swieciak and Tarczewski 2018).
In Fig. 5.79 the perspective transformation of a circle was performed. The parameter f was set
to the value of 0,75. The resultant shape is the exact ellipse. The resultant curve is an ellipse
for all the f values that meet the condition (5.41)8%,
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Fig. 5.79 Planar perspective transformation of a circle. In general, a circle in perspective is an ellipse.

0,5<f<lorl<f (5.41)

As f approaches the value of 0,5, the left side of the frame, goes beyond the field of view and tends
toward the infinity. It cannot be displayed on paper, however it can be shown by displaying
some selected lines on the frame are bolded, i.e. two pairs of edges and diagonals, see Fig. 5.80.
When the condition (5.41) is met the pairs edge-and-diagonal (see bold lines in Fig. 5.80)
intersect at the corners of the frame on the left side (compare Fig. 5.79, right and Fig. 5.80).
However, when perspective transformation is performed with the f parameter value equal to 0,5
the corresponding pairs of edge-diagonal are parallel, see Fig. 5.80. Therefore it is assumed that
they intersect at infinity. Concluding, the left side of the frame in Fig. 5.80, whose corners
are at the edge-diagonal intersection points is also at infinity. Since the perspective transformed circle
is tangent to that infinitely distanced edge, it also extends into infinity and practically never closes.
In such a case, the circle is a parabola (see Fig. 5.81) and the resultant curve does not lose
its second degree structure.

81 The condition was derived by the author based on the perspective transformation principles already assumed
in this work, i.e. the placement of the unit circle in the coordinate system, perspective transformation matrix
(5.20) and letter notations. The cases, when parameter f does not met the condition in (5.41) are explained
further in this section.
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Fig. 5.80 Bold lines correspond to the diagonals and opposing edges of the frame in perspective.
Right: The same bold lines without the frame, where the parallelism between corresponding pairs is visible.
In perspective view pairs intersect at infinity.
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Fig. 5.81 When the left side of the image spans into infinity, the circle also closes at infinity, becoming a parabola.

When the f parameter value is decreased even further, beyond the value of 0,5, then the intersection
points of corresponding edge-diagonal pairs come out on the right side of the image, Fig. 5.82.
Part of the transformed image on the right is also inverted vertically. Proper real connection between
the parts of the same line segment does not exist, therefore unexisting parts are shown with
dashed lines. Since one line cannot be transformed into two lines the connection still exist,
but virtually at infinity. Lines from the left side of the figure extend leftward into infinity,
then flip at the right sided infinity and finish at the right side of the image.
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Fig. 5.82 Extensions of the opposing edges and diagonals intersect on the other side of the image.
The side of the image that went into infinity to the left appears on the right side of the image.

A circle embedded into that perspective transformed frame should be tangent to all of its edges,
consequently it should appear as two curves on both sides of the image. Virtually, that
transformed circle is still at one piece at infinity, however, in Fig. 5.83 it is represented in two pieces.
The obtained curve is a hyperbola. For further consideration only the left side of the hyperbola
will be the subject of interest.
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Fig. 5.83 The circle in perspective closes on the right side of the image becoming a hyperbola.

Since a circle can be transformed by perspective transformation into any second degree curve any
second degree curve can be transformed into circular form by inversed perspective transformation,
i.e. any ellipse, parabola and hyperbola will create circle image when point projected onto a plane
from particular angle. Intuitively, an observer looking at an ellipse from particular direction
will see circular image®?.

82 Compare with Gian Lorenzo Bernini’s elliptical part of St Peter’s Square in Vatican.
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Conic transformations can be further used for matching PQ meshes with circular base lines
(e.g. obtained by stereographic projection or inverse geometry discussed in sections 5.1.2 and 5.1.3)
to match them with second degree base shapes. An intersection of a sphere with a horizontal base
plane results in a circle, see Fig. 5.84, left. Transforming such sphere together with the intersection
curve will result in an ellipsoid, paraboloid or a hyperboloid, see Fig. 5.84. The intersection lines
at the bases of obtained shapes become consequently ellipse, parabola or hyperbola. Therefore,
a PQ mesh contained on a sphere can be transformed into a new family of shapes based on rotational
conics by a stereographic projection or inverse geometry.

Fig. 5.84 Initial, spherical PQ mesh (left) and perspective transformations resulting with (from left to right) elliptical,
parabolical and hyperbolical shapes depending on the parameter f described in this section.

The following study of rotational conics extends the versatility of conic transformations even further.
Conic sections obtained by intersections between conical surface and plane, with respect
to the relation between obtained curve and the orientation of the plane toward the cone,
was already explained before at the beginning of this section, see Fig. 5.78. However, conical sections
can also be obtained by intersections between plane and other family of surfaces,
i.e. surface of revolution with conical generatrix, or rotational conic for simplicity. A rotational
conic surface is a surface obtained by rotation of a circle, ellipse, parabola or hyperbola around
its main axis, see Fig. 5.85. Consequent surfaces are: sphere, ellipsoid, paraboloid and hyperboloid.
The relation between orientation of intersecting plane, the type of rotational conic and the type
of resultant curve will be explained in the following part of the work. Moreover, all intersections
between plane and rotational conic are second degree curves. Any rotational conics can be obtained
by perspective transformations of sphere, such as any second degree curve is possible
to obtain by perspective transformation of circle.

The concept of application of conic transformation is as follows: the user defines base curve as second
degree NURBS curve, see Fig. 5.86. The NURBS curve is divided into segments, each of which is a conical
section by the definition of second degree NURBS model, see Fig. 5.87. Selected segment,
e.g. a parabola (Fig. 5.88, left) is the desired base shape, for which a reciprocal perspective
transformation F? is computed. Finally, the perspective transformation F is applied onto a discrete,
spherical PQ mesh with circular base resulting with a transformed PQ mesh, that fits exactly
to the base line, see Fig. 5.88, right.
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Fig. 5.85 Curves of intersection of perspective transformed spheres and plane.
Red - circle, orange - ellipse, green - parabola, blue - hyperbola.

Fig. 5.86 Second degree NURBS curve with five control points.
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Fig. 5.87 Segmentation of the curve above into conical sections.
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Fig. 5.88 Left: calculation of the inversed perspective transformation F! between desired base conic section
and a circle segment. Right: application of the perspective transformation F onto the discrete spherical PQ mesh
in order to fit the base of mesh to the desired shape.

Whole family of rotational conics can be obtained by the application of perspective transformations
of spheres. The same rule applies to the discrete representations of dicussed surfaces,
i.e. PQ meshes based on spheres and rotational conics.

Moreover, one particular conic curve can be obtained from a whole family of rotational conics,
depending of its parameters and the orientation of intersecting plane with respect to the rotational
conic main axis. Simple example is shown in Fig. 5.89, where various ellipses and a circle are obtained
by intersection of a plane and ellipsoid, depending on the orientation of the ellipsoid’s axis.
This behaviour allows to increase the freedom of the design. The designer is allowed to change
the axis inclination angle to explore possible solutions for the grid shell. The selecion of appropriate
rotational conic and perspective transformation is performed by the algorithm.

Fig. 5.89 Curves of intersection between ellipsoid and plane at various configurations.
All cases result with ellipse (orange) apart when the axis of ellipsoid is perpendicular to the plane.
In such case the intersection is circular.

An overview of resultant intersection curves of plane and rotational conics, whose main
axes are parallel to the plane is shown in Fig. 5.85. Each type of rotational conic in the figure
is shown in three different cases: with axis of rotation below, on and over the intersecting plane.
The resultant curves of intersection are always affine images of the generatrix of rotational conic
(except for the hyperboloid, explanation is given later in this section). It means that an ellipsoid
is a surface of revolution of an ellipse and the intersection curves of that ellipsoid are also ellipses,
however of a different shape than the generatrix. These different shapes are affine images
of the generatrix, which means, that by application of anisotropic scaling and shear transformation
one ellipse can be transformed into another ellipse or a circle.
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When the main axis of rotational conic surface is not parallel to the intersecting plane,
then the intersection curves are also conics. In case of ellipsoid (Fig. 5.89) the intersection curve
is always an ellipse, except for the case, when the axis of rotation is perpendicular to the intersection
plane. In such a case the intersection curve is a circle, which is also an affine image of any ellipse.

The intersection between paraboloid and plane is a parabola only in one case, i.e. when the axis
of rotation is parallel to the intersecting plane, see Fig. 5.90, left. Second unique configuration is when
the axis of rotation is perpendicular to the intersection plane. In such case, the curve of intersection
is a circle, see Fig. 5.90, right. In all other cases the curves of intersection are ellipses.

APAL™

Fig. 5.90 Paraboloid obtained by perspective transformation of sphere and curves of intersection with plane.
Intersection curve is a parabola (green) when the axis is parallel to the plane.
Intersection curve is a circle (red) when the axis is perpendicular to the plane.
Intersection curve is an ellipse (orange) in other cases.

Intersections between hyperboloids and plane allow to obtain any conical curve. Figure 5.91
shows the relation between the orientation of hyperboloid with respect to the plane and the resultant
intersection, conic curve. In case of hyperboloids there is another property, which defines the type
of obtained intersection, conic curve, i.e. the asymptote line (dashed in Fig. 5.91).

The specific angle that separates different types of obtained conics is the angle between asymptote
of the generatrix hyperbola (dashed line) and the intersection plane. Only if that angle is equal to O,
i.e. the asymptote is parallel to the plane, obtained curve is a parabola. Rotating hyperboloid further
from that angle results in elliptic curve and finally a circle, when the axis of hyperboloid is perpendicular
to the plane of intersection. Rotating it backwards results in hyperbolas.

Fig. 5.91 Hyperboloid obtained by perspective transformation of sphere and curves of intersection with horizontal plane.
Intersection curve is a parabola (green) when the asymptote of hyperboloid (contained in vertical plane) is parallel
to the horizontal plane of intersection plane. Intersection curve is a circle (red) when the axis of hyperboloid is perpendicular
to the horizontal plane. Intersection curve is an ellipse (orange) when the axis between asymptote of hyperboloid
(contained in vertical plane) and plane is larger than 0. Intersection curve is a hyperbola (blue) when the axis between
asymptote of hyperbola (contained in vertical plane) and the horizontal plane is smaller than 0 and when the main axis
of hyperbola is parallel to the horizontal plane.
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Position of rotational conic over the horizontal plane of intersection does not affect the type
of obtained conic curve, while it can be used as a parameter for obtaining different shapes®.
Therefore, position of rotational conic over the plane of intersection and the inclination of axis
of rotational conic are two independent parameters. Those parameters give the designer two degrees
of freedom in shaping PQ meshes through conic transformations.

Figure 5.92 shows sections of rotational conics, from left to right: cone, hyperboloid, paraboloid,
ellipsoid, sphere. The cone is added illustratively, since it has no utilization in conic transformations.
Colour fill refers to the type of curve obtained by intersection of particular rotational conic
with a plane, which is perpendicular to the plane of section and passes through a point marked
on picture. Passing the intersection plane through the blue area results with hyperbola,
which is possible to obtain only in case of cone and hyperboloid. When the intersection plane passes
through the green line, the resultant curve is parabola. Parabola is obtained only in particular
configuration of intersection plane. The same is true for circular intersections, marked red
with the exception of sphere, where any intersection is circular. Other intersections result with
elliptical curves — marked in orange. All results are dependent on the position of the point,
through which the intersection plane runs through. However, a change in the position of that point
does not affect basic rules of resulting intersection curves — e.g. the parabolic plane is always parallel
to the asymptote (in hyperboloid) or the main axis (in paraboloid).
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Fig. 5.92 Conic sections according to the angle of intersecting plane (containing dashed line next to each surface) with
respect to the section of consequent surfaces of revolution. From left to right — cone, hyperboloid, paraboloid, ellipsoid,
sphere. Colours: blue — hyperbola, green — parabola, orange — ellipse, red — circle.

Figure 5.93 presents versatility of conic transformations, i.e. for a particular base shape (a parabola)
diverse forms were adjusted. The first from the left side is paraboloid, whose axis is perpendicular
to the horizontal plane. Consequent pictures are rotational conics obtained by perspective
transformations of unit spheres, with consequently decreasing f parameter and consequently
increasing of inclination angle of the main axis. For all cases the level above the horizontal does
not affect the type of obtained curve, however, except for the paraboloid, the resultant curves
are affine images (i.e. parabolas in diverse scales).

Similarly, any other doubly curved surface, which is a rotational conic, can be obtained
and exactly adjusted to any second degree base curve. Additionally, affine transformations can be
applied to the resultant shapes, increasing the degree of freedom even further. Plane preserving
affine transformations such as anisotropic scale and shear are adequate to lean the resultant shape
or adjust its height.

8 For example the designer can decide whether he wants to design a spherical dome (with circular base)
which is exactly half of that sphere or which is a part of that sphere truncated above or below its great circle.
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The versatility of conic transformations was presented above on continues forms, whereas their
destined purpose is the transformation of PQ meshes. Figure 5.94 shows two examples of simple
PQ meshes obtained through conic transformations, where the base curve was predefined
by the designer. In both cases, two different methods of obtaining the initial, spherical PQ mesh
were adopted, resulting with two, completely different patterns of quads. The shapes of conical curves
on vertical walls are also adjustable through available parameters of conic and affine transformations.
Through the adjustability of the form of vertical edge conical curves, two neighbouring PQ meshes
can be tightly joined, i.e. two, neighbouring PQ meshes with different conical base curves
can be adjacent to each other along one conical curve.
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Fig. 5.93 Exactly the same parabolic curve is obtained by conic transformations with appropriately selected parameters.
First parameter is the type of rotational conic obtained by perspective transformation of a unit sphere,
the second parameter is the inclination of the main axis of rotational conic.

Fig. 5.94 Examples of PQ meshes aligned to the predefined, second degree boundary curves.

However, in Fig. 5.87 the neighbouring conical curves are curved on the opposite directions (inflected),
meaning that the continuity of neighbouring PQ meshes requires the adoption of negatively curved
mesh. For that purpose a conical transformation of the PQ mesh based on torus can be adopted,
see Fig. 5.95.

Due to the fact that the real building case studies presented further in this work require only
the essential version of perspective transformation and SC mapping, the conic transformations
are only presented as a concept and will not be further discussed in course of this work.
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Fig. 5.95 Conic transformation of negatively curved PQ mesh based on torus.
Left: initial mesh with circular base, right: transformed mesh with parabolic base.
Auxiliary affine transformations were adopted for the mesh on the right.

5.2.3. Diffeomorphism

An intrinsic property of any surface is a coordinate system embedded into it. A coordinate system
of a surface is represented by straight lines or curves that indicate positions on that surface
in two directions. As long as any pair of curves from the same direction (or family) don’t cross,
the system can unambiguously define position of any point on that surface. There are infinitely many
possible ways to embed a coordinate system on a surface. Example shown in Fig. 5.96 proves,
that even flat surfaces may be parametrized by complex and irregular systems of coordinates.
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Fig. 5.96 Peter Kogler optical illusion rooms. Visualization of a concept of arbitrarily parametrized flat surfaces.®*

84 Source: https://mymodernmet.com/wp/wp-content/uploads/2016/12/peter-kogler-room-installation-1.jpg
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When designing a surface as NURBS, their coordinate systems rely on control point positions.
Depending on the intervals between them and their weights, the network of coordinate system
may be distorted as shown in Fig. 5.97. The first coordinate system represents unique state,
when all the lines are in equilibrium, each one is divided in equal portions.
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Fig. 5.97 Variations of coordinate systems over the flat NURBS surface, depending on the positions and weights
of control points.
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For majority of freeform surfaces it is impossible to obtain coordinate system that preserves equal
distances, areas and angles for the same intervals of surface’s domains. A form such simple as a sphere
is itself a subject of a science. Our globe is parametrized by a system consisting of latitude and meridian
curves, see Fig. 5.98. Meridians actually meet at the singularities on poles of the globe and circles
of latitude are closed in loops. Circles of latitude and meridians are uniformly spread over Earth’s
surface. Circles of latitude intersect meridians so that they divide them into portions of equal lengths
and vice versa. Although the portions of earth’s surface that are trimmed by different pairs of latitudes
and meridians that have equal distances to each other, they are not necessarily the same in areas.
Also the portions of latitudes are different in lengths depending on distances from the equator and
corners of areas closed by four portions of latitudes and meridians does not sum up to 360°.

Fig. 5.98 Sphere parametrized by a system of latitude and meridian circles.

Nevertheless, the adopted system is unique one, that is in the state of equilibrium.
The network of curves is uniformly distributed over the surface, at least some of the geometrical
properties are preserved locally.

While designing a spatial structure, e.g. lattice shell, it is convenient to measure distances between
nodes in Cartesian coordinate system. Each vertex is parametrized by 3 coordinates - x, y and z.
However, while designing a grid shell over a parametrized NURBS surface according to the top-down
paradigm, the position of each vertex is derived from formulation (5.42) with two argument
parameters: U and V.
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f,v)-(xyz2) (5.42)

U and V are the two dimensional coordinates of surface embedded in three dimensional space.
It is desirable to optimize the distances between points (eventually uniformalise the lengths
of the rods) that are separated by the same intervals of UV space. Distorted systems of isocurves
are often obtained due to non-uniform distribution of control points and their weights. Similar issue
is associated with super-ellipse and its parametric representation (5.43), which is a system of equations
parametrized by u and v coordinates, where ¢ and s are auxiliary functions.

x(u,v) =c (v, %) c (u, %)

s =02
k z(u,v) =s (v, %)

In Fig. 5.99 a form of super-ellipsoid dome is discretely represented by two networks of lattices.
Colours relate to the lengths of edges. In the first case the vertices were designated from
the parametric form super-ellipsoid, with parameters u and v the same intervals — same parameter
intervals result in lattices of uneven lengths. In the second case the u and v parameters have various
intervals between corresponding rows and columns of vertices, whereas the real distances between
vertices in column or row are equal.

Fig. 5.99 Upper hemispheres of super-ellipses in discrete representation. Left: vertices are distributed in even parametric
distances. Right: vertex distribution is optimized according to the Euclidean measure. The same colours mark edges of equal
lengths. Both meshes are PQ.

The algorithm used to equalize the distances between parametrized surface is iterative.
In the each step the UV distance between corresponding vertices is modified according to the real
distance between them until the system converges.

The second case concern the disproportion of vertex distribution after some transformations that
were previously presented in this chapter, e.g. perspective transformation. In that case it is possible
to perform the optimization linearly.
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For example a translational mesh divided into edges of equal length is transformed
by means of perspective transformation, resulting in non-uniform distribution of vertices,
see Fig. 5.100, right. The objective is to distribute points uniformly over the form after transformation.
To do so, the points are distributed over the continuous form after the transformation along one
of its edges, see Fig. 5.101, right. Pairs of those points define consequent vectors of translation
for the generatrix curve of translational PQ mesh, no other points are required.
The reverse transformation is then performed on these points, resulting with their non-uniform
distribution over the basic surface, see Fig. 5.101, left. The last step it co construct a mesh from those
points (Fig. 5.102, left) and perform the perspective transformation T once again on the corrected
mesh. The resultant PQ mesh has equalized lengths of edges, see Fig. 5.102, right.

Fig. 5.102 Transformation of the basic form with modified distribution of points.
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Optimisation methods vary depending on the type of PQ mesh and methods it was obtained.
However, in case of translational meshes with planar base, if one wants to keep the intersections
points between perpendicular chains of edges, the optimization described before will distort
distribution along other edges, see Fig. 5.103 and 5.104.

T 1.8 1.5 1.3 11 [ 1.0 [0.8]0.7]0.7]|0.6/0.:

Fig. 5.104 Top: perspective transformation of evenly distributed meshes. Bottom: the distances between vertices
at the along the near edge of the perspective transformed mesh are evenly distributed, however on the opposite site,
the points are highly distorted.

169



6. Designing with the use of formation and transformation methods

The proposed designing process for PQ meshes is based on methods of formation and transformation
presented in Chapters 4 and 5. Combinations of these methods allow for significant freedom
of the design while ensuring the exact geometrical accuracy of PQ meshes. While formation
of the PQ mesh is a single step in the design process, transformations can be performed many times
according to the needs. This observation allows to build a great number of design scenarios
for any combination of formation and transformation methods. However, some principles are adopted
so that these combinations could be useful for designers, e.g. what was already mentioned,
the formation method is performed as the first step of the design process and it is followed
by further transformations.

Due to the huge amount of possibilities a particular concept of the design process is adopted
in this work and is proposed as a design procedure for architects and structural engineers.
According to the top-down paradigm, the designer specifies the global shape of the freeform structure
by designing a doubly curved surface, which is further panelised. Whereas in the bottom-up approach
presented and promoted in this work, the designer has a lot of methods, each of which is controlled
by various numerical and vector parameters. Those parameters usually have indirect influence
on the resultant form. Therefore, in order to combine the advantages of the top-down and bottom-up
approaches (control over the final shape and exact accuracy of tessellations) the parameters controlled
by the designer have to be intuitively understood. A perspective transformation of translational mesh
with planar base is a particular scenario, where the designer is required to specify the boundary
of the final mesh (by defining the positions of four corner points) instead of setting the values
of incomprehensible f and g parameters and the details of all auxiliary, affine transformations.
In this work these complex and unintuitive parameters have been converted into easily
understandable interface with direct meaning for the designer.

Other design scenarios are based on the same principle, i.e. they should combine formation
and transformation methods in such a manner, that the particular global shape could be easily
obtained and controlled by the designer. Figure 6.1 presents the general concept of such design
scenarios. At first, the designer should answer the question: “what should the final shape look like?”.
The design scenario is chosen accordingly to the answer to that question. Such approach partially have
the advantages of top-down approach, i.e. the designer can directly specify the base shape parameters
choosing from predefined family of morphologies. The rest of the mesh based on such base
is generated by algorithm using formation and transformation methods, guaranteeing the correctness
of PQ mesh and its double curvature while the designer has reasonable control over the final shape
through parameters.

The adoption of such approach is further reasoned by the fact, that arbitrarily shaped forms
for PQ meshes are usually adopted for newly designed and constructed building envelopes, where
the designer have a lot of freedom for shaping the boundary shapes. Whereas in this work, particular
case studies are considered, where the base shapes are strictly defined, i.e. these are courtyards
of existing buildings, which have distorted forms. Such cases are common in design practice, especially
in old city centres, where irregular mesh of streets form irregular quarters with irregular courtyards.

Nevertheless, previously presented methods of formation and transformation allow for construction
of much more design scenarios, even for newly designed PQ envelopes.
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Scenario A >
Scenario B
What is the
shape of the
perimeter?
Scenario C
Scenario D >

Fig. 6.1 Design scenarios are based on the global shapes of base meshes, that the designer wants to obtain

6.1. Composition of a design scenario — the sequence of activities within
the designing process

Assumed design scenarios have comprehensive form, in which the final PQ mesh is a result
of several steps. The scheme of design scenario is presented in Fig. 6.2. The big container with thick
blue outline represents any of the design scenarios from Fig. 6.1. The scenario container contains four
smaller containers, set one by one, representing consequent activities of the design process. Each step
of the design process is controlled by the user through numerical and vector parameters.

PQ mesh design scenario

Formation Initial Main Final
of PQ mesh transformation transformation transformation

Fig. 6.2 Composition of a design scenario

First step is the formation of the basic PQ mesh which is done in such a manner, that it is eligible
for further transformations. The first step is adequate for the transformation from the third step,
e.g. for stereographic projection the initial PQ mesh should be formed as circular and for SC mapping,
the initial mesh should have diagonally aligned edges in top projection.

Third step is the main transformation, i.e. any transformation from chapter 5. Most of these
transformations have special geometrical requirements for the transformed meshes, which should
be guaranteed by previous two steps.
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Second step is any transformation (or composition of transformations) that can be performed
on the initial mesh, which will preserve or provide the geometrical properties required by the main
transformation step. For example when the designer wants to design a PQ mesh with second degree
base curve, he can use planar Chebyshev net in the first step, spherical inversion in the second step
and conic transformation in the third step.

The last step of the design scenario refers to any transformation (or composition of transformations)
that could not be performed in the second step. If any auxiliary transformation brakes the geometrical
property required by the main transformation from the third step, it should be performed at the end
of the scenario, when these properties are no longer required. For example height adjusting
anisotropic scaling destroys the circularity of meshes, therefore if the main transformation
is any transformation requiring that property, then the anisotropic scaling should be performed
in the fourth step.

It is also convenient to perform most of the transformations in the last step, when the global form
is more or less visible and fits the required boundaries. For the last step following transformations
are proper:

e Anisotropic scale for height adjustment. It preserves all points within one plane,
which can be the base plane of the mesh. Eventually global shape is adjusted while
the base shape is preserved.

e Shear transformation for inclining the mesh. Same as in previous transformation,
the base plane is preserved, while the global shape can be adjusted.

e Perspective transformation along the h (vertical) axis. Such transformation again preserves
the base plane, while the global shape can be adjusted.

In some cases planarization of the mesh can be also included into this group, when the result
of previous transformation in quasi-PQ mesh (see section 5.2.1.4).

Performing these transformations for final adjustments is more convenient after the third step
is performed. In the sections 5.2.1 and 0 two transformation methods were proposed in which
the mesh with planar, square base outline is adjusted into user defined shape. Applying auxiliary,
shape adjusting transformations before that step would result in indirect relationship between
the user defined transformation parameters and the resultant mesh. Whereas in the adopted step
order, the designer have direct control over the final shape adjustments.

6.2. Summary of relations between formation and transformation

Table 6.1 presents methods allowed for each step of the design process. The combination of selected
methods from each column allow to construct a design scenario. Moreover, more than one method
from second and fourth column can be used in single design scenario. Table 6.2 presents the proposed
path of used methods for designing a special case of PQ mesh on irregular, quadrilateral base
(see case study). In the first step translational mesh with planar, square base is selected, since it already
have some properties of the required final mesh, i.e. it has four base vertices and four base,
straight edges. In the second step all affine transformations are performed (see section 5.2.2.6)
and some additional adjustments, e.g. trimming (see section 6.4.2). The main transformation
is performed in the third step. Whereas in the fourth step all auxiliary transformations are performed,
i.e. height adjusting anisotropic scale, shear and perspective transformation with h parameter.
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Table 6.3 presents scenario for SC mapping, aligning PQ mesh into rounded base shape. In this case
only trimming is allowed in the second step, since SC mapping requires particular alignment of edges
in top projection, that could be distorted by any other initial transformations. Again, final adjusting
transformations are allowed as in previous example.

The last example refers to the hypothetical conic transformation, see Table 6.4. In this case the second
step allows only for one of the two methods of transformation of initial planar, circular Chebyshev net,

i.e. stereographic projection or inverse geometry (spherical inversion).

Table 6.1 Allowed methods for formation and transformation according to the design scenario steps.

Formation of PQ
mesh

Initial
transformation

Main
transformation

Final
transformation

Translational

Affine
transformations

Perspective
transformation

Perspective
transformation with
h parameter

Translational with L Conic . .
Trimming . Anisotropic scale
planar base transformation
Scalar - Stereographic

translational

projections

SC mapping

Shear

Stereographic

Rotational Inverse geometry L Planarization
projection
Sweep Inverse geometry
Marionette

Chebyshev net

Circular Marionette

Super-ellipsoid

Table 6.2 Path of selected methods for designing a PQ mesh based on irregular quadrilateral base.

Formation of PQ
mesh

Initial
transformation

Main
transformation

Final
transformation

Translational

Translational with
planar base

Affine
transformations

Trimming

Scalar —
translational

Stereographic
projections

Perspective
transformation

Conic
transformation

SC mapping

Perspective
transformation with
h parameter

Anisotropic scale

Shear

Stereographic

Rotational Inverse geometry L Planarization
projection
Sweep Inverse geometry
Marionette

Chebyshev net

Circular Marionette

Super-ellipsoid
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Table 6.3 Path of selected methods for designing a PQ mesh based on SC mapping.

Formation of PQ
mesh

Initial
transformation

Main
transformation

Final
transformation

Translational

Affine
transformations

Perspective
transformation

Perspective
transformation with
h parameter

Translational with
planar base

Trimming

Conic
transformation

Anisotropic scale

Scalar -
translational

Rotational

Sweep

Marionette
Chebyshev net

Circular Marionette

Super-ellipsoid

Stereographic
projections

Inverse geometry

SC mapping

Shear

Stereographic
projection

Inverse geometry

Planarization

Table 6.4 Path of selected methods for designing a PQ mesh based on conic transformation.

Formation of PQ
mesh

Initial
transformation

Main
transformation

Final
transformation

Translational

Translational with

Affine
transformations

Perspective
transformation

Conic

Perspective
transformation with
h parameter

Trimmin . —>| Anisotropic scale

planar base & / transformation P

Scalar - Stereographic .

. . - . 2 SC mapping Shear

translational projections

Rotational Stereographic -

Inverse geometry o Planarization
projection
Sweep Inverse geometry
Marionette

Chebyshev net

Circular Marionette

Super-ellipsoid
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6.3. Design tools based on design scenario cases

Based on concept of design scenario proposed by the author, presented in Fig. 6.2, proprietary design
tools are proposed. Whereas in the scenarios presented in section 6.2 the designer must follow
all the steps manually, implementing these steps into the one tool allows for instant execution
of all of them. Moreover, parameters for each step can be changed any time in any order and the result
is calculated instantly. When the final mesh is calculated, the designer can change parameters
of the first step and the algorithm will perform all consequent transformations of new base mesh
according to parameters that were previously provided for all other steps. There is no necessity
for the designer to concern the order of steps in this approach. The designer is only required to provide
all necessary information for the algorithm. In Fig. 6.3 and 6.6 user input is marked as one block.

In the following sections 6.3.1 and 6.3.2 two examples of the design tools corresponding
to the workflows shown in Table 6.2 and 6.3 are further discussed.

6.3.1. The tool for designing PQ meshes based on irregular quadrilaterals
— perspective transformation tool

The tool for designing PQ meshes with irregular quadrilateral outlines is based on perspective
transformations, i.e. third step in Fig. 6.3. Perspective transformation matching is additionally aided
with auxiliary affine transformations, see sections 5.2.2.5 and 5.2.2.6.

Tool for designing PQ meshes based on irregular quadrilaterals

Unit Trimming Perspective Base preserving
mesh Auxiliary tr. transformation transformations

AAA A A A A A A A A A

/ User input /

Fig. 6.3 Diagram of the workflow in the tool for designing PQ meshes based on irregular quadrilaterals.

After the PQ mesh is transformed, the tool allows for transformations that preserve the base
of the mesh. These base preserving transformations include perspective transformation
with h parameter, height adjusting anisotropic scale and shear transformation (see Table 6.2).

Before the main transformation and final adjustments are performed, the base mesh
has to be constructed, which can be then modified. The base mesh is a parametrized
translational PQ mesh with planar, square base outline — a unit mesh, which is discussed
in section 6.4.1. After the base mesh is ready, additional trimming (see section 6.4.2) modification
is done before the main transformation. Trimming changes the external dimensions of the mesh,
therefore it has to be done before perspective transformation matching in order to accurately
fit the desired outline.
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6.3.2. The tool for designing PQ meshes with rounded outlines — SC transformation tool

The tool for designing PQ meshes with rounded outlines is based on SC mapping, i.e. the third step
in Fig. 6.4. Similarly to the previously proposed tool, this one performs unit mesh formation in the first
step (translational PQ mesh with planar, square base), trimming and auxiliary transformations
in the second step and base preserving transformations in the last step. Although the purpose of these
tools is different and its application will result with different morphologies of PQ meshes, most
of the steps are similar.

Tool for designing PQ meshes based on rounded outlines

Unit Trimming . Base preserving
. SC mapping )
mesh Auxiliary tr. transformations
y

AAA A A A A A A A A A

/ User input /

Fig. 6.4 Diagram of the workflow in the tool for designing PQ meshes based on rounded outlines.

6.4. Description of subsequent activities

In this section, the individual steps performed in perspective and SC tools are explained in details.

6.4.1. Activity 1: Formation of unit mesh

Unit mesh is an initial PQ mesh created as a translational mesh with planar, square base perimeter
as described in the section 4.1.2. For the convenience of further calculations and transformations
(perspective transformation and SC mapping) it has to be positioned at the origin of the coordinate
system and span one unit only in each X and Y directions (see Fig. 6.5). Perimeter points must lie
on the XY (Z = 0) plane. All other vertices of the mesh are positioned over the base plane.
Since the final height of the mesh is adjusted in the last stage of the tool’s workflow,
for now the highest point P is positioned over the beginning of the coordinate system O
at the level z=1, i.e. P=(0,0,1), see Fig. 6.6.
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Fig. 6.5 Positioning of the unit mesh.

P (0,0,1)

A (1,1,0)
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Fig. 6.6 Specification of the height of unit mesh

The scheme for unit mesh user controlled parameters is shown in Fig. 6.7. There are three parameters,
each of them will be explained respectively further in this section, under the names of parameters
their types and value ranges are specified.

1.Unit mesh

NG

Slope Quantity Shift
(0,1) {x% € N} True/False

Fig. 6.7 Scheme for parameters of unit mesh.
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6.4.1.1. Slope

The slope parameter s controls the shape of the directrix (generatrix) curve of the mesh,
according to the rules described in section 4.1.2. Parameter s defines the position of extrapolating
point P. of the segment curve, from which the directrix is composed. The parameter s is within
the interval (0,1), see Fig. 6.8. In section 4.1.2 the P, point is defined by two coordinates, i.e. a and b.
For the purpose of further parametrization only the coordinate a is controlled by the value of s — slope,
while coordinate b is equal to 0, for which the resultant shape has continuous curvature all over
its surface (see Fig. 8.3 on page 215).

R

0 P.=s 1
Fig. 6.8 Slope parameter s controls the shape of the segment curve.

Possible forms of unit mesh depending on the value of s parameter are shown in Fig. 6.9.
When the extrapolating point is incident with the first interpolating point at (0,0), the obtained shape
is a pyramid. In section 8 - Mechanical performance of doubly curved PQ shells the result
of FEM analysis showed that the best static properties for the PQ meshes occur when the slope
parameter has the value between 0,4 and 0,5, see tables 8.1 to 8.5. Also, for these values the mesh
has the most natural form, i.e. the discrete curvature continuity is preserved, which is not the case
for values near 0 (pyramidal form) and near 1 (most bulged form).

Fig. 6.9 Consecutive forms of unit mesh obtained with different values of slope, starting from 0 with 0.1 step.
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6.4.1.2. Quantity

The quantity parameter is responsible for the number of PQ panels in each diagonal direction.
In order to keep consistency of facets, the value of quantity must be even. The explanation
of that assumption is shown in Fig. 6.10. The quantity value refers to the number of divisions along
the diagonal line. If that number is odd, the diagonal line is discarded, therefore facets at the corners
of the mesh are pentagonal, so is every second facets incident with the border of the mesh.
Three of five vertices of each corner facets must lie on the border of the mesh, therefore they lie
at the ground plane. Those three points constitute a plane on which two remaining points lie
(the ground plane). Consequently every corner facet is horizontal and lies on the ground plane.
Further analysis provides into a conclusion, that when the quantity value is odd, the only possible
configuration of the mesh is flat, what is an undesirable solution in this consideration.
Whereas if the quantity value is even, the resultant shapes of facets are only quadrilateral
and triangular (at the edges) and at most only two vertices of a facet lie at the border of the mesh
(at the ground plane).

Figure 6.11 presents possible configurations of the unit mesh depending on the values of quantity.

< 5
/
y,
y,
y
N4 N
N
X < 4
AN N
N N
N\ AN
AN AN
N
< 3
AN \
AN AN
\\\
2 < P
N N\
\ N
’ _
o
1 X
/ AN
. / o

Fig. 6.10 Top projections of unit meshes with even and odd number of cells in diagonal direction.

Fig. 6.11 Consecutive forms of unit mesh obtained with different values of quantity parameter,
starting from 4 with step equal 2.
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6.4.1.3. Shift

The last parameter of unit mesh is shift. The shift parameter has true/false values. It is responsible
for the distribution of facets over the mesh. There are two possible ways to distribute the same amount
of facets on the mesh while keeping their forms triangular and quadrilateral. In the first case shown
in Fig. 6.12, left, the facets are distributed in conventional manner. On the same figure, right, the facets
are shifted by half the width of the facets. The amount of facets along the diagonal direction
is the same, however in the second case one facet is split into two halves.

LSS

Fig. 6.12 Left: mesh with shift=false, right: mesh with shift=true.

Both types of meshes are aligned together in Fig. 6.13. In fact these two meshes are dual images.
The vertices of one mesh are centres of facets of the other mesh and corresponding edges intersect
at right angles.

The difference between meshes in both cases is that in the second one there is no top vertex
—itis replaced by single, horizontal facet. Additionally, there is only one triangular facet at each corner
(instead of two), which is however horizontal. Although horizontal facets are not desired, the practical
application of this parameter is explained in the following section.

Fig. 6.13 Conventional mesh - continuous lines; shifted mesh - dashed lines.

Two meshes of the same quantity with shift false and true are shown in Fig. 6.14.

Fig. 6.14 Perspective view on the unit mesh with shift=false (left) and shift=true (right).
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6.4.2. Activity 2: Trimming

In the second step, apart from the auxiliary affine transformations of the main transformation,
the unit mesh can be trimmed. In some cases it is desired to transform a mesh, whose selected edges
are not horizontal, e.g. trimming was used in case study in section 7.2, where only two or three sides
of meshes are supported on horizontal cornices of the courtyard’s walls, whereas the others
are trimmed in order to form arched edges. Part of the unit mesh can be trimmed and discarded,
resulting with one, two, three or four arched edges. Figure 6.15 presents a scheme of this activity,
which requires four values from the range between -1 and 1. As the unit mesh spans within the values
of x and y coordinates between -1 to 1, each trim parameter indicates the location of the vertical
trimming plane. For example when the vertical trimming plane on the right side of the mesh has value
1 (the plane is located at point x=1 at the abscissa), then no trimming is performed. When that value
is changed, the trimming plane is moved along the x axis and all vertices that are located at the right
side of that vertical plane are discarded, see Fig. 6.16, left.

In order to keep the consistency of facets shapes (only triangles and quadrilateral are allowed),
after discarding the points that are located on the negative side of the trimming planes the mesh
is rebuilt from the remaining points. It means that the trimming plane has not necessarily to be located
at the resultant edge of the mesh. Some facets are transformed from quadrilateral into triangular
shapes if one of their vertices is discarded. There are also cases, when additional vertex
has to be introduced into a facet, when two vertices are discarded (by two trimming planes),
see Fig. 6.16, right (the triangular facet at the rightmost corner). Such additional vertex is located
on the plane containing that particular facet it belongs to. Lastly, new vertex has to be introduced
when triangular facet is located at the border of mesh which is trimmed, see Fig. 6.16,
centre (rightmost vertex of mesh in centre located on its edge). In that case the newly added vertex
is located on the base plane and at the extreme x or y parameters of all remaining points in the mesh.

2. Trimming

f

Fig. 6.15 Scheme for trimming.

R

,‘ 4

Fig. 6.16 Unit meshes trimmed from right side (right image), two -left and right side (centre image)
and all four sides (right image).
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In cases when trimming results with single triangular facet at the corner of the mesh,
the shift parameter from previous activity can be switched to the opposite value. Figure 6.17 shows
a case when the initial mesh has single facets at the corners (when shift = true), whereas after trimming
the mesh has double facets at the corners. Combination of shift and trimming parameters allow
to design PQ meshes by controlling the shapes of edges (horizontal or arched) and the distribution
of vertices along them.

Fig. 6.17 Combination of trim and shift parameters resulting with two facets adjacent with each corner of resultant mesh.
Trimmed part of initial mesh whose parameter shift=true is marked by dashed lines.

Once the mesh is rebuild after trimming, it has to be unitized again in order to be suitable
for the main perspective transformation or SC mapping. Trimming reduced the span of the mesh
along x and/or y directions. Therefore anisotropic scaling has to be introduced in order
to align resultant edge with A, C, E and G points from Fig. 6.5. It is not necessary to locate those corner
points on the ground plane, the z coordinate of all points in the mesh remain unchanged.

6.4.3. Activity 3a: Perspective transformation

The first variant of third step in the workflow shown in Fig. 6.2 is perspective transformation
in which previously generated mesh is transformed into any, user defined quadrangle A’B’C’D’,
see Fig. 6.18 and 6.19. The designer defines desired base perimeter by indicating four points
at the corners. The points are provided in proper order so that the resultant irregular quadrilateral
is non self-intersecting. Also, the configuration of these points have to allow the construction
of convex quadrilateral, i.e. each point has to be located outside of a triangle constructed
by three remaining points.

3a.
Perspective

T

Quadrangle

¢ | D

A |l B |

Fig. 6.18 Scheme for perspective transformation. Any irregular quadrangle is defined by positions of four points:
A’, B, C'and D".
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B A

Fig. 6.19 Transformation of unit mesh M into M' though perspective transformation.
Mesh M has square base perimeter defined by points ABCD.
Resultant mesh M' has base perimeter which is any irregular quadrilateral, user defined by points A', B', C' and D'.

This activity of the perspective transformation design tool works according to the assumptions
described in section 5.2.2.5 Perspective transformation matching. These mentioned assumptions
are represented in Fig. 6.20: firstly, the transformation T (composition of perspective transformation
and auxiliary affine transformations) between the desired shape and unit square is calculated.
Then the inversion of T is applied on the unit mesh obtained by execution of previous activities.
The effort of creating and unitizing the mesh in previous steps is reasoned by convenience
of perspective transformation. Eventually, the mesh is aligned with desired dimensions by auxiliary
affine transformations of the perspective transformation step.

D

C D’
CI

Calculation of the
transformation T

B A’ 5

MI

Inversed transformation

Tlof M transformed mesh

Fig. 6.20 Perspective view at transformation T calculation procedure (top). Inversed transformation of unit mesh M
(bottom).
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Any time the designer modifies positions of A’, B, C’ or D’, the algorithm recalculates transformations,
so that the user can see the resultant M’ mesh immediately.

Examples of perspective transformation of previously trimmed PQ meshes generated with various
values of shift parameter are shown in Fig. 6.21.

Fig. 6.21 Variety of possible PQ morphologies obtained through parametrization of first three steps.

6.4.4. Activity 3b: Spherical cylindrical mapping

The second variant of the third activity in the design tool is the SC mapping described in section 5.2.1.
In this case the designer specifies only three points — A, B and C, see Fig. 6.22.

3b. SC
mapping

e t ™~

Fig. 6.22 Scheme for SC mapping activity. User defines the rounded shape by specifying only three of four of its vertices.

The geometric rules of determination of the fourth corner point and the rest of rounded, outline shape
is shown in Fig. 6.23. The resultant shape in SC mapping of rectangular shape is section of a wheel,
i.e. a shape consisting of two concentric arches and two line edges, whose extensions intersect
at the centres of arches, see Fig. 6.23, right. Two points — A and B define one line segment,
whereas points B and C define arched edge, which is perpendicular to the AB segment at point B.
Therefore, the point O, which is the centre of arch BC lies along the extension of AB. The fourth point
D is found by the intersection of line CO (by the definition of shape obtained by SC mapping,

line segment CD lies on a line passing through O) and arch AD (whose centre is in point O),
see Fig. 6.23, right.
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Fig. 6.23 Definition of the rounded shape (section of a wheel) by positioning three vertex points.

The spherical — cylindrical mapping also requires the external space boundary radius (the distance
between O and T, see Fig. 6.24), since the further from the center O, the space gets more and more
dense, eventually converging into a singularities around a circular boundary. For a specific radius
of the first and second outline arc and the angle between line segments the distance between
O and T have to be calculated. Keeping in mind, that SC mapping requires particular alignment
of PQ mesh edges in top projection, i.e. only diagonal directions are allowed (45° or -45° to the x axis
of the coordinate system), the SC mapping image of the diagonal line is part of the circle, that passes
through the center point O and which is tangent to the border of SC space in point T,
see Fig. 6.24, 6.25 and 6.26.

Fig. 6.24 Required shape ABCD. Point O derives from that point.
Radius OT derives from the diameter of circle passing through points O, A and C.

A circle drawn over SC (spherical — cylindrical) space, passing through the origin point O
and tangent to the external boundary at the point T passes through the points P; .. Py,
see Fig. 6.25. Each point P is the integer point of a SC space. Consequent P points are equally spaced
and in diagonal array in the SC space. Equivalents of these points in the Cartesian system
are consequent points along diagonal of the network — Py, ... Pn. It is also known from the properties
of SC mapping®, that points D, B and P, .. P» will lie on a common circle after mapping.
Therefore, the radius of SC space - | OT| - for a specific A, B, Cinput points is derived from the diameter
of a circle passing through points O, A and C.

85 points aligned along a straight line which is diagonal to Cartesian coordinate system will lie along a common
circle after SC mapping, see Fig. 5.37 on page 124.
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Corresponding points along the diagonal of ABCD quad from Fig. 6.25, left, are mapped
to points P, on the SC space, see Fig. 6.25, right. Knowing that these original diagonal points
are mapped along the black, tangent circle it is only required to know, where exactly on that circle
are those points mapped. This information is already implicitly contained in the configuration
of user defined A, B and C points, namely in the proportion between straight and arched edges.
That relationship between proportions of edge lengths of initial the mesh and the location of that mesh
in the SC space is illustrated in Fig. 6.26, where three rectangles with diverse edge proportions
are SC mapped. All rectangles have one common dimension a, whereas other dimensions a, b and ¢
are different. The a dimension is transformed into angle between radii of SC space. From the definition,
that diagonal lines lie along the tangent circle, consequent rectangles are mapped on various distances
from point O in order to keep original proportions between edges.

p T

Fig. 6.25 When the base mesh is square (has the same density of vertices in both directions)
the diagonal BD with points P, to Pr, are mapped along the black circle (right),
which is tangent to the boarder of SC space and passes through its centre point O.

The diagonal directions in Fig. 6.26, left, are suitable for planarity preserving SC mapping only
in one case, i.e. for the second, square shape, which diagonal is aligned at 45° according
to the x direction of coordinate system. However, two other cases also find application, when the base
mesh is trimmed in previous activity. Figure 6.27 illustrates a case, when the base mesh was previously
trimmed. The unitization of the mesh (anisotropic scaling which aligned corners on particular
coordinates) results with a mesh which is not suitable for SC mapping, since its diagonals
are not properly aligned.

NN

R

Fig. 6.26 The positioning of resultant section of SC space between centre point O and external boundary of SC space depends
on the edge proportion of initial shape (left).
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unitization

Fig. 6.27 Example of trimming and unitization of a base mesh.
The resultant mesh (right) is no longer suitable for SC mapping, since diagonals are not properly aligned.

In order to bring the unit mesh into a configuration in which it will be eligible for planarity preserving
SC mapping, it has to be anisotropically scaled is such a manner, that diagonals are aligned at 45°
with respect to the x axis of coordinate system. The scaling results with a mesh, which is narrower
or wider (depending on the proportion of divisions on each sides), see Fig. 6.28, left. The y dimension
of the mesh is maintained as 2 units, whereas its x dimension is a. The mesh is positioned
along the x direction in such a manner, that the gaps on both sides to the unit square are both equal
to some value B. As @ dimension in SC space is isomorphic, the dimensions a and {3 are easily converted
into angles o’ and B’ by maintaining the proportions between them, see Fig. 6.28, right.
Angle o’ in Fig. 6.28, right, is defined by the positions of points A and B, which are user defined,
following by the point O, which position is derived from all user defined points. Lines passing through
point O and points G and H are defined by angles B’, calculated from the proportions between
dimensions a and  and angle a’. Following points E, F, G and H are at the intersections between newly
defined lines and extensions of user defined arches AB and CD. Aligned diagonal line in Fig. 6.28, left,
spans between points £’ and G’, therefore on the SC space the diagonal arch will pass through points
E, G and O. Knowing that diagonal arch, tangency point T can be found and finally, the radius of desired
SC space can be calculated as the distance between points O and T.
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Fig. 6.28 SC mapping of an uneven base mesh. Only A, B and C points are user defined.
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Two examples of application of SC mapping step is shown in Fig. 6.29, where no trimming was applied
in previous step. By extension of previously explained procedure, initial base mesh can be trimmed
from one, two, three or all sides and in any configuration, see Fig. 6.30 and 6.31.

C C
A . A ‘
B B

Fig. 6.29 Two examples of SC mapped, untrimmed meshes, user defined by positions of points A, B and C.

Fig. 6.30 Two examples of SC mapping of previously trimmed meshes - from one (left) and two sides.

Fig. 6.31 SC mapped PQ mesh, previously trimmed from all four sides.
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Aligning SC mapped meshes

In case when the desired base shape is disproportionately rounded quad, whose arched edges
are much longer than straight edges, covering mesh may be divided into several sections
— each one individually SC mapped, see Fig. 6.32. Sectioning the base form results with meshes,
whose individual facets are more proportional, i.e. proportion between diagonals of individual facets
are closer to one. When single mesh is mapped onto not sectioned base form, individual facets of mesh
are elongated and disproportional, see Fig. 6.32, left.

Fig. 6.32 Elongated, rounded base form. Left: single mesh SC mapped on that base form.
Right: base form sectioned into three parts.

Meshes mapped onto sectioned base form have one or two edges, which are not supported
on perimeter (e.g. by wall). Without trimming the mesh, such unsupported edge is horizontal.
However, in previously trimmed mesh, the same unsupported edge is arched as in Fig. 6.33.
Arched edge allows for applying arched support beam beneath both adjacent meshes. Structurally,
such arched beam have an advantage over straight beam. Greater loads can be transferred
by an arched beam than a straight one of the same cross section.

Fig. 6.33 Composition of three SC mapped meshes. The parameters of all SC mappings were selected in such a manner,
that corresponding points of neighbouring meshes are incident and the corresponding arched edges have the same radii.

Adjacent meshes with arched edges have the capability for exact matching, i.e. corresponding points
of neighboring meshes are exactly incident, see Fig. 6.33. Initial meshes in the above example
were generated with the same parameters of unit mesh (slope, quantity, shift) and the same trimming
along common edges. However, SC mapping not necessarily have to be performed on the same
SC space. The radii of corresponding edges of neighboring meshes can differ and still, corresponding
edge vertices of both meshes will be incident, as shown in Fig. 6.34.
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Fig. 6.34 Exact matching of two neighbouring meshes mapped onto different SC spaces.
The radii of corresponding edges are different.

6.4.5. Activity 4: Base preserving transformations
Final activity in the design tool of the workflow is composed of the base preserving transformations.

All transformations in this group preserve the shape of the base of mesh while allowing to adjust
its global form. The group include:

e Anisotropic scale,
e  Shear,
e Perspective transformation with h parameter.

Each transformation shown in Fig. 6.35 has its individual numerical and vector parameters.
Most of these parameters can be combined, allowing the designer to control all base preserving
transformations by the position of two points and one numerical value.

4. Base preserving
transformation

Shear Anisotropic Perspective
scale transformation
Plane Factor Direct- Plane Factor Plane Centre Factor
P f iond P g P 0] h

Fig. 6.35 Scheme for base preserving transformations.
Each transformation is parametrized by different factors, vectors and planes.
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Planes of all transformations are in fact the same, it is the plane containing base of the mesh.
Thus, this parameters can be omitted from the list. Factors f and g parametrizing shear and anisotropic
scale transformations can as well be determined by the lengths of some vectors. Shear has a direction
parameter d, which is a vector, that by the definition has to be parallel to the plane of transformation.
In this case it means, that vector d is horizontal. Whereas anisotropic scale is parametrized by factor
g, which can as well be determined by the length of some other vector. Anisotropic scale in this case
is a height adjusting transformation, which direction is vertical. Therefore, the vector determining
factor g has to be vertical as well. Thus, all parameters: d, f and g can be determined by vertical
and horizontal components of a vector, which is user defined by positioning of two points — K and L,
see Fig. 6.36.

Fig. 6.36 Adjusting height of mesh by manipulating the position of point L over the ground plane,
i.e. only its z coordinate is changed.

Point K is constrained to the ground plane and the mesh has unitized height (equal to one).
The distance between points K and L in vertical direction used as factor g of anisotropic scale results
with the image mesh, whose height is equal exactly g. In other words, the peak of the resultant mesh
is on the same level as point L. Doing so, the designer has the possibility to directly specify one
of the most important parameters of the mesh.

Shearing parameters, i.e. factor f and direction d are also derived from the user defined positions
of points Kand L —namely from their top projection, see Fig. 6.37. Direction d is the direction of vector

KL projected on the ground plane and factor fis the length of that projected vector. Perspective view
on sheared mesh controlled by the user defined vector KL is shown in Fig. 6.38.

' 'K\ |

Fig. 6.37 Shearing the mesh by changing the x and y coordinates of point L. Top view.
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Fig. 6.38 Perspective view on the sheared mesh and KL vector.

For the perspective transformation the center point O and factor h are required. The relevance
of location of center point of perspective transformation in vertical direction is highlighted in section
5.2.2.8. Since all parameters of previous transformations were numbers and directions specified
by a free vector, the location of points K and L is irrelevant from these parameters point of view.
Therefore point K can determine the center of perspective transformation O. Factor h of perspective
transformation remains a separate parameter, whose values are in the range from zero to infinity.
Finally, the scheme for base preserving transformation with combined parameters can have

a form shown in Fig. 6.39.

4. Base preserving
transformation

_— 4 —

Shear Anisotropic Perspective
scale transformation
Factor Direct- Factor Centre Factor
f ion d g o h
Horizontal Vertical
component component
L K

Fig. 6.39 Scheme for base preserving transformations with combined parameters L, K and h.
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Aligning trimmed edges with shear and perspective transformation

Heterogeneity of SC space results with deflection of the mesh from its center. This deflection is clearly
observed on trimmed arch of the mesh, which tilts outwards the circle, see Fig. 6.40, left.
This tilt can be corrected by application of shear transformation, making the arch almost symmetrical,
see Fig. 6.40, right.

=) £

Fig. 6.40 Left: deflection of trimmed, SC mapped mesh. Right: the same mesh corrected by shear transformation.

The shear transformation acts on all vertices of the mesh and translates them in the same direction.
Therefore, arch composed of points, which are contained in a common, vertical plane,
can be preserved on it by specifying shear direction parallel to that plane. Two adjacent,
trimmed meshes can preserve exact adjacency by applying the same shear transformation.

However, if the mesh is trimmed from two sides, it is impossible to keep planarity on both arches,
since they lie on different planes which are not parallel, see Fig. 6.41.

K

oKL
L

Fig. 6.41 Top view on shear transformed mesh. Edge planarity is distorted.
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In contrast to shear transformation which transforms all points in the same direction,
the perspective transformation along vertical axis (with parameter h, see section 5.2.2.8)
transforms points in various directions, depending on their position and the position
of the centre point of perspective transformation. As shown in Fig. 6.42 points are shifted along lines
passing through them and the designer specified point L. Values of relocations relate
to the value of parameter h and are performed in such a manner, that planarities of facets
are preserved. The bundle of those lines®® have one common point L, even, when shear transformation
is also applied, see Fig. 6.43. It is worth to emphasize, that centre of perspective transformation
is not the point L, but the point K. Centre point of perspective transformation used for base preserving
transformations lies on a common plane with base of transformed mesh, i.e. at the point K,
which is equivalent to the point O from Fig. 5.77 on page 154, whose coordinates are (0,0,0).
The designer can define position of point K anywhere on a horizontal plane containing base of a mesh,
which needs to be maintained. Whereas the location of user defined point L not only defines,
by the relation with the point K, the base preserving transformations such as height adjusting
anisotropic scaling and shear transformation, but also has a special property being the centre point
of concurrent lines that pass through vertices of the mesh and their projections onto a horizontal plane
containing the point K, regardless of the value of perspective transformation parameter h.
Figures 6.42 and 6.43 show the same initial mesh transformed with different values of parameter h.
Regardless of the value of parameter h, the plane projections and orange concurrent lines are always
the same and pass through the point L.

Fig. 6.42 Perspective transformation with parameter h visualized as shifting the points of mesh along lines radiating from
point L. Shifting is performed in such a manner that planarity of all facets is preserved. For all four meshes
(transformed by means of perspective transformation of the same initial mesh) the images of projection
on a horizontal plane form the point L are exactly the same.

8 Concurrent lines, i.e. a set of lines that intersect at a common point, see (Weisstein 2018c).
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Fig. 6.43 Combination of shear and perspective transformation. The lines radiate from point L,
which is not directly above the point K. In all images in this figure only the meshes are different.
The locations of points K, L, orange rays passing through vertices of meshes and the horizontal images
of projections are exactly the same.

In order to apply perspective transformation to a mesh while maintaining all points along trimmed
edge on the original, vertical plane, point L, which is also the intersection point of the bundle of lines,
have to be located on that vertical plane containing trimmed edge, see Fig. 6.44 and 6.45.

K K

Fig. 6.44 Bundle of lines in perspective transformation create a shadow of edge of the mesh. The shadow is a straight line,
when the L point is located on a common plane with all the edge points (right).

Fig. 6.45 Perspective transformations with L point located on a plane containing trimmed edge.

195



Point L located on a plane containing trimmed edge allows to maintain its planarity and vertical setting.
In order to maintain planarity and vertical setting for two trimmed edges of one SC mapped edge,
point L has to be located on both planes containing those edges. Therefore, it has to be located
on their intersection, which is a vertical line passing through centre point of SC space, i.e. point O.

Central meshes in Figs. 6.46 - 6.49 are trimmed on both sides. Applying perspective transformation,
whose centre point is incident with centre of SC spaces on which all meshes were mapped,
allows for preserving trimmed edges on original, vertical planes. For comparison with shear
transformation see Figs. 6.41 and 6.49.

Fig. 6.46 Parallel view of segmented, adjacent meshes.

Fig. 6.47 Top view of segmented, adjacent meshes.
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Fig. 6.48 Parallel view of segmented, adjacent meshes.
Perspective transformation along vertical axis performed with the centre above the centre of SC space.

Fig. 6.49 Top view of segmented, adjacent meshes. Perspective transformation along vertical axis performed with the centre
above the centre of SC space. The vertical planes containing edges are preserved. High value of parameter h
was intentionally chosen to highlight mentioned property.

6.5. Implementation of the design tools

Design scenarios were implemented in Grasshopper™ graphical algorithm editor®”. Each activity
has been implemented in Python programming language. Figure 6.50 presents two design tools
as a Grasshopper definition assembled from four components each. Component marked
in red corresponds to unit mesh activity; yellow to trimming and green to base preserving
transformations —these components are shared by both workflows. Component marked in blue stands
for perspective transformation and purple for SC mapping. Remaining components stand
for user defined parameters.

87 Grasshopper is a visual programming language and environment that runs within Rhinoceros 3D CAD
application. Homepage of Grasshopper™ is: https://www.grasshopper3d.com/
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Numerical parameters are entered using sliders. Points are entered from Rhinoceros 3D® interface
or directly from Grasshopper environment. Outline for perspective transformation is entered
as a polyline, i.e. chain of four lines segments not shown in Fig. 6.50. Entered data can also be provided
as an output from other algorithms created by the designer. Implementation of the design workflows
in Grasshopper environment allows for plugging the output (PQ mesh) into other design, analysis
and optimization tools available in this environment, e.g. Karamba3D?® FEM analysis tool, Galapagos®
evolutionary solver and others. Output of the design workflows is capable for further processing
in Grasshopper environment, i.e.:

¢ Specifying and optimizing vertex normal vectors (see section 3.5);
* Assigning cross sections;
¢ Generating the documentation.

Separation of the workflow activities as components allows for reusing them in different scenarios
not predicted in this work.

PQ mesh on irregular quad base perimeter

D 4 intit nesh
©0.00
©0.00
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©00.00 ‘ _
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PQ mesh on rounded quad base perimeter

©00.00
©00.00
©00.00
©00.00

Base preserving transformations]

Fig. 6.50 Implementation of design tools as Grasshopper components.

88 Rhinoceros is a 3D computer graphics and computer-aided design application. Homepage of Rhinoceros is:
https://www.rhino3d.com/

8 Karamba3D is a parametric structural engineering tool which provides analysis of spatial trusses, frames and
shells, which is embedded in the Grasshopper. Homepage of Karamba3D is: https://www.karamba3d.com/

%0 Galapagos is a plugin embed in Grasshopper, which provide a generic platform for the application of
Evolutionary Algorithms. The details are further discussed in: https://www.grasshopper3d.com/group/galapagos
and https://www.grasshopper3d.com/profiles/blogs/evolutionary-principles.
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7. Case studies

The tools developed for shaping PQ meshes, briefly described in section 6.5 were tested by using them
in designing transparent covers over courtyards of two existing buildings in Wroctaw. Both buildings
have non-standard shapes of courtyards, for which particular workflows and tools were prepared.

Section 7.1 describes application of the tool for designing PQ meshes over irregular quad base
perimeters on case of Department of Human Biology of the Wroctaw University.

Section 7.2 describes application of the tool for designing PQ meshes over rounded quad base
perimeters on case of the Lower Silesian Governor’s Office.

7.1. The grid shell over the courtyard of Collegium Anthropologicum
7.1.1. The design task

Collegium Anthropologicum is a part of the University of Wroctaw. Its building is located
in the historical part of Wroctaw, at Kuznicza street.

General view on the building is shown in Fig. 7.2, photo from the courtyard is shown in Fig. 7.1,
whereas the 3D modelled interior of the courtyard, prepared by the author is shown partially
in Fig. 7.3. The form of the courtyard is irregular quadrilateral.

Fig. 7.1 Photo from the courtyard of Collegium Anthropologicum.®?

91 Source: https://polska-org.pl/3868296,foto.html?idEntity=4349677
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Fig. 7.3 General view on the computer model of the courtyard.
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The courtyard is nearly 20 meters long and 12.75 to 13.75 meters wide, see Fig. 7.4.

The objective is to design general geometry for a glazed canopy over the courtyard. The desired
geometry is discrete, doubly curved PQ mesh with planar base perimeter. Such geometry is obtained
by perspective transformation of translational mesh with planar base 4.1.2 according to the design
process described in section 6.3.1.

Fig. 7.4 Main dimensions of irreqular courtyard.

7.1.2. Description of the activities performed by the designer

In this case study the designer specifies outline of desired base perimeter and performs all necessary
transformations using the developed tool. The designer can specify the quantity of facets along edges
— in this case the quantity parameter is equal to 22, what results in 11 facets along each edge.
For this quantity value lengths of edges of facets are between 0.8 to 1.4 meters. Slope parameter
has value of 0.5 for which the mesh has most smooth form. Shift has false value. No trimming
and no shear transformation is performed. Base preserving transformations are performed to set
the height of the mesh at 2,7 meters. Additionally, perspective transformation along vertical axis
was performed in order to optimize the lengths of the edges. For the h parameter value equal to 1.0,
the lengths of facets edges spread from 93 to 124 cm. Slight change of the parameter h value to 1.068
result with edges of lengths between 92 to 118 cm, without significant changes of the form, Fig. 7.5.
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Fig. 7.5 Original mesh edges marked in red, perspective optimized mesh edges marked in blue.

7.1.3. Description of the result

The resultant mesh, shown in Figs. 7.6 and 7.7, is composed of 220 planar quad and 44 triangular
facets. Courtyard area of 256 m? is covered by a mesh, whose area is 276,6 m2. Edge lengths of quad
glass facets vary from 0,92 to 1,18 meters.

Additional design parameters allow for shape adjustments and mechanical optimizations.
The resultant mesh is eligible for torsion optimization (see section 3.5.2), conceptual model
was optimized for elimination of geometrical torsion in bars. Obtained mesh is a starting point
for further design of structural properties, i.e. cross sections of bars, materials, application
of cross-brace stabilizing quads, etc. However, this discussion is out of scope of this work.
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Fig. 7.7 Aerial parallel view on the conceptual model for the glazed grid shell.
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7.2. The grid shell over the courtyard of Lower Silesian Voivodeship Office

7.2.1. The design task

The Lower Silesian Voivodeship Office in Wroctaw is built along the rounded bank of Odra river.
General view on the building is shown in Fig. 7.8 and in Fig. 7.10. The building has the form
of a symmetrical, monumental edifice, which is slightly rounded along the longer edge. Inside the block
there are three courtyards. The middle courtyard has a rectangular form, whereas two other,
symmetrical courtyards are have rounded quad forms. Each one of two symmetrical courtyards
consists of two concentric arches (AB and CD) and two line segment edges (AD and BC), see Fig. 7.9.
The extension of the AD passes through the centre point of arched edges - O, whereas the extension
of the BC edge do not intersect with the point O.

Fig. 7.9 The geometry of rounded courtyards.
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Fig. 7.10 General view on a computer model of the building.
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The courtyard is approximately 29 meters wide and 50 to 56 meters long, see Fig. 7.11. The cornice
is 19.30 meters and the ridge is 24.50 meters above the level of courtyard, see cross-sections
in Fig. 7.12 and 7.12. Three sides of each courtyard are limited by cornice and roof, whereas fourth
wall, along the edge BCis limited by a wall face.

The objective is to design general geometry for a glazed canopy over one of the side,
rounded courtyards. Desired geometry is a composition of discrete, doubly curved PQ meshes.
The shape is elongated along rounded edges, therefore more than one mesh is required in order
to maintain the proportions of individual facets. Otherwise the facets of the mesh would
be unacceptably elongated, i.e. ratio of their diagonals would be far from 1. Adjacent edges
of neighbouring meshes may have form of arches obtained by trimming the meshes. One mesh
adjacent to the BC edge of the courtyard may also be trimmed along that edge, since there
is no horizontal cornice. Moreover, trimming allows for obtaining curved edge, which may be adjusted
to existing windows over fifth floor.

1

D

R,=325.41_ .

L. A Il

-
-

28.97

\_R,=29651

4953

-----

‘B AR R AR RARRAREEE
SogoEEEEENEEOOE B3
]DDDHDJDDDDDDDU&
Il I E B EEEEEEED
I EEEEEEEEEER

i
I
e

Fig. 7.12 Left: cross-section | — |. Right: cross-section Il — II.
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7.2.2. Description of the activities performed in the design process

Since in this case, the glass roof is composed of two conjugated meshes, the designer have to decide
first about values of some parameters. The designer can start from setting the approximate dimension
of glass panels. It is known, that one edge of the mesh will run along the AD edge, whose span is almost
30 meters. Assuming, that required approximate dimension of a glass panel is 1,3 meters along edge
in plan, there should be around 18 panels along that edge. The quantity parameter should therefore
be set to the value of 36.

Trimming of the edges of both meshes should also be taken into consideration before setting
the corner points of SC mapping. In order to align two adjacent meshes perfectly together the direction
of axis 2/, i.e. the angles between axes ‘1’ — 2’ and ‘2’ — ‘3’ are calculated from trimming proportions.
Assumption for this case study is that the left mesh ‘A’ is trimmed along one edge and the right mesh
‘B’, adjacent to a wall face, is trimmed along two opposite sides. Mesh ‘A’ has two rows of facets
trimmed on the right side, see Fig. 7.13. In order to allow exact alighment between ‘A’ and ‘B’ meshes,
mesh ‘B’ is trimmed along the connection with ‘A’ by two rows of facets as well. Additionally, mesh ‘B’
is trimmed on the side of the wall by 6,5 rows in order that its edge go over the windows, see Fig. 7.14.

It should be noted that axis ‘3’ is not colinear with the wall on the right side of the courtyard.
All axes pass through the centre point of SC spaces and their intersections with arched edges
of courtyard indicate parameter points for SC mappings. For that reason, part of the mesh ‘B’ behind
the wall will have to be trimmed and rejected.

|
|
\

Fig. 7.13 Initial alignment of axes and meshes.
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Fig. 7.14 Intersection of the mesh 'B' with the wall face, over the small windows.

The mismatching between two adjacent meshes happens, because SC mapping parameters
are not the same for both meshes, see Fig. 7.15 and the requirements for matching rounded meshes
discussed in section 6.4.4 Aligning SC mapped meshes. Although both meshes are mapped
on SC spaces, which have the same central point, the spaces have different boundary radii.
The boundary radii are derived indirectly from the parameters of meshes (proportions between rows
and columns) and destination, corner points. All of these parameters are known, therefore corner
points positions can be adjusted, i.e. the points that lie along the axis ‘A’.
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Fig. 7.15 Mismatching of edge points between two adjacent meshes before alignment of the axis '2'.

The angle between axes ‘1’ and ‘3’ is equal to 10.06°. Mesh ‘A’ has 16 and mesh ‘B’ has 9,5 facets along
each rounded edges. Hence, each boundary facet along rounded edge should occupy around 0,394°.
That means, that mesh ‘A’ should span 6,30° (the angle between axis ‘1’ and ‘2’) and mesh ‘B’ 3,76°
(angle between ‘2’ and ‘3’), see Fig. 7.16. Performing the above calculations and adjusting the angles
between the axes ensures an exact fit between meshes, see Fig. 7.17. The same rule of proportions
between meshes and angles apply for any number of meshes. The algorithm of SC mapping derives
parameters of SC space, namely the boundary radius of SC space, automatically from user defined
corner points. When the proportions of angles between axes correspond to meshes, the algorithm
ensures, that both SC spaces are exactly the same.
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Fig. 7.17 Perfect alignment of neighbouring meshes. Corresponding points on both sides are incident.

In the last step the designer specifies the parameters for base preserving transformations.
Point K is aligned with the centre point of circles and SC spaces (point O). Point L is located directly
above the K point. The distance of L point above the K point is the desired height of the designed mesh,
i.e. in this case it can be the difference between the cornice and the ridge of roof, i.e. 5,2 meters,
which also assures, that the mesh adjacent to the wall along axis ‘3’ will not protrude over its upper
edge and will not go through the top row of small windows, see Fig. 7.18.

209



%I!!I_!?[»l\il\l;l il
(UL
T

i

Fig. 7.18 Cross section | -1 (see Fig. 7.11) with edge of the mesh traced on the wall face.

7.2.3. Description of the result

The resultant mesh shown in Fig. 7.19 and 7.21 is composed of 857 planar quad and 123 triangular
facets. Courtyard area of 1608 m? is covered by a mesh, whose area is 1694 m?. Edge lengths of quad
glass facets vary from 1,36 to 1,45 meters.

Additional design parameters allow for shape adjustments and mechanical optimizations.
The resultant mesh is eligible of torsion optimization (see section 3.5.2). Obtained mesh is a starting
point for further design of structural properties, i.e. cross sections of bars, materials, application
of cross-brace stabilizing quads, etc. However, this discussion is out of scope of this work.
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Fig. 7.19 Perspective view from the courtyard. Concept of application of exemplary cross sections and arched beam between
sections.
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Fig. 7.20 Perspective view from above the building. Concept of application of exemplary cross sections and arched beam
between sections.
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7.3. Conclusions

With the adoption of bottom-up design paradigm the geometries for grid shells were designed straight
away in more favourable topology. Parametrization of the form allows for further exploration
and optimization of obtained morphology. In top-down approach the forms for grid shells would have
been form found. However, the form obtained by form finding would not necessarily be suitable
for PQ tessellation.

Such results are difficult to obtain by using the top-down approach, as illustrated by the following
example in Fig. 7.21. A similar, quad based PQ mesh geometry, designed according to the top-down
approach is described in Form-finding and planarisation of glass domes with quad elements
(Estrada and Baldassini 2013). Obtained mesh is a result of predefined tessellation in planar
configuration, form-finding of the global form, projection of the predefined tessellation onto
a doubly curved form and the planarization of quads in spatial configuration. Final mesh is composed
of facets, which deviates from exact planarity.

Fig. 7.21 Figure from (Estrada and Baldassini 2013). Square and rectangular domes composed of quasi-PQ facets, designed
according to the top-down approach.

Finally, the designs proposed in case studies are characterized by high homogeneity of facets,
i.e. regularity of shapes and dimensions.
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8. Mechanical performance of doubly curved PQ shells

Previous considerations presented in this work were strictly geometric. However, one of the reasons
for which doubly curved PQ grid shells are a subject of interest are their structural properties.
In this chapter the mechanical performance of various grid shells based on parametrized forms
of translational PQ mesh with planar, rectangular base described in section 4.1.2 is a subject
of preliminary static analysis.

8.1. Parametrization of the form

Parametrized form of the translational PQ mesh with planar, rectangular base form depends
on the position of the Pe(a,b) extrapolating point. Parameters a and b correspond
for its x and y coordinates, see Fig. 8.1.
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Fig. 8.1 Shape of a profile curve based on the parametrized position of P. extrapolating point.

Examples of possible shapes of profile curves are shown in Fig. 8.2. When the value of parameter b
is larger than 0, the profile curve has no curvature continuity in the middle (examples on the right side).
If a = b the obtained shape has pyramidal form. Note, that the profiles are anisotropically scaled along
x direction in order to fit the profile curve into desired final dimensions, see Fig. 8.1, right.

Fig. 8.2 Examples of possible profile curve shapes. For b = 0 the curvature continuity is preserved (left), for other values of b
the curvature continuity is broken in the middle of the profile curve (right).

The space of possible solutions for the possible shapes over P. parameters is presented in Fig. 8.3.
Please note the part of the chart, where the curvilinear networks loose curvature continuity along
diagonals and the highly deformed solutions. Also please note pyramidal shapes and doubly curved
networks with curvature continuity.
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Fig. 8.3 Resultant shapes of PQ meshes depending of parameters a and b or P.(a,b) extrapolating point.

8.2. Rating of mechanical performance

Initial structural efficiency evaluation of the generated lattice shell was carried out by means
of FEM software Karamba (Preisinger 2013). The computational model assumed plane dimensions
of the grid AxB = 14.14x14.14 m, the length of each rod in plane — 1.00 m and its cross section —
aluminium RHS 100x50x4 mm. The height of the mesh®? is H = 2.50 m. The self-weight of the grid
was assumed as the loading. The analyses compared structural behaviour of different meshes
generated with various combinations of parameters a and b. Results of the analyses are presented in
the following tables:

e average node translations, see Table 8.1,
e maximal node translations, see Table 8.2,
e maximal axial forces, see Table 8.3,

¢ maximal bending moments, see Table 8.4,
¢ maximal shear forces, see Table 8.5.

The results of FEM analyses presented in tables are shown in numerical values and colours.
Green colour mean lesser forces or smaller node translation. As seen for the maximal axial forces
the best results are obtained for pyramidal shapes and for some combinations of parameters a and b
that create doubly curved grid shells. However, node translations, shear and bending forces analysis
prove the superiority of doubly curved shapes over the pyramidal ones. Figure 8.4 shows the value
of translations of nodes by the intensity of pink colour. As seen, the parts of shell with less curvature
tend to deform more.

92 Tests were conducted also on meshes with various heights, resulting with three dimensional data
sets, however for the value of H = 2.5 m, the resultant translations of nodes and forces in rods are the
most characteristic.
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Table 8.1 Average node translation [mm]

025 |10,478 9,622 8761 7,899 7,041 6,189 5348 4,528 3,739 2,994 2,314 1,769 1,335 0,987 0,735
020 |8361 7,550 6,742 5942 5,157 4,391 3,654 2,957 2,314 1,790 1,365 1,011 0,741 0,550 0,433
015 | 6432 5686 4,954 4244 3561 2914 2,314 1,816 1,406 1,052 0,770 0,559 0,408 0,314 0,271
0,10 | 4,756 4,098 3,467 2,870 2,314 1,846 1,456 1,109 0,821 0,599 0424 0,294 0,214 0,187 0,206
0,05 |3379 2828 2314 1,876 1,511 1,177 0,889 0,663 0,477 0,322 0,205 0,138 0,145 0,189 0,246
0,00 |2314 1,906 1,566 1,252 0,969 0,742 0,555 0,390 0,249 0,142 0,111 0,160 0,231 0,308 0,397
b s | @00 | 005 | 010 | 015 | 0,20 | 0,25 | 030 | 0,35 | 0,40 | 045 | 050 | 0,55 | 0,60 | 065 | 0,70
Table 8.2 Maximal node translation [mm]
0,25 | 24,213 22,857 21,449 19,984 18,451 16,844 15,158 13,394 11,565 9,691 7,815 6,117 4,521 3,110 1,991
0,20 | 20,544 19,142 17,687 16,174 14,600 12,966 11,277 9,550 7,815 6,243 4,743 3,370 2,215 1,394 1,100
0,15 | 16,915 15494 14,029 12,521 10,974 9,399 7,815 6,379 4,991 3,683 2,525 1,586 1,008 0,815 0,748
0,10 | 13,487 12,095 10,680 9,250 7,815 6,517 5,252 4,031 2,904 1,949 1,171 0,716 0,550 0,493 0,480
0,05 | 10,413 9,112 7,815 6,648 5508 4,391 3,326 2,416 1,618 0,947 0,500 0,326 0,322 0,446 0,732
0,00 7,815 6,765 5,745 4,738 3,758 2,894 2,117 1,413 0,816 0,354 0,343 0453 0,702 1,121 1,727
b ,| 000 | 005|010 | 015 | 020 | 0,25 | 0,30 | 0,35 | 0,40 | 0,45 | 0,50 | 0,55 | 0,60 | 065 | 0,70
Table 8.3 Maximal axial forces [kN]
0,25 1,027 0,904 0,814 0,725 0,623 0,520 0,514 0,502 0,481 0,487 0,519 0,558 0,579 0,572 0,532
0,20 0,781 0,694 0,595 0,489 0,485 0,476 0,474 0,488 0,519 0,546 0,562 0,558 0,529 0,495 0,580
0,15 0,561 0,470 0,467 0,471 0,478 0,498 0,519 0,537 0,548 0,547 0,527 0,494 0,524 0,631 0,763
0,10 0,470 0,478 0,490 0,505 0,519 0,531 0,538 0,538 0,525 0,496 0,485 0,549 0,651 0,777 0,922
0,05 0,499 0,510 0,519 0,526 0,531 0,530 0,522 0,504 0,482 0,481 0,551 0,642 0,755 0,888 1,038
0,00 0,519 0,523 0,525 0,524 0,519 05507 0,48 0,474 0,476 0,536 0,613 0,735 0,875 1,023 1,172
b s | @00 | 005 | 010 | 015 | 0,20 | 0,25 | 030 | 0,35 | 0,40 | 045 | 050 | 0,55 | 0,60 | 065 | 0,70
Table 8.4 Maximal bending moments [kNm]
025 |0201 0,192 0,183 0,173 0,162 0,153 0,145 0,136 0,127 0,116 0,105 0,093 0,080 0,067 0,058
020 |08 0,172 0,165 0,157 0,149 0,139 0,128 0,117 0,105 0,093 0,080 0,066 0,056 0,048 0,045
0,15 | 0,168 0,160 0,151 0,141 0,130 0,118 0,105 0,092 0,079 0,066 0,054 0,045 0,039 0,037 0,035
0,10 | 0,52 0,42 0,131 0,118 0,105 0,092 0,079 0,065 0,052 0,043 0,035 0,029 0,026 0,024 0,022
0,05 |0,31 0,118 0,105 0,092 0,078 0,065 0,052 0,041 0,032 0,024 0019 0,015 0,011 0,009 0,013
0,00 | 0,205 0,092 0,079 0,065 0,052 0,040 0,030 0,021 0,013 0,007 0,006 0,007 0,011 0,015 0,019
b 0,00 | 0,05 | 0,10 | 0,15 | 0,20 | 0,25 | 0,30 | 0,35 | 0,40 | 0,45 | 0,50 | 0,55 | 0,60 | 0,65 | 0,70
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Table 8.5 Maximal shear forces [kN]

—

E o
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Fig. 8.4 Translations of the nodes shown by the vivid colour.
Greater translations were obtained for the parts of lattice shell with smaller curvatures.

0,25 0,281 0,259 0,237 0,214 0,193 0,173 0,153 0,134 0,119 0,110 0,101 0,092 0,082 0,076 0,070
0,20 0,227 0,208 0,190 0,171 0,153 0,136 0,123 0,112 0,101 0,090 0,080 0,072 0,066 0,062 0,063
0,15 0,187 0,171 0,154 0,139 0,126 0,113 0,101 0,089 0,078 0,069 0,062 0,055 0,054 0,054 0,054
0,10 0,154 0,142 0,128 0,114 0,101 0,088 0,075 0,065 0,056 0,049 0,045 0,043 0,041 0,040 0,039
0,05 0,130 0,115 0,201 0,087 0,073 0,061 0,051 0,043 0,036 0,032 0,029 0,026 0,024 0,023 0,026
0,00 0,101 0,086 0,071 0,058 0,047 0,041 0,035 0,028 0,021 0,015 0,017 0,018 0,022 0,027 0,033
b 0,00 | 005 | 010 ( 0,15 | 0,20 | 0,25 | 0,30 | 0,35 [ 0,40 | 045 | 0550 | 0,55 | 0,60 [ 0,65 | 0,70

E

o

1

(o}

1]
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This abbreviated and simplified evaluation of the mechanical properties of the exemplary freeform
PQ grid shell justifies the assessment that in these structures both the distribution of internal forces
and global deformations are consistent with predictions based on analogy to continuous shell

structures. Thanks to the parameterization of the structure, further optimization is possible.
One of the possibilities is to choose the shape-generating curves, e.g. by applying elasticas, to obtain

grid shells with a considerable uniformity of rods effort (Swieciak and Tarczewski 2017).
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9. Conclusions

The research that was carried out during the preparation of this dissertation allowed to verify theses
put forward at the beginning of the work in the falsifiability process. These theses have been proved.
All research objectives set out in Chapter 1 have been also accomplished.

9.1. Proven theses of the dissertation
9.1.1. Thesis1

Analyses of objects representative to the trend of free-form design carried out in the dissertation
allowed to follow through the application of free forms in completed objects and define the functions
most frequently assigned to them. These are primarily elements of objects that define their visual
perception, such as building facades (often in the form of a second skin) and roofing of whole objects
or parts thereof, especially courtyard roofs, entrance canopies, etc. A special place among them have
grid shells, which on the one hand allow to achieve structural efficiency, and on the other hand provide
additional possibilities of shaping the form with transparent fillings. The catalogue of objects that
systematize data about them, included in the appendix A-3 to the work, proved to be helpful in drawing
conclusions. On the basis of the analysed data on theses 1, it can be concluded that:

Among the free formed objects, grid shells occupy a particularly important place and constitute
one of the most important groups of structures within this trend. Because they allow to obtain
forms with significant spans, they are clearly light, and through large glazing, they are clearly
visible, they have become the most frequently implemented objects in this group. These features
enabled widespread social acceptance of these new geometric forms, contributing to a large
extent to disseminating the freedom of shaping forms in architecture.

9.1.2. Thesis2

The analysis of various solutions, taking into account topology, geometry, construction and materials,
allowed to state that grid shells whose glass panels are triangular are those that are most often
designed and constructed. This solution allows to obtain a smooth mesh on almost any surface, while
providing the necessary rigidity of the structure. Grids with such topology are relatively easy to design
and can be inscribed in almost any closed contour. Triangular panels defined by grid edges (bars)
are always flat. Computer tools for designing such grids are available.

At the same time, many disadvantages of this solution have been discovered. The most important
is the complex construction of nodes in whose construction up to six rods are connected.
The total number of rods and the roof area occupied by them is also much larger. The triangular glass
panels are also smaller. These negative features do not appear in grids of quadrilateral topology.
The number of rods connected in one node of such a grid is four, and the relative number of rods
is smaller. The visual perception of such structures is much more beneficial. In some respects, they also
exhibit more favourable mechanical properties. An important limitation in the design of grids with
a quadrilateral topology is the fact that the panels in such a grid are not always flat. For this reason,
it is necessary to limit their diversity to a planar quadrilateral (PQ) topology. However, there
are limitations in the use of this topology, because it cannot be applied to any previously defined
surface. At present, there are no tools available for the design of meshes with such a topology.
According to the thesis 2, it can be concluded that:
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Among the implemented objects, in which glazed grid shells were applied, structures with
a triangular topology dominate. Currently, however, more and more objects are being created
with the PQ topology. Although it is more difficult to obtain a grid with PQ topology in the design
process, it has many advantages over the triangular topology.

9.1.3. Thesis3

The dissertation includes a wide description of known methods of shaping PQ grids on free surfaces.
These include both those methods already used in practice and those methods that are still theoretical
solutions. They have a different range of applications, as well as various advantages and disadvantages.
In addition, known methods of transforming of such grids which maintain the planarity of their panels
after transformation were analysed. Both the methods of creating grids and the methods of their
transformation refer to the methods of discrete geometry.

The results of the research allowed to formulate the author’s own original methods of generating
PQ grids and methods of their transformation. These methods allow to significantly increase the range
of PQ grids’ applications. In addition, it was noticed that many restrictions on the use of these grids
result from the adopted design methodology, which is described as "top-down". This consists
in adapting the mesh to the previously determined free surface. In this approach, many geometric
forms of coatings are excluded from the possibility of using PQ divisions. This problem was essentially
solved by changing the design methodology to "bottom-up". This consists in generating an output grid
with the desired features and then its transformation in order to obtain sufficient compliance with
the assumed final surface. According to the thesis 3, it can be concluded that:

By developing appropriate methods for generating and transforming PQ grids and applying
bottom-up methodology, they can be effectively designed for various boundary conditions.

9.1.4. Thesis4

As part of the research, simulations and computer modelling were performed to examine
the scope of available PQ mesh forms using known and proposed methods according
to the bottom-up methodology. Two case studies proved to be particularly useful, involving designing
glazed canopies over internal courtyards in two existing facilities. The analyses carried out showed
that the scope of PQ mesh formation is very large and it is possible to adapt them to almost
every design situation as well as for triangular-shaped meshes. The condition that enables
this is the design in accordance with the bottom-up methodology. Accepting the desired
base surface a priori may prevent, and in most cases does prevent, the use of PQ meshes.
By transforming, while maintaining the planarity of panels, the initially generated, simple PQ mesh
in such a way that it is finally as close as possible to the desired surface, satisfactory architectural
results can be obtained. According to the thesis 4, it can be concluded that:

The proposed bottom-up design methodology together with the appropriate tools
for generating and transforming PQ grids allows to design PQ grid shells for any design
situation, with a small and acceptable limitation of the designer's freedom to shape
the general form of such a grid shell.
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9.2. Contribution to the field

Freeforms are more and more commonly used in architecture, among them the dominant group
are grid shells with transparent filling. For such structures, meshes of bars with the PQ topology
are in many respects more favourable than the meshes of bars with a triangular topology. At the same
time, however, there were no effective methods for shaping such meshes, allowing their practical
application for various boundary conditions.

The design tools proposed in the work and the design methodology based on them allow to definitely
extend the scope of using PQ grids in free-form objects. Based on them, practical problems with a high
degree of difficulty can be solved.

Considering the number of existing and proposed methods of creating and transforming PQ grids,
it is possible to create many scenarios and design tools adequate to the existing design conditions,
such as the shape of a courtyard, but also the desired shape of a building’s or stadium’s facade.
The nine methods presented for creating PQ grids can be combined with five methods of their
transformation, and two, three, four or five methods can also be used among the transformation
methods in a given design tool. The set of five transformation methods gives 32 subsets of their sets,
and after multiplying by nine the methods of creating PQ grids, it gives 288 different design tools,
each of which includes the method of creating and transforming grids, leading to specific results
and giving control over the form of the designed structure.

Additionally, the concept of the PQ mesh design tool presented in the paper provides four auxiliary
initial and final transformations that do not eliminate the facets' planarity. Auxiliary transformations
can be used in parallel with the basic ones and they are parameterized, additionally increasing
the design freedom.

Indirectly, the application of the proposed solutions to design and construct glazed roofs allow
for the creation of additional usable spaces within existing buildings, as well as the creation of buffer
zones that increase the energy efficiency of buildings. In contrast to the majority of existing solutions
for shaping triangular and PQ grid shells, whose accuracy allow for use only in newly designed buildings
where the roof form can be coordinated with the form of the building, or in existing buildings’
courtyards with shapes, the proposed tools allow for an absolute accuracy of adjusting the form
of the PQ grid to the existing, irregular shape of the courtyard. These situations occur especially
in the case of historical city centres, in which buildings often have irregular forms and it is not possible
to change these conditions by rebuilding them and where, on the other hand, the high building density
requires searching for other ways of obtaining additional usable areas.

However, it is also possible to use the proposed tools and methods for shaping PQ grid shells for newly
designed objects. By the diversity of available combinations of methods of creating and transforming
PQ grids, existing and proposed by the author, consistent with the proposed design tool concept,
a wide spectrum of geometrically correct PQ morphologies is available — including glass roofs with
other irregular base perimeters, facades and domes. The work also presents the concept of applying
both the proposed methods of transformation, i.e. SC and the prospective transformation in order
to obtain a PQ grid form with a contour consisting of sections of conic curves, i.e. second degree
NURBS curves. This provides a tool for the design of canopies over courtyards with particularly complex
perimeters and constraints related to the shape and height of the surrounding walls.
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3.10 Node-rod-node connections in geometrical torsion grid shell (left) and torsion free
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3.11 Node from the grid’s from previous figure without and with optimized axes (blue)
and axes of adjacent rods. Red dashed line marks axis of rod without optimization,
whereas green dashed line marks axis or rod with optimization. Green axis lies

on a common plane with corresponding blue axis of the node........c.cccovveveeiiiiiiiiieeen s 57
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4.18 Construction of a planar trapezoid obtained by translation and scaling
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4.46 Expansion of the basic definition described before. A PQ mesh in flat configuration
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5.9 Peter Paul Rubens, an illustration for Six Books of Optics, by Francois d'Aguilon.
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5.57 Central projection of two dimensional grid rotated in third dimension. .........ccccccveeennneen.. 137
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A-1 Abstract

A-1.1 The reason for undertaking the research topic

Observing contemporary architectural objects in which coverings are used, especially glazed,
in the form of doubly-curved grid shells, it can be noticed that relatively often the use of attractive
forms encounters significant implementation restrictions. They affect not only the choice
of a particular structural solution but also the perception of the form itself. An example illustrating this
problem may be the roofing of the courtyard at the Smithsonian American Art Museum in Washington,
named after the founder Kogod Courtyard. This, designed in 2004 by the renowned Foster and Partners
office, viewed from the interior (Fig. A-1.1, left) impresses with its lightness, proportions
and transparency. The designers obtained this effect, among others, by applying on the slightly wavy
surface a grid of rods with square panels, which emphasizes the shape of the roofing, leaving the details
of the structure in the background.

Fig. A-1.1 Kogod Courtyard at Smithsonian Art Museum, Washington.
Left: the interior with view from the bottom of the roof%3, right: view of the top of the roof**.

However, the same cover, viewed from the outside, makes a completely different impression.
Individual glass panels protrude beyond the surface, creating a "keyboard" system, a non-smooth
surface, the visual effect of which is far from the quiet elegance of the interior (Fig. A-1.1, right).
The reason for this is the designer's application of a top-down design methodology, according to which
the geometry of the cover surface was first determined and then it was divided using the adopted grid.
This approach ignored the fact that not every free formed® surface can be divided using flat
quadrangles. As a result, in order to preserve the planarity of the panels, the designer was forced
to situate them in this way.

Another approach was presented by the same architect, Norman Foster, in the roofing
of the Great Court, designed ten years earlier, at the British Museum in London. Here was also used
a bar lattice over a doubly-curved smooth surface. However, in this case, the division into triangular
panels was adopted, see Fig. A-1.2. Their essential feature is that they are always planar
and the resulting cover is smooth, both on the inside and outside.

9 Source: https://npg.si.edu/visit/kogod-courtyard
% Source: https://www.fosterandpartners.com/projects/smithsonian-institution-courtyard/#gallery
% The term freeforms is also well accepted in literature to describe the design trend
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Fig. A-1.2 The roof of the Great Court in British Museum, London.%

Why then, in the later project, was a solution used that does not retain this mutual smoothness?
The reason is the undoubted advantages of quadrilateral grids. In a nutshell, these are: much lower
saturation of the surface with construction elements, and thus greater transparency of the cover,
much simpler and therefore easier to make and more reliable nodes, greater ease of ensuring
the tightness of the roofing.

The dichotomy: of a triangular division and smooth cover - quadrilateral and non-smooth cover,
is not unavoidable. While working on this dissertation, it was found that it is possible to design
a smooth quadrangular grid on almost every double-curved surface using the "bottom-up" design
methodology. An illustration of this may be the author’s original version of the Kogod Courtyard
covering designed according to this approach, see Figs. A-1.3 and A-1.4. A quadrangular mesh of rods
was used in it, and the obtained surface is smooth on both sides.

Fig. A-1.3 The proposition for the cover of Kogod Courtyard with smooth, planar quadrilateral cladding,
designed with the use of author’s methods presented in the work. View of the top of the roof.

% Source: https://en.wikipedia.org/wiki/Queen_Elizabeth_II_Great_Court#/media/File:
British_Museum_Great_Court,_London,_UK_-_Diliff.jpg
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Fig. A-1.4 The proposition for the cover of Kogod Courtyard with smooth, planar quadrilateral cladding,
designed with the use of author’s methods presented in the work. View of the bottom of the roof.

A-1.2 The subject matter of the work

The subject of the doctoral dissertation is a proprietary development of methodologies and design
tools aimed at enabling designers to create geometrically correct glazed grid shells, which are also
optimised due to the technological and structural conditions.

The combination of two glass roofs presented above, i.e. the roof over the Kogod Courtyard
at the Smithsonian Institute and the proprietary roof concept with a similar shape designed using
the proposed methods, shows how the design methods and tools affect the simplification
and rationalization of the project. Both roofs are grid shells, i.e. structures that, thanks to the curvature
of their form in two directions, can be implemented as structures with very small cross-sectional
dimensions of their elements. In turn, the use of four-sided glass panels to cover these roofs has many
advantages, such as reducing the saturation of the surface with rods, reducing the mass
of the structure, simplifying the nodes and limiting the number of thermal bridges and potential leaks
in relation to the most commonly used triangular divisions in doubly-curved glazed roofs.
However, while a grid shell with a structurally optimal shape can be easily covered with flat triangular
panels, its coverage with quadrangles is not a trivial task. The four vertices of any quadrilateral lying
on a curved surface are not at the same time on a common plane, and vice versa — the four vertices
of any planar quadrilateral usually do not lie on a curved surface at the same time. For this reason,
the use of quadrilateral divisions for any arbitrarily imposed cover surface leads to effects such
as in the Kogod Courtyard, where the lack of smoothness of the split was compensated by a specially
developed, complicated sealing system. It is worth noting that in practice there are only few proposed
solutions involving the use of curved glass panels, despite the fact that this would solve the geometric
problem. However, such solutions lead to new problems that are even more difficult to solve, related
to the thermal deformability of curved elements and the sealing of panel edges.

The solution proposed in this work is the reversal of the order of activities performed by the designer,
who initially develops the surface of the shell (arbitrarily shaped or structurally optimized) and then
divides it into panels. Most often it turns out that a rational division into quadrilaterals is not possible
and more expensive triangular divisions are the only solution. Instead, the designer can shape the form
of the shell by means of the superposition of the methods described in the work to create (methods
of formation of) curved, planar quadrilateral grids and methods of transforming them, which maintain
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the planarity of individual panels. In this case, the designer first decides about the divisions
and then about the form. Thanks to this, with a moderate limitation of freedom in shaping the form,
he can be absolutely sure that his project can be implemented using rational technological solutions.

The presented methods and concepts of design tools allow for the reconstruction of designed forms
in a geometrically and technologically rational manner and for them to be as close as possible
to the initial forms, and also open new possibilities of designing free forms from scratch. The catalogue
of existing and proposed methods and tools allows to design not only glazed roofs but also any other
structure based on quadrilateral divisions such as facades, glass garden rooms and canopies.

A-1.3 Introduction to the problematic aspects of the work

The design of free forms in architecture is becoming more and more popular thanks to the widespread
use of advanced design tools. Historically, free forms are derived from the practice of designing
vehicles, i.e. boats, ships, cars and aircrafts.

The history of free forms presented in the work shows how the tools used to design the hulls of boats,
ships, and shells of cars and aircraft, always associated with free forms, have become architects' tools
and how they influenced the currently adopted design methodology, unfavourable in the author's
opinion, forcing the use of less rational technological solutions. Advanced tools dedicated
for the design of free forms were first used to design architectural forms during the implementation
of the Guggenheim Museum in Bilbao in 1994-1997. The design and implementation of this building
required the close cooperation of a team of engineers from the aviation industry who were familiar
with their operation, both on the side of the designer as well as the contractors of the facility.
The unquestionable commercial success of this realization caused the contemporary phenomenon
of the "Bilbao Effect", one aspect of which is the dissemination of free-form designs and the tools
for designing them now used by architects. The negative effect of this phenomenon, however,
is the omission by many designers of the fact that the forms obtainable using these tools
are not adjusted for architectural purposes. Differences between the way vehicles and buildings
are implemented imply the need to use different methodologies and design tools. These differences,
specified in the work, are listed as follows:

* building partitions are thick and multi-layered, while vehicle hulls/shells are made of material
sheets whose thickness in practice is negligible in relation to their other dimensions;

e the seriality of vehicles divides the costs of developing the technology for the number
of individual units produced, while the free formed building is implemented once, so its cost
must include the development of its technology;

¢ unlike vehicles whose bodies are made of individual elements produced in large numbers,
in free formed buildings (unlike in e.g. mass housing) the used elements not only have
individual shapes but are also individually produced;

¢ vehicles are implemented entirely on production belts within one factory, while free-form
buildings are made of components whose dimensions should allow them to be delivered
to the construction site and placed in the right place in the constructed building.

These problems were clearly revealed before the Bilbao Effect, during the construction of the Sydney
Opera House. Various consequences were revealed, such as the postponing of the completion deadline
by 8 years, its almost 100 times exceeding the project implementation budget, but also the first-ever
use of computer-based methods on this scale, creating the iconic building symbolizing the continent
and the final distinction of the architect Jgrn Utzon with the Pritzker Prize. From more than two
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hundred submitted competition projects the winning concept consisted only of a general sketch,
yet it gained the jury's recognition thanks to its courage in the use of free forms. Among many
interpretations and inspirations of the Sydney Opera House’s shell forms, one fact is the most
convincing, namely that in his youth its designer designed and built yachts together with his father.
In one of his interviews Jgrn Utzon stated that he equated the lack of a technological barrier between
the design and implementation of yachts with its similar lack in the case of buildings. The final solution
to the enormous implementation problems was brought about by the use of spatial concrete
prefabricates, which were described on a common sphere and therefore repetitive to some degree,
also being manufactured near the construction site, instead of monolithic concrete shells as originally
assumed by the author of the project.

Although, since then, the technological possibilities of implementing free forms in architecture have
significantly increased, these problems are still valid and stand in the way between the architectural
concepts and rational possibilities of their implementation. This is because the design tools available
to architects have not changed. Successful implementations of free forms in architecture until recently
remained in the domain of such well-known projects as the aforementioned roofs over the Grand
Courtyard in the British Museum and Kogod Courtyard by Norman Foster and Heydar Aliyev Center
in Baku by Zaha Hadid. Both cases required the use of mathematically and algorithmically advanced
design methods, individually adjusted to the needs of the projects. The example of the Museum
of the History of Polish Jews in Warsaw, described in the work, present technological problems related
to the main hall of a building with free-formed walls. It proves that in the case of projects of lesser
importance, the ease of creating unique forms using advanced design methods is inversely
proportional to the ease of their implementation.

A-1.4 Explanation of the title of the work

The literature review presented in the work does not show a clear definition of free forms used
in architecture. For some of the researchers cited, these are forms curved in an irregular manner, which
do not have repeatability nor regularity in their fragments. For other researchers, the forms
of membrane structures that have the above features do not qualify as free forms, because
the freedom of their design is limited by the type of surfaces on which these structures are described.
These are the minimal surfaces, i.e. mathematically and physically defined surfaces, by means
of external conditions, obtainable in the process of form finding. Consequently, any other form,
not only membranes, designed through the process of form finding is not qualified by these
researchers as a free form. In this work it is accepted that a free form is a form described on a surface
which has double-curvature, regardless of whether it is the result of the structural optimization
or sculptural vision of the designer.

The legitimacy of shaping structures in the form of free forms is based on the possibility
of implementing them as lightweight constructions. It is thanks to the curvature that shells can
be constructed, while the same structure made of flat roof segments must usually be additionally
strengthened by using larger cross-sections of rods and the use of spatial trusses.

Currently, one of the most frequently implemented free forms in architecture is glazed grid shells,
i.e. single layered lattices consisting of rods, nodes and glass panels. The curvature of such grid shells
is discrete, which means that their overall form is curved, i.e. the nodes of the grid shell lie on a curved
surface, while its individual components are not curved, i.e. the rods are straight and the panels
are flat. The implementation of discrete, doubly-curved grid shells, unlike continuously curved grid
shells, may, to a limited extent, make use of the unification of its components. The rods can vary

246



in lengths and angles between them, but they are straight and the glass panes can have different
shapes but are flat.

The topology of grid shells refers to the shape of individual panels and the number of rods converging
at each node. The two most commonly used topologies are: triangular (see Fig. A-1.6) and planar
quadrilateral (in short PQ; see Fig. A-1.5). Grid shells of triangular topology consist of triangular panels
and nodes connecting six rods, while PQ grid shells consist of planar, quadrilateral panels and nodes
connecting four rods. The work contains the author’s original and other cited researchers’ analyses
of the differences between these topologies. Among the differences between these topologies
the following factors speak to the disadvantage of triangular meshes:

e triangular glass panels are more expensive to produce than quadrilateral ones because
they cause more glass waste, and also too small apex angles cause possibilities of cracking;

e in meshes with triangular topology there is a higher ratio of the number of structural elements
to the glazing surface than in the grids with PQ topology, compare Figs. A-1.5 and A-1.6;

¢ the nodes of triangular grids are more complicated and complex than in PQ grids;

e in triangular grids there are more thermal bridges and potential sources of leakage
than in PQ grids.
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The ease in designing triangular meshes results in an advantage in the number of their
implementations, despite the fact that PQ grids are more rational in technological and economic terms.
This advantage is caused by the generally accepted methodology, called "top-down", in which
the architect creates a free formed surface at the initial stage of project development using
the available design tools, on which the grid shell should be described. Because any triangle, regardless
of the location of its vertices in space, is flat, the division of any given surface into triangular panels
and their adjustment to optimize the lengths of rods allows for an unlimited freedom of shaping
the geometric form of the shell. In the case of quadrilateral panels, their planarity is not obvious when
placing their vertices on a free formed surface given by the designer. Hence, in this work,
it is postulated to use the bottom-up approach, which is based on such shaping of free formed surfaces
which right from the start include the possibility of covering them with planar quadrilateral panels.
The tools available to architects do not offer sufficient methods for shaping free forms, which
in consequence would enable their implementation in the optimal topology.

As a result of the research and analyses carried out, it was found that it is possible to formulate
the design methodology, which is called the "bottom-up" approach, and methods for generating
and transforming PQ grids shells that will enable their design in practically all cases. The above was
the basis for formulating the theses of this doctoral dissertation.

A-1.5 Theses of the work

After the initial, enthusiastic period, just after the "Bilbao Effect", the implementation of many objects
based on free forms revealed the problem of separating form from the rationality of structure.
Form has become a means of expressing architecture itself, detached from factors related
to its implementation. An especially important and interesting example of such free forms are discrete,
glazed grid shells realized as glass roofs and facades, which can be shaped as arbitrary,
expressive forms or construction-optimized light coatings.

e Thesis 1

Grid shells are one of the main means of expression within the free-form design trend
in architecture and belong to the most characteristic and most frequently implemented
objects in this group.

¢ Thesis 2

Free-form grid shells based on planar quadrilateral topology (PQ) have many advantages
over grid shells based on a triangular topology.

¢ Thesis 3

It is possible to develop design tools that allow for the effective design of PQ meshes based
on a bottom-up methodology.

¢ Thesis 4

Guided by the principles of bottom-up design, desirable grid shells can be obtained
with a small and acceptable restriction of freedom in shaping their form.
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A-1.6 Results of the work

The result of the work is a database of existing and authorial methods of creating and transforming
PQ meshes, which form the basis for the development of a comprehensive design system.
An appropriate combination of selected methods of creation and transformation allows
for the formation of discrete doubly-curved grid shells in PQ topology adapted to the required existing
conditions, e.g. the shape of a covered courtyard. The work presents a developed concept of a design
tool based on the previously described methods of generating and transforming PQ meshes, and then
presents two examples of practical applications of developed tools based on this concept and selected
methods of generating and transforming PQ meshes.

As examples of applications developed in accordance with the concept of design tools, two courtyards
of buildings existing in Wroctaw were selected. The first one is the building of the Lower Silesian
Voivodeship Office, which has three courtyards, two of which have the shape of rounded
qguadrilaterals. For one of them a glass cover has been proposed, see Fig. A-1.7. The proposed solution
is based on the PQ mesh translational method and on the author's SC transformation
(spherical-cylindrical projection), which accurately transforms the basic grid form into a rounded
courtyard form while maintaining the planarity of all facets. The developed tool also contains a number
of intermediate steps described in the work, which are supposed to increase the control over the final
form of the roof maintained by the designer and at the same time guarantee the geometric correctness
of the solution.
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Fig. A-1.7 The proposed cover of the courtyard in the building of the Lower Silesian Voivodeship Office.

The second example concerns the courtyard in the building of the Faculty of Biological Sciences
of the University of Wroctaw at KuzZnicza street 35. This courtyard has the form of an irregular
quadrilateral, and it is surrounded by cloisters that are presently separated from the courtyard
by windows. As in the previous case, a tool based on the translational grid creation method
and on the author's transformation method, i.e. perspective transformation, was used to design
the PQ mesh. This transformation method allows the designer to fit any PQ mesh with a flat, four-sided
base, to any four-sided, irregular form of the courtyard, see Fig. A-1.8.
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Fig. A-1.8 The proposed cover of the courtyard in the building of the Faculty of Biological Sciences
of the University of Wroctaw.

In both cases the designer indicates three or four corner points on the plan of the building, depending
on the design case, based on which the programmed tool automatically adjusts the relevant
transformation parameters. Both tools provide a number of possibilities to modify the form, giving
the designer the greatest possible freedom to shape it. The designer, by means of changing the
parameter values for the tool, determines the number and distribution of the grid divisions and thus
affects the size of the glass panels, the height of the roof, etc. By means of several other parameters,
it also affects the shape of the form obtained while maintaining the corner points set at the beginning.

The parameters by which the designer controls the form of the free formed PQ grid shell limit
the absolute freedom of shaping, which is peculiar to the top-down design paradigm.
However, the freedom of design is only limited to a set of rational morphologies from a geometric
point of view. The designer can obtain such forms that are rational from the point of view
of realizability. For this reason, one of the researchers in this field of geometry in architecture,
Romain Mesnil, calls the "bottom-up" approach the "fabrication aware design".
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The available forms of the basic PQ translational mesh with a flat base perimeter parameterized
by means of two shaping parameters have been examined in terms of the internal forces values using
the finite element method. The results presented in the work prove that the optimal form of the grid
shell, in which internal forces have the lowest values, is a doubly-curved form with a high degree
of curvature continuity. As a result, a roof of this form can be made of structural elements with smaller
cross-sections than in the case of conventional forms, i.e. roofs composed of several flat sections.
Above all, thanks to the presented solutions it is possible to shape glass roofs as grid shells rather than
space trusses, which in many cases collide with the aesthetics of the building, primarily in the context
of courtyards of historic buildings. Use of the tools proposed in the work imply directly into a reduction
in the use of materials, in the optimization of form and topology, and ultimately on the economic
rationalization of the application of these solutions.

A-1.7 Proven theses of the work
A-1.7.1 Thesis 1

Analyses of objects representative to the trend of free-form design carried out in the dissertation
allowed to follow through the application of free forms in completed objects and define the functions
most frequently assigned to them. These are primarily elements of objects that define their visual
perception, such as building facades (often in the form of a second skin) and roofing of whole objects
or parts thereof, especially courtyard roofs, entrance canopies, etc. A special place among them have
grid shells, which on the one hand allow to achieve structural efficiency, and on the other hand provide
additional possibilities of shaping the form with transparent fillings. The catalogue of objects that
systematize data about them, included in the appendix A-3 to the work, proved to be helpful in drawing
conclusions. On the basis of the analysed data on theses 1, it can be concluded that:

Among the free formed objects, grid shells occupy a particularly important place
and constitute one of the most important groups of structures within this trend.
Because they allow to obtain forms with significant spans, they are clearly light, and through
large glazing, they are clearly visible, they have become the most frequently implemented
objects in this group. These features enabled widespread social acceptance of these new
geometric forms, contributing to a large extent to disseminating the freedom of shaping
forms in architecture.

A-1.7.2 Thesis 2

The analysis of various solutions, taking into account topology, geometry, construction and materials,
allowed to state that grid shells whose glass panels are triangular are those that are most often
designed and constructed. This solution allows to obtain a smooth mesh on almost any surface, while
providing the necessary rigidity of the structure. Grids with such topology are relatively easy to design
and can be inscribed in almost any closed contour. Triangular panels defined by grid edges (bars)
are always flat. Computer tools for designing such grids are available.

At the same time, many disadvantages of this solution have been discovered. The most important
is the complex construction of nodes in whose construction up to six rods are connected.
The total number of rods and the roof area occupied by them is also much larger. The triangular glass
panels are also smaller. These negative features do not appear in grids of quadrilateral topology.
The number of rods connected in one node of such a grid is four, and the relative number
of rods is smaller. The visual perception of such structures is much more beneficial.
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In some respects, they also exhibit more favourable mechanical properties. An important limitation
in the design of grids with a quadrilateral topology is the fact that the panels in such a grid
are not always flat. For this reason, it is necessary to limit their diversity to a planar quadrilateral (PQ)
topology. However, there are limitations in the use of this topology, because it cannot be applied
to any previously defined surface. At present, there are no tools available for the design of meshes
with such a topology. According to the thesis 2, it can be concluded that:

Among the implemented objects, in which glazed grid shells were applied, structures with
a triangular topology dominate. Currently, however, more and more objects are being
created with the PQ topology. Although it is more difficult to obtain a grid with PQ topology
in the design process, it has many advantages over the triangular topology.

A-1.7.3 Thesis 3

The dissertation includes a wide description of known methods of shaping PQ grids on free surfaces.
These include both those methods already used in practice and those methods that are still theoretical
solutions. They have a different range of applications, as well as various advantages and disadvantages.
In addition, known methods of transforming of such grids which maintain the planarity of their panels
after transformation were analysed. Both the methods of creating grids and the methods
of their transformation refer to the methods of discrete geometry.

The results of the research allowed to formulate the author’s own original methods of generating
PQ grids and methods of their transformation. These methods allow to significantly increase the range
of PQ grids’ applications. In addition, it was noticed that many restrictions on the use of these grids
result from the adopted design methodology, which is described as "top-down". This consists
in adapting the mesh to the previously determined free surface. In this approach, many geometric
forms of coatings are excluded from the possibility of using PQ divisions. This problem was essentially
solved by changing the design methodology to "bottom-up". This consists in generating an output grid
with the desired features and then its transformation in order to obtain sufficient compliance with
the assumed final surface. According to the thesis 3, it can be concluded that:

By developing appropriate methods for generating and transforming PQ grids and applying
bottom-up methodology, they can be effectively designed for various boundary conditions.

A-1.7.4 Thesis 4

As part of the research, simulations and computer modelling were performed to examine
the scope of available PQ mesh forms using known and proposed methods according
to the bottom-up methodology. Two case studies proved to be particularly useful,
involving designing glazed canopies over internal courtyards in two existing facilities.
The analyses carried out showed that the scope of PQ mesh formation is very large
and it is possible to adapt them to almost every design situation as well as for triangular-shaped
meshes. The condition that enables this is the design in accordance with the bottom-up methodology.
Accepting the desired base surface a priori may prevent, and in most cases does prevent,
the use of PQ meshes. By transforming, while maintaining the planarity of panels,
the initially generated, simple PQ mesh in such a way that it is finally as close as possible to the desired
surface, satisfactory architectural results can be obtained. According to the thesis 4,
it can be concluded that:
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The proposed bottom-up design methodology together with the appropriate tools
for generating and transforming PQ grids allows to design PQ grid shells for any design
situation, with a small and acceptable limitation of the designer's freedom to shape
the general form of such a grid shell.

A-1.8 Conclusions

The design tools proposed in the work and the design methodology based on them allow to definitely
extend the scope of using PQ grids in free-form objects. Based on them, practical problems with a high
degree of difficulty can be solved.

Considering the number of existing and proposed methods of creating and transforming PQ grids,
it is possible to create many scenarios and design tools adequate to the existing design conditions,
such as the shape of a courtyard, but also the desired shape of a building’s or stadium’s facade.
The nine methods presented for creating PQ grids can be combined with five methods of their
transformation, and two, three, four or five methods can also be used among the transformation
methods in a given design tool. The set of five transformation methods gives 32 subsets of their sets,
and after multiplying by nine the methods of creating PQ grids, it gives 288 different design tools,
each of which includes the method of creating and transforming grids, leading to specific results
and giving control over the form of the designed structure.

Additionally, the concept of the PQ mesh design tool presented in the paper provides four auxiliary
initial and final transformations that do not eliminate the facets' planarity. Auxiliary transformations
can be used in parallel with the basic ones and they are parameterized, additionally increasing
the design freedom.

Indirectly, the application of the proposed solutions to design and construct glazed roofs allow
for the creation of additional usable spaces within existing buildings, as well as the creation of buffer
zones that increase the energy efficiency of buildings. In contrast to the majority of existing solutions
for shaping triangular and PQ grid shells, whose accuracy allow for use only in newly designed buildings
where the roof form can be coordinated with the form of the building, or in existing buildings’
courtyards with shapes, the proposed tools allow for an absolute accuracy of adjusting the form
of the PQ grid to the existing, irregular shape of the courtyard. These situations occur especially
in the case of historical city centres, in which buildings often have irregular forms and it is not possible
to change these conditions by rebuilding them and where, on the other hand, the high building density
requires searching for other ways of obtaining additional usable areas.

However, it is also possible to use the proposed tools and methods for shaping PQ grid shells for newly
designed objects. By the diversity of available combinations of methods of creating and transforming
PQ grids, existing and proposed by the author, consistent with the proposed design tool concept,
a wide spectrum of geometrically correct PQ morphologies is available — including glass roofs with
other irregular base perimeters, facades and domes. The work also presents the concept of applying
both the proposed methods of transformation, i.e. SC and the prospective transformation in order
to obtain a PQ grid form with a contour consisting of sections of conic curves, i.e. second degree
NURBS curves. This provides a tool for the design of canopies over courtyards with particularly complex
perimeters and constraints related to the shape and height of the surrounding walls.
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A-2 Streszczenie w jezyku polskim

A-2.1 Przyczyna podjecia tematu badawczego

Obserwujgc wspodtczesne obiekty architektoniczne, w ktérych zastosowane sg przekrycia, zwtaszcza
przeszklone, w postaci dwukierunkowo zakrzywionych powtok pretowych, mozna zauwazyc,
ze stosunkowo czesto stosowanie atrakcyjnych form napotyka na istotne ograniczenia realizacyjne.
Majg one wptyw nie tylko na wybér okreslonego rozwigzania konstrukcyjnego ale réwniez na percepcje
samej formy. Przyktadem ilustrujgcym ten problem moze by¢ zadaszenie dziedzirica w Smithsonian
American Art Museum w Waszyngtonie, od nazwiska fundatora nazywany Kogod Courtyard.

To, zaprojektowane w 2004 r. przez renomowane biuro Foster and Partners, zadaszenie, ogladane
od wnetrza (Rys. A-2.1, po lewej) imponuje swojg lekkoscig, proporcjami i transparentnoscia.
Projektanci uzyskali ten efekt m.in. poprzez zastosowanie na lekko falujgcej powierzchni siatki pretow
o panelach czworokatnych, ktéra podkresla ksztatt przekrycia, pozostawiajgc szczegéty konstrukcji
na drugim planie.

Rys. A-2.1 Kogod Courtyard w Smithsonian Art Museum w Waszyngtonie.
Po lewej: wnetrze dziedzirica z widokiem na spdd dachu®’, po prawej: widok na dach od gory?s.

Jednakze to samo przekrycie, oglgdane od zewnatrz, robi zupetnie inne wrazenie. Poszczegdlne panele
szklane wystajg poza powierzchnie, tworzac uktad , klawiszujgcy”, niegtadki, ktérego efekt wizualny
jest daleki od spokojnej elegancji wnetrza (Rys. A-2.1, po prawej). Przyczyng tego jest zastosowanie
przez projektanta metodologii projektowania ,z géry do dotu” (ang. top-down), zgodnie z ktdrg
najpierw zostata okreslona geometria powierzchni przekrycia, a nastepnie zostata ona podzielona za
pomocg przyjetej siatki. W takim podejsciu zignorowany zostat fakt, ze nie kazdg powierzchnie
swobodng mozina podzieli¢ za pomocg czworokatow ptaskich. W rezultacie, chcac zachowac
planarnos¢ paneli, projektant zmuszony byt usytuowad je w taki wtasnie sposéb.

Inne podejscie zaprezentowat ten sam architekt, Norman Foster, w zaprojektowanym dziesie¢ lat
wczeséniej zadaszeniu Wielkiego Dziedzinca w Muzeum Brytyjskim w Londynie. Tam réwniez
zastosowana zostata siatka pretowa na dwukrzywiznowo wygietej, gtadkiej powierzchni. Jednak w tym
przypadku przyjeto podziat na panele tréjkatne, patrz Rys. A-2.2. Ich istotng cechg jest to, ze sg zawsze
planarne i uzyskane przekrycie jest gtadkie zarowno od strony wewnetrznej jak i zewnetrznej.

97 Zrédto: https://npg.si.edu/visit/kogod-courtyard
98 7rédto: https://www.fosterandpartners.com/projects/smithsonian-institution-courtyard/#gallery
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Rys. A-2.2 Dach Wielkiego Dziedzirica w Muzeum Brytyjskim, Londyn.%?

Dlaczego w takim razie w pdzniejszym projekcie zastosowano rozwigzanie, ktore nie zachowuje
tej obustronnej gtadkosci? Przyczyng sg niewatpliwe zalety siatek czworokatnych. W najwiekszym
skrdcie sg to: duzo mniejsze nasycenie powierzchni elementami konstrukcyjnymi, a przez to wieksza
transparentnosc¢ przekrycia, znacznie prostsze a zatem fatwiejsze do wykonania i bardziej niezawodne
wezty, wieksza tatwos¢ zapewnienia szczelnosci przekrycia.

Dychotomia: podziat tréjkatny i przekrycie gtadkie —podziat czworokatny i przekrycie niegtadkie,
nie jest nieunikniona. W trakcie pracy nad niniejszg dysertacjg stwierdzono, ze mozliwe jest
zaprojektowanie gfadkiej siatki czworokatnej na niemal kazdej powierzchni dwukrzywiznowej przy
zastosowaniu metodologii projektowania ,,z dotu do géry” (ang. bottom-up). llustracjg tego moze
by¢ autorska wersja przekrycia Kogod Courtyard zaprojektowana wedtug takiego podejscia,
patrz rysunki A-2.3 i A-2.4. Zastosowana w niej zostata czworokatna siatka pretéw, a uzyskana
powierzchnia jest obustronnie gtadka.

Rys. A-2.3 Propozycja przekrycia dziedzirica Kogod za pomocq gtadkich, ptaskich, czworobocznych paneli, zaprojektowana
przy uzyciu autorskich metod przedstawionych w pracy. Widok na dach z gory.

9 7rédto: https://en.wikipedia.org/wiki/Queen_Elizabeth_|l_Great_Court#/media/File:
British_Museum_Great_Court,_London,_UK_-_Diliff.jpg
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Rys. A-2.4 Propozycja przekrycia dziedzirica Kogod za pomocq gtadkich, ptaskich, czworobocznych paneli, zaprojektowana
przy uzyciu autorskich metod przedstawionych w pracy. Widok na dach z dotu.

A-2.2 Tematyka pracy

Tematem rozprawy doktorskiej jest autorskie opracowanie metodologii i narzedzi projektowych
majacych na celu umozliwienie projektantom tworzenie poprawnych geometrycznie przeszklonych
powtok pretowych, ktdre sg jednoczesnie optymalne ze wzgledu na uwarunkowania technologiczne
i konstrukcyjne.

Przedstawione powyzej zestawienie dwodch dachéw szklanych, tj. dachu nad Kogod Courtyard
w Instytucie Smithsonian oraz autorskiej koncepcji dachu o zblizonym ksztatcie zaprojektowanego przy
uzyciu proponowanych metod, ukazuje jak metody i narzedzia projektowe wptywajg na uproszczenie
i zracjonalizowanie projektu. Oba dachy sg powtokami pretowymi, czyli strukturami, ktére dzieki
zakrzywieniu swojej formy w dwéch kierunkach moga by¢ realizowane jako struktury o bardzo
niewielkich wymiarach przekroju poprzecznego elementéw. Z kolei uzycie do pokrycia tych dachéw
czworobocznych paneli szklanych daje wiele korzysci, takich jak zmniejszenie nasycenia powierzchni
pretami, zmniejszenie masy konstrukcji, uproszczenie weztdéw powtoki pretowej i ograniczenie ilosci
mostkéw termicznych oraz potencjalnych miejsc przeciekdw w stosunku do najczesciej stosowanych
w dwukrzywiznowych dachach szklanych podziatéw tréjkatnych. O ile jednak powtoke o optymalnym
konstrukcyjnie ksztatcie mozna w tatwy sposdb pokry¢ ptaskimi tréjkgtnymi panelami, to jej pokrycie
czworobokami nie jest zadaniem trywialnym. Cztery wierzchotki czworokata lezgce
na odwzorowywanej zakrzywionej powierzchni, nie lezg jednoczesnie na tej samej ptaszczyznie,
i na odwrdt — cztery wierzchotki dowolnego czworokata ptaskiego na ogdt nie dajg sie jednoczesnie
umiesci¢ na odwzorowywanej powierzchni zakrzywionej. Z tego powodu, zastosowanie podziatéw
czworokatnych dla dowolnej, arbitralnie narzuconej powierzchni przekrycia, prowadzi do efektéw
takich jak w Kogod Courtyard, gdzie brak gtadkosci podziatu byt kompensowany za pomoca specjalnie
opracowanego, skomplikowanego systemu uszczelnien. Warto zauwazy¢, ze w praktyce
nie sg proponowane rozwigzania polegajagce na zastosowaniu zakrzywionych paneli szklanych,
pomimo, ze rozwigzywatoby to problem geometryczny. Jednakze takie rozwigzanie prowadzitoby
do powstania nowych, jeszcze trudniejszych do rozwigzania problemoéw, zwigzanych
z odksztatcalnoscig termiczng elementdw zakrzywionych i uszczelnieniem krawedzi paneli.

Rozwigzaniem proponowanym w niniejszej pracy jest odwrdcenie kolejnosci dziatan wykonywanych
przez projektanta, ktdry standardowo na poczatku opracowuje powierzchnie powtoki
(arbitralnie uksztattowang lub zoptymalizowang konstrukcyjnie) a nastepnie dokonuje jej podziatéw
na fasety, przy czym najczesciej okazuje sie, ze nie jest mozliwy racjonalny podziat na czworoboki
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a drozsze podziaty tréjkatne sg jedynym rozwigzaniem. Zamiast tego projektant moze ksztattowac
forme powtoki za pomocag superpozycji opisanych w pracy metod tworzenia (generowania)
zakrzywionych planarnych siatek czworobocznych oraz metod ich przeksztatcania (transformacji)
zachowujgcych planarnosé poszczegdlnych paneli. W tym wypadku w pierwszej kolejnosci projektant
decyduje o podziatach a nastepnie o formie. Dzieki temu przy umiarkowanym ograniczeniu dowolnosci
w ksztattowaniu formy moze on mieé zupetng pewnosé, ze jego projekt jest mozliwy do zrealizowania
przy uzyciu racjonalnych rozwigzan technologicznych.

Przedstawione metody oraz koncepcje narzedzi projektowych pozwalajg na odtwarzanie
zaprojektowanych form w sposdb geometrycznie i technologicznie racjonalny oraz jak najbardziej
zblizony do form wyjsciowych, a takze otwierajg nowe mozliwosci projektowania form swobodnych
od podstaw. Katalog istniejgcych i proponowanych metod oraz narzedzi pozwala na projektowanie
dachéw szklanych, a takze wszelkich innych struktur opartych na podziatach czworobocznych takich
jak fasady, ogrody zimowe i wiaty.

A-2.3 Wprowadzenie w problematyke pracy

Projektowanie form swobodnych w architekturze staje sie coraz popularniejsze dzieki
upowszechnieniu stosowania zaawansowanych narzedzi projektowych. Historycznie formy swobodne
wywodzg sie z projektowania pojazdow, tj. fodzi, okretéw, samochoddéw oraz samolotow.

Przedstawiona w pracy historia form swobodnych pokazuje w jaki sposdb narzedzia stuzgce
do projektowania kadtubdw todzi, statkdw, samochoddéw i samolotéw, od zawsze zwigzanych
z formami swobodnymi, staty sie obecnie narzedziami architektow i w jaki sposéb wptynety one
na przyjetg obecnie, niekorzystng zdaniem autora, metodologie projektowg wymuszajgcy stosowanie
mniej racjonalnych rozwigzan technologicznych. Zaawansowane narzedzia przeznaczone
do projektowania form swobodnych zostaty po raz pierwszy uzyte do projektowania formy
architektonicznej podczas realizacji Muzeum Guggenheima w Bilbao w latach 1994 — 1997.
Projekt i realizacja tego budynku wymagaty wtedy scistego wspoétudziatu zespotu inzynieréw z branzy
lotniczej zaznajomionych z ich obstugg zaréwno po stronie jednostki projektowej jak i po stronie
wykonawcéw obiektu. Niewatpliwy sukces komercyjny tej realizacji wywotat wspétczesny fenomen
,Efektu Bilbao”, ktdrego jednym z czynnikdw jest upowszechnienie projektowania form swobodnych
oraz stosowanie przez architektéw narzedzi do ich ksztattowania. Negatywnym skutkiem tego
fenomenu jest jednak pominiecie przez wielu projektantéw faktu, ze mozliwe do uzyskania przy uzyciu
tych narzedzi formy nie sg przystosowane do stosowania w architekturze. Roznice miedzy sposobem
realizacji pojazdéw i obiektéw budowlanych implikujg koniecznos¢ wykorzystywania rdéznych
metodologii i narzedzi projektowych. Sposréd tych rdézinic w niniejszej pracy wyszczegdlniono
nastepujace:

e przegrody budowlane posiadajg grubos¢ oraz s wielowarstwowe, podczas gdy
kadtuby/karoserie pojazddw realizowane s3 z arkuszy materiatéw, ktorych grubosé w stosunku
ich pozostatych wymiardw jest w praktyce pomijalna;

e seryjnos¢ realizowania pojazdéw dzieli koszty opracowania technologii na ilosé
produkowanych egzemplarzy, podczas gdy budynek posiadajacy forme swobodng realizowany
jest jednokrotnie i jego koszt musi obejmowac technologie jego opracowania;

e inaczej niz w pojazdach, ktorych karoserie s3 wykonywane z indywidualnych elementow
wytwarzanych w wielkiej liczbie, w budynkach o formach swobodnych (inaczej niz
np. w masowym budownictwie mieszkaniowym) stosowane elementy nie tylko majg
indywidualne ksztatty ale réwniez powstajg w bardzo matej liczbie egzemplarzy;
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e pojazdy realizowane sg w catosci na tasmach produkcyjnych w obrebie jednej fabryki,
natomiast budynki o formach swobodnych realizowane sg z elementéw sktadowych, ktérych
wymiary powinny pozwala¢ na ich dostarczenie na plac budowy oraz umieszczenie
we witasciwym miejscu w realizowanym budynku.

Problemy te wyraznie ujawnity sie jeszcze przed pojawieniem sie Efektu Bilbao, podczas realizacji
Opery w Sydney, pociggajgc za sobg szereg konsekwencji takich jak odsuniecie terminu zakonczenia
realizacji o 8 lat, prawie stukrotne przekroczenie budzetu realizacji projektu, ale takze pierwsze
w historii uzycie w tej skali komputerowych metod analiz konstrukcji, stworzenie symbolu catego
kontynentu oraz ostateczne wyrdznienie architekta Jgrna Utzona nagroda Pritzkera. Choé sposréd
ponad dwustu nadestanych projektow konkursowych zwycieska koncepcja sktadata sie jedynie
z ogdlnego szkicu, zdobyta ona uznanie juroréw odwagg w zastosowaniu form swobodnych. Sposrod
wielu interpretacji i inspiracji form tupin Opery w Sydney przemawia fakt, ze ich autor w mtodosci
wspdlnie ze swoim ojcem projektowat i budowat jachty. Sam w jednym z wywiadow stwierdzit,
ze tworzac koncepcje Opery utozsamit brak bariery technologicznej miedzy projektem a realizacjg
w przypadku jachtéw z jej brakiem w przypadku budowli. Ostateczne rozwigzanie olbrzymich
probleméw realizacyjnych Opery przyniosto zastosowanie opisanych na wspdlnej sferze,
a wiec i w pewnym stopniu powtarzalnych, przestrzennych betonowych prefabrykatéw wytwarzanych
w poblizu miejsca realizacji budowli, zamiast powtok jak pierwotnie zaktadat autor projektu.

Cho¢ od tamtej pory mozliwosci technologiczne realizacji form swobodnych w architekturze znacznie
sie zwiekszyty, to wspomniane problemy wcigz sg aktualne i stojg na przeszkodzie miedzy koncepcjami
architektonicznymi a racjonalnymi mozliwosciami ich realizacji, poniewaz nie zmienity sie narzedzia
projektowe dostepne dla architektéw. Pomysine realizacje form swobodnych w architekturze
do niedawna pozostawaty w domenie tak znanych projektéw jak wspomniany juz dach nad Wielkim
Dziedzincem im. Krdlowej Elzbiety w Muzeum Brytyjskim autorstwa Normana Fostera i Centrum
Heydara Aliyeva w Baku autorstwa Zahy Hadid, w obu przypadkach wymagajgc zastosowania
zaawansowanych matematycznie i algorytmicznie metod projektowych indywidualnie dostosowanych
do potrzeb projektéw. Podany w pracy przyktad Muzeum Historii Zydéw Polskich w Warszawie opisuje
problemy technologiczne zwigzane z realizacjg gtdwnego holu budynku posiadajgcego Sciany
o formach swobodnych, udowadnia, ze w przypadku realizacji majgcych mniejszg range, tatwos¢
w tworzeniu przez architektéw wyjgtkowych form przy uzyciu zaawansowanych metod projektowych
jest odwrotnie proporcjonalna do tatwosci ich realizacji.

A-2.4 Wyjasnienie tytutu pracy

Przeglad literatury przedstawiony w pracy nie wykazuje jednoznacznej definicji form swobodnych
stosowanych w architekturze. Dla czesci cytowanych badaczy sg to formy zakrzywione w nieregularny
sposéb, nie posiadajgce we fragmentach swojej formy powtarzalnosci. Dla innych badaczy formy
konstrukcji membranowych, posiadajgcych powyzsze cechy, nie kwalifikujg sie jako formy swobodne,
poniewaz swoboda ich projektowania ograniczona jest przez rodzaj powierzchni na jakich te
konstrukcje sg opisywane. Sg nimi powierzchnie minimalne, czyli matematycznie i fizycznie
zdefiniowane za pomocg warunkdw zewnetrznych powierzchnie mozliwe do uzyskania w procesie
form finding. Konsekwentnie kazda inna forma, nie tylko membranowa, zaprojektowana w procesie
form finding nie jest przez tych badaczy kwalifikowana jako forma swobodna. W niniejszej pracy jako
forme swobodng przyjmuje sie forme opisang na powierzchni posiadajacej zakrzywienie, state
lub zmieniajgce sie, w dwdch kierunkach czyli dwukrzywiznowg, niezaleznie od tego czy jest ona
wynikiem optymalizacji konstrukcyjnej, czy rzezbiarskg wizjg projektanta.
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Zasadnosc ksztattowania struktur w postaci form swobodnych zasadza sie na mozliwosci realizowania
ich jako lekkich konstrukcji. To dzieki zakrzywieniu mozliwe jest realizowanie powtok, podczas gdy
ta sama struktura realizowana z ptaskich pofaci musi z reguty dodatkowo wzmacniana poprzez
zastosowanie wiekszych przekroi pretdw oraz zastosowaniem struktur przestrzennych.

Obecnie jednymi z najczesciej realizowanych w architekturze form swobodnych sg przeszklone powtoki
pretowe, czyli powtoki sktadajace sie z pretdw, weztdw oraz paneli szklanych. Krzywizna takich powtok
pretowych jest dyskretna, co oznacza, ze ich ogdlna forma jest zakrzywiona czyli wezty siatki lezg
na zakrzywionej powierzchni, natomiast jej poszczegdlne elementy sktadowe nie sg zakrzywione,
czyli prety sg proste a panele s pfaskie. Realizowanie dyskretnych, dwukrzywiznowych powtok
pretowych, w przeciwienstwie do powtok pretowych o statej krzywiznie, w ograniczonym stopniu moze
korzystac z unifikacji ich elementéw sktadowych. Prety mogg rézni¢ sie dtugosciami i kagtami miedzy
sobg, ale sg proste a tafle szklane mogg miec rézne ksztatty ale sg ptaskie.

Topologia powtok pretowych odnosi sie do ksztattu poszczegdlnych paneli oraz ilosci pretow
zbiegajacych sie w kazdym wezle powtoki. Dwie najczeéciej stosowane topologie to: trdjkatna
(patrz Rys. A-2.6) i planarna czworoboczna (z ang. planar quadrilateral — w skrécie PQ;
patrz Rys. A-2.5). Powtoki pretowe o topologii trojkatnej sktadajg sie z tréjkatnych paneli oraz weztéw
taczacych szes¢ pretéw, natomiast powloki pretowe o topologii PQ sktadajg sie z ptaskich,
czworobocznych paneli i weztow tgczacych cztery prety. Praca zawiera autorska analize réznic miedzy
tymi topologiami a takze opiera sie na analizach innych, cytowanych autoréw. Sposrdd réznic miedzy
tymi topologiami na niekorzys¢ siatek tréjkatnych przemawiajg nastepujgce czynniki:

e panele tréjkatne sg kosztowniejsze w produkcji niz czworoboczne, gdyz wigzg sie w wiekszg
iloscig odpaddw szkta; trudnosci sprawia tez mozliwo$¢ pekania naroznikéw o zbyt matym
kacie wierzchotka;

e w siatkach o topologii tréjkatnej jest wyziszy stosunek liczby elementédw konstrukcyjnych
do powierzchni szklenia niz w siatkach o topologii PQ (rysunek ponizej);

e wezty siatek tréjkatnych sg bardziej skomplikowane i rozbudowane niz w siatkach PQ;

e w siatkach tréjkatnych wystepuje wiecej mostkdw termicznych oraz potencjalnych Zrédet
nieszczelnosci niz w siatkach PQ.

tatwosé w projektowaniu siatek tréjkatnych przektada sie na przewage w liczbie ich realizacji, pomimo
iz siatki PQ sg bardziej racjonalne pod wzgledem technicznym i ekonomicznym. Przewaga ta
jest spowodowana przez przyjetg powszechnie metodologie, nazwang ,z goéry do dotu”,
w ktdrej architekt w poczatkowej fazie opracowywania projektu tworzy za pomocg dostepnych
narzedzi projektowych powierzchnie swobodng, na ktérej docelowo ma zostaé opisana powtoka
pretowa. Poniewaz dowolny tréjkat, niezaleznie od lokalizacji jego wierzchotkéw w przestrzeni
jest ptaski, to opisanie trojkatnych paneli na zadanej przez architekta powierzchni
oraz ich przemieszczanie w celu optymalizacji dtugosci pretéw oraz ksztattéw paneli pozwala
na nieograniczong swobode ksztattowania formy geometrycznej powtoki. W przypadku paneli
czworobocznych ich planarnosé nie jest oczywista przy umieszczeniu ich wierzchotkdow na odgédrnie
zadanej przez projektanta formie swobodnej. Stagd w niniejszej pracy postulowane jest stosowanie
podejscia oddolnego, ktére opiera sie na takim ksztattowaniu powierzchni swobodnych, ktére oddolnie
uwzglednia mozliwos¢ wypetnienia ich ptaskimi, czworobocznymi panelami. Dostepne dla architektéow
narzedzia nie oferujg wystarczajgcych metod ksztattowania form swobodnych, ktére w konsekwencji
umozliwiaty by ich realizacje w optymalnej topologii.
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Rys. A-2.6 Przekrycie z siatkq trojkqtng.

W wyniku przeprowadzonych badan i analiz stwierdzono, ze mozliwe jest sformutowanie metodologii
projektowania, ktérg nazwano podejsciem ,z dotu do géry” oraz metod generowania i przeksztatcania
siatek czworokatnych, ktére umozliwig ich projektowanie w praktycznie wszystkich wystepujacych
przypadkach. Powyzsze stato sie podstawg do sformutowania tez niniejszej rozprawy doktorskiej.

A-2.5 Tezy pracy

Po poczgtkowym, entuzjastycznym okresie tuz po , Efekcie Bilbao” realizacja wielu obiektéw opartych
na formach swobodnych uwidocznita problem oderwania formy od racjonalnosci konstrukcji. Forma
stata sie srodkiem ekspresji architektury samym w sobie, oderwanym od czynnikéw zwigzanych
z jej implementacja. Szczegdlnie istotnym i interesujgcym przyktadem takich form swobodnych
sg dyskretne, przeszklone powtoki pretowe realizowane jako dachy szklane i fasady, ktére moga
by¢ ksztattowane jako arbitralne, ekspresyjne formy, badz zoptymalizowane pod wzgledem
konstrukcyjnym lekkie powtoki.

e Tezal

Powtoki pretowe sg jednymi z gtéwnych srodkéw wyrazu w obrebie trendu projektowania
form swobodnych w architekturze i nalezg do najbardziej charakterystycznych i najczesciej
realizowanych obiektow w tej grupie.
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e Teza2

Powtoki pretowe o formach swobodnych oparte na topologii ptaskiej czworobocznej
(planar quadrilateral — PQ) posiadajg wiele zalet w poréwnaniu do powtok pretowych
opartych o topologie tréjkatna.

e Teza3

Mozliwe jest opracowanie narzedzi projektowych pozwalajacych efektywnie projektowacé
powtoki siatki PQ w oparciu o metodologie oddolna.

e Teza4

Kierujgc sie zasadami projektowania opartego na metodzie oddolnej, pozgdane powtoki
pretowe mozna uzyska¢ przy niewielkim i akceptowalnym ograniczeniu swobody
w ksztattowaniu ich formy.

A-2.6 Wyniki pracy

Wynikiem pracy jest stworzenie bazy istniejgcych i autorskich metod tworzenia i przeksztatcania siatek
PQ, ktdre stanowig podstawe opracowania kompleksowego systemu projektowego. Odpowiednie
zestawienie wybranych metod tworzenia i przeksztatcania pozwala na ksztattowanie
dwukrzywiznowych powtok pretowych o topologii PQ dostosowanych do wymaganych istniejgcych
warunkéw, np. ksztattu zadaszanego dziedzinca. W pracy przedstawiono opracowang koncepcje
narzedzia projektowego opartego na opisanych wczesniej metodach generowania i transformacji
siatek PQ, a nastepnie szczegétowo przedstawiono dwa przyktadowe zastosowania praktyczne
opracowanych narzedzi oparte na tej koncepcji i wybranych metodach generowania i przeksztatcania
siatek PQ.

Jako przyktad aplikacji opracowanych zgodnie z koncepcjg narzedzi projektowych wybrano zadaszenia
dziedzincow w dwodch istniejgcych budynkach wroctawskich. Pierwszym z nich jest budynek
Dolnoslaskiego Urzedu Wojewddzkiego, ktéry posiada az trzy dziedzirice z ktérych dwa majg ksztatt
zaokraglonego czworoboku. Dla jednego z nich zaproponowano przeszklone przekrycie przedstawione
na rysunku A-2.7. Zaproponowane rozwigzanie opiera sie na metodzie translacyjnej tworzenia siatki
PQ oraz na autorskim przeksztatceniu SC (odwzorowaniu sferyczno-cylindrycznym), ktére doktadnie
przeksztatca podstawowg forme siatki do zaokraglonej formy dziedzinca zachowujac planarnosc
wszystkich faset. Opracowane narzedzie zawiera réwniez szereg opisanych w pracy krokow
posrednich, ktére w zatozeniu majg zwiekszy¢ kontrole nad ostateczng forma dachu sprawowang przez
projektanta a jednoczes$nie gwarantujg geometryczng poprawnos¢ rozwigzania.

Drugi przyktad dotyczy dziedzinca w budynku Woydziatu Nauk Biologicznych Uniwersytetu
Wroctawskiego przy ul. Kuzniczej 35. Dziedziniec ten posiada forme nieregularnego czworoboku,
a otaczajg go odciete obecnie od niego oknami kruzganki. Podobnie jak w poprzednim przypadku,
do zaprojektowania siatki PQ uzyto narzedzie oparte na metodzie translacyjnej tworzenia siatki
oraz na autorskiej metodzie przeksztatcania, tj. transformacji = perspektywicznej.
Ta metoda przeksztatcania pozwala na dopasowanie dowolnej siatki PQ o ptaskiej, czworobocznej
podstawie do dowolnej czworobocznej, nieregularnej formy dziedzinca, patrz Rys. A-2.8.
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Rys. A-2.8 The proposed cover of the courtyard in the building of the Faculty of Biological Sciences of the University of
Wroctaw.
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W obu przypadkach projektant wskazuje na rzucie budynku trzy lub cztery punkty narozne, zaleznie
od przypadku projektowego, na podstawie ktérych zaprogramowane narzedzie automatycznie
dopasowuje odpowiednie parametry przeksztatcen. Oba narzedzia zapewniajg szereg mozliwosci
modyfikacji formy dajgc projektantowi jak najwiekszg swobode jej ksztattowania. Projektant
za pomocg zmiany wartosci parametréw dla narzedzia decyduje o ilosci i rozmieszczeniu podziatéw
siatki a tym samym ma wptyw na rozmiary paneli szklanych, wysokosci strzatki dachu etc. Za pomoca
kilku innych parametréw ma réwniez wptyw na sam ksztatt otrzymanej formy przy zachowaniu
ustalonych na poczatku jej punktéw naroznych.

Parametry za pomocg ktérych projektant kontroluje forme powtoki pretowej PQ ograniczajg absolutng
swobode ksztattowania charakterystyczng dla paradygmatu projektowania metodg ,,z géry na dét”,
lecz ograniczajg go do zbioru morfologii racjonalnych z geometrycznego punktu widzenia.
Projektant moze uzyskac¢ takie formy, ktére sg racjonalne z punktu widzenia realizowalnosci.
Z tego powodu jeden z badaczy w tej dziedzinie geometrii w architekturze, Romain Mesnil, nazywa
podejscie ,z dotu do géry” fabrication aware design, czyli projektowanie ze Swiadomoscig
mozliwosci wytwdrczych.

Dostepne formy podstawowej siatki translacyjnej PQ o ptaskiej podstawie sparametryzowane
za pomocg dwédch parametrow ksztattowania formy zostaty zbadane pod wzgledem wartosci
sit wewnetrznych metodg elementéw skonczonych. Wyniki przedstawione w pracy dowodzg,
ze optymalna forma powtoki pretowej, w ktorej sity wewnetrzne majg najmniejsze wartosci jest formag
dwukrzywiznowg o wysokim stopniu ciggtosci krzywizny. Dzieki temu dach o takiej formie mozliwy
jest do zrealizowania z elementow konstrukcyjnych o mniejszych przekrojach niz w przypadku formy
konwencjonalnej, tj. ortogonalnej sktadajgcej sie z uktadéw ptaskich pofaci, a przede wszystkim
jest mozliwe ksztattowanie dachéw szklanych jako powtoki a nie kratownicy przestrzennej,
ktora w wielu przypadkach jest rozwigzaniem kolidujgcym z estetykg budynku, przede wszystkim
w kontekscie zabudowywania dziedzincow obiektéw zabytkowych. Stosowanie proponowanych
W pracy narzedzi przektada sie wiec w sposéb bezposredni na zmniejszenie zuzycia materiatow,
w kwestii optymalizacji formy i topologii, a ostatecznie na racjonalizacje ekonomiczng stosowania
tych rozwigzan.

A-2.7 Udowodnione tezy pracy
A-2.7.1 Tezal

Analizy obiektédw reprezentatywnych dla trendu projektowania form swobodnych przeprowadzone
w rozprawie pozwolity przesledzi¢ zastosowanie form swobodnych w ukonczonych obiektach
i zdefiniowad najczesciej im przypisywane funkcje. Sg to przede wszystkim elementy obiektéw, ktére
okreslajg ich wizualng percepcje, takie jak elewacje budynkéw (czesto w postaci drugiej skory)
i pokrycia dachowe catych obiektéw lub ich czesci, zwtaszcza zadaszenia dziedzincow, wiaty wejsciowe
itp. Szczegdlne miejsce wsrdd nich zajmujg konstrukcje pretowe, ktére z jednej strony pozwalajg na
uzyskanie efektywnosci strukturalnej, a z drugiej dajg dodatkowe mozliwosci ksztattowania formy
za pomocg przezroczystych wypetnien. Katalog obiektdw, ktére systematyzujg dane na ich temat,
zamieszczony w Aneksie do pracy, okazat sie pomocny w wyciggnieciu wnioskdw.
Na podstawie przenalizowanych danych dotyczacych tezy 1 mozna stwierdzi¢, ze:
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Wsrod obiektéw o formach swobodnych, powtoki pretowe zajmujg szczegdlnie waine
miejsce i stanowig jedng z najwazniejszych grup struktur w ramach tego trendu.
Poniewaz pozwalajg one na uzyskanie form o znacznych rozpietosciach, przy tym sg wyraznie
lekkie, a poprzez duze przeszklenia dobrze widoczne, staty sie najczesciej realizowanymi
obiektami w tej grupie. Cechy te umozliwity powszechna akceptacje spoteczng tych nowych
form geometrycznych, przyczyniajac sie w znacznym stopniu do rozpowszechniania swobody
ksztattowania form w architekturze.

A-2.7.2 Teza 2

Analiza rdéinych rozwigzan przeprowadzona z uwzglednieniem topologii, geometrii, konstrukcji
i materiatdw pozwolita stwierdzi¢, ze najczesciej projektowane i konstruowane sg powtoki pretowe,
ktorych panele szklane sg tréjkatne. Takie rozwigzanie pozwala uzyskac gtadkg siatke na prawie kazdej
powierzchni, zapewniajac jednoczesnie niezbedng sztywnos¢ konstrukcji. Siatki o takiej topologii
sg stosunkowo tatwe do zaprojektowania i mogg by¢ wpisane w prawie kazdym zamkniety kontur.
Panele tréjkatne zdefiniowane przez krawedzie siatki (prety) sg zawsze ptaskie. Dostepne
sg komputerowe narzedzia do projektowania takich siatek.

W tym samym czasie odkryto wiele wad tego rozwigzania. Najwazniejsza jest ztozona budowa weztow,
w ktérych podtaczonych jest do szesciu pretdw. Ogdlna liczba pretdw oraz powierzchnia dachu zajeta
przez nie jest réwniez znacznie wieksza. Tréjkatne panele szklane sg réwniez mniejsze. Te negatywne
cechy nie pojawiajg sie w siatkach o topologii czworoboczne;j. Liczba pretdw potgczonych w jednym
wezle takiej siatki wynosi cztery, a wzgledna liczba pretédw jest mniejsza. Wizualne postrzeganie takich
struktur jest znacznie bardziej korzystne. Pod pewnymi wzgledami wykazujg one rowniez bardziej
korzystne wtasciwosci mechaniczne. Waznym ograniczeniem w projektowaniu siatek z topologia
czworokatng jest fakt, ze panele w takiej siatce nie zawsze sg ptaskie. Z tego powodu konieczne
jest ograniczenie ich réznorodnosci do topologii ptaskiej czworobocznej (PQ — planar quadrilateral).
Istniejg jednak ograniczenia w stosowaniu tej topologii, poniewaz nie mozna jej zastosowac na kazdej
zdefiniowanej wczesniej powierzchni. Obecnie nie ma réwniez dostepnych narzedzi do projektowania
siatek o takiej topologii. W stosunku do tezy 2, mozna stwierdzi¢, ze:

Wsrdd realizowanych obiektéw, w ktérych zastosowano przeszklone powtoki pretowe,
dominuja struktury o topologii tréjkatnej. Obecnie jednak powstaje coraz wiecej obiektow
z topologig PQ. Chociaz trudniej uzyska¢ go w procesie projektowania, ma wiele istotnych
zalet w poréwnaniu z topologia tréjkatna.

A-2.7.3 Teza 3

W rozprawie przeprowadzono szerokg dyskusje na temat znanych metod ksztattowania siatek PQ
na powierzchniach swobodnych. Obejmujg one zaréwno metody juz stosowane w praktyce,
jak i metody, ktére nadal stanowig rozwigzania teoretyczne. Majg one réiny zakres zastosowan,
a takze rdzne zalety i wady. Ponadto przeanalizowano znane metody transformacji tych siatek,
ktdre zachowujg ptaskosé paneli po transformacji. Zaréwno metody tworzenia siatek, jak i metody
ich transformacji, odnoszg sie do metod geometrii dyskretnej.

Wyniki badan pozwolity na sformutowanie wtasnych, oryginalnych metod generowania siatek PQ
oraz metod ich transformacji. Metody te pozwalajg znacznie zwiekszy¢ zakres zastosowan siatek PQ.
Ponadto zauwazono, ze wiele ograniczen w stosowaniu tych siatek wynika z przyjetej metodologii
projektowania, ktérg mozna okresli¢ jako "odgorng". Polega ona na dostosowaniu siatki do ustalonej
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uprzednio powierzchni swobodnej. W tym podejsciu wiele geometrycznych form powtok
jest wykluczonych z mozliwosci zastosowania podziatéw PQ. Ten problem zostat zasadniczo rozwigzany
poprzez zmiane metodologii projektowania na "oddolng". Polega ona na wygenerowaniu siatki
wyjsciowej o pozgdanych cechach, a nastepnie jej transformacji w celu uzyskania wystarczajacej
zgodnosci z zatozong powierzchnig wyjsciowg. W odniesieniu do tezy 3, mozna stwierdzié, ze:

Opracowujac odpowiednie metody generowania i przeksztatcania siatek PQ oraz stosujac
metodologie oddolng, moina je efektywnie projektowa¢ dla rézinych warunkéw
brzegowych.

A-2.7.4 Teza 4

W ramach badan przeprowadzono symulacje i modelowanie komputerowe w celu sprawdzenia
zakresu ksztattowania siatek PQ przy uzyciu znanych i proponowanych metod, z wykorzystaniem
metodologii oddolnej. Szczegdlnie przydatne okazaty sie dwa studia przypadku, polegajace
na zaprojektowaniu przeszklonych zadaszen nad wewnetrznymi dziedzincami w dwach istniejgcych
obiektach. Przeprowadzone analizy wykazaty, ze zakres ksztattowania siatek PQ jest bardzo duzy
i mozliwe jest dostosowanie ich do niemal kazdej sytuacji projektowej, a takze dla siatek o topologii
tréjkatnej. Warunkiem, ktéry to umozliwia, jest projektowanie zgodnie z metodologig oddolna.
Przyjecie zgdanej powierzchni bazowej a priori moze uniemozliwi¢, i w wiekszosci przypadkéw
uniemozliwia, wykorzystanie siatek PQ. Przeksztatcajac, przy zachowaniu ptaskosci paneli, poczagtkowo
wygenerowang, prostg siatke PQ w taki sposdb, ze w koncu jest ona jak najblizej zblizona do zgdanej
powierzchni bazowej, mozna uzyskaé satysfakcjonujgce wyniki pod wzgledem architektonicznym.
W odniesieniu do tezy 4, mozna stwierdzi¢, ze:

Proponowana oddolna metodologia projektowania wraz z odpowiednimi narzedziami
o0 generowania i przeksztatcania siatek pozwala projektowa¢ powloki pretowe
o topologii PQ dla dowolnej sytuacji projektowej, z matym i akceptowalnym ograniczeniem
swobody projektanta w zakresie ksztattowania ogolnej formy takiej powtoki pretowej.

A-2.8 Whnioski

Zaproponowane w pracy narzedzia projektowe i bazujgca na nich metodologia projektowania
pozwalajg zdecydowanie rozszerzy¢ zakres stosowania siatek PQ w obiektach o formie swobodne;j.
Na ich podstawie mozna rozwigzywac praktyczne problemy o duzym stopniu trudnosci.

Biorgc pod uwage liczbe istniejgcych oraz proponowanych przez autora pracy metod tworzenia
oraz przeksztatcania siatek PQ mozliwe jest stworzenie wielu scenariuszy adekwatnych do istniejgcych
uwarunkowan projektowych jakimi moze by¢ na przyktad ksztatt dziedzinca, ale mogg nimi by¢ réwniez
ksztatt fasady budynku lub obudowy stadionu. Dziewie¢ przedstawionych metod tworzenia siatek PQ
moze by¢ zestawionych z piecioma metodami ich przeksztatcen, przy czym sposréd metod
przeksztatcen w danym narzedziu projektowym mogg zostac uzyte réwniez dwa, trzy, cztery lub piec
metod jednoczednie. Zbiér pieciu metod przeksztatcania daje 32 podzbiory ich zestawien,
a po pomnozeniu przez dziewie¢ metod tworzenia siatek PQ daje az 288 rdinych narzedzi
projektowania, z ktérych kazde obejmuje metode tworzenia i przeksztatcania siatek, prowadzac
do okreslonych rezultatéw i dajgc kontrole nad forma projektowanej struktury.
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Dodatkowo koncepcja narzedzia do projektowania siatek PQ przedstawiona w pracy przewiduje
po cztery pomocnicze wstepne oraz koncowe transformacje nie likwidujgce planarnosci faset.
Transformacje pomocnicze mogg by¢ uzywane réwnolegle z podstawowymi i sg one
sparametryzowane zwiekszajgc dodatkowo swobode projektowania.

W sposéb posredni stosowanie proponowanych rozwigzan pozwala na tworzenie dodatkowych
przestrzeni uzytkowych w obrebie istniejgcych budynkdéw, oraz na tworzenie stref buforowych
zwiekszajgcych oszczednosé energetyczng budynkdw. W przeciwienstwie do wiekszosci istniejacych
rozwigzan ksztattowania powtok pretowych, tréjkatnych oraz PQ, doktadnosé uzyskiwanych rozwigzan
pozwala na ich stosowanie w nowo projektowanych budynkach, gdzie forma dachu moze zostac
skoordynowana z formg budynku, oraz w istniejgcych budynkach o prostym, regularnym ksztatcie
dziedzinca, proponowane narzedzia oparte na metodach przeksztatcania pozwalajg na absolutng
doktadno$¢ dostosowania formy siatki PQ do istniejgcego, nieregularnego ksztattu dziedzinca.
Sytuacje te wystepuja szczegdlnie w przypadku historycznych centréw miast, w ktérych budynki czesto
posiadajg nieregularne formy i nie jest mozliwa zmiana tych uwarunkowan przez ich przebudowe
a z drugiej strony wysoka gesto$¢ zabudowy wymaga poszukiwania innych sposobdw uzyskiwania
dodatkowych powierzchni uzytkowych.

Nie jest jednak wykluczone stosowanie proponowanych narzedzi do ksztattowania powtok pretowych
PQ w przypadku nowo projektowanych obiektow. Dzieki innym zestawieniom przedstawionych
w pracy metod tworzenia i przeksztatcania siatek PQ, istniejgcych oraz proponowanych przez autora,
zgodnym z proponowang przez autora koncepcjy narzedzia projektowego, mozliwe jest szerokie
spektrum dostepnych, poprawnych geometrycznie morfologii PQ, w tym dachdéw szklanych o innych,
nieregularnych obrysach, nie tylko planarnych, fasad oraz koput. W pracy przedstawiono réwniez
koncepcje zastosowania obu zaproponowanych metod przeksztatcania, tj. SC oraz transformacji
perspektywicznej w celu uzyskania formy siatki PQ o obrysie sktadajgcym sie z odcinkéw krzywych
stozkowych, tj. krzywych NURBS drugiego stopnia. Daje to narzedzie do projektowania zadaszen
nad dziedzinicami o szczegdlnie ztozonym rzucie i ograniczeniach zwigzanych z ksztattem i wysokoscig
otaczajacych Scian.
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A-3 Overview of constructed glazed grid shells

This chapter contains an overview of selected constructed glazed grid shells. The overview is divided
into three sections considering triangular, PQ and hybrid topologies.

A-3.1 Grid shells based on triangular topology

List of objects in chronological order:
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Queen Elizabeth Il Great Court

Location: London, UK

Date of construction: 1994

Architecture: Foster + Partners, Norman Foster, London

Structural engineering: BuroHappold, Bath, UK; Zenkner & Handel (glazing), Graz; Mike Cook
(structural engineer)

Steel & glass construction: Waagner-Biro, Vienna; Qualter, Hall & Co Ltd., Barnsley

The roof was designed with the use of sophisticated non-linear form finding methods.
Both the geometry and tessellation (alignment of nodes) of the grid shell were subjects
of optimization. Although the courtyard’s shape is a rectangle the complexity of resultant grid shell
is conditioned by the rotunda in the middle of it. Therefore the adopted tessellation
had to be a combination of radial and rectangular patterns made of triangles, what had been
successfully achieved.

Sources of photos: https://www.geograph.org.uk/photo/2067349
https://www.fosterandpartners.com/projects/great-court-at-the-british-museum/
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Meeting Hall Flemish Council

Location: Brussels, Belgium

Date of construction: 1994

Architect: ARROW Architecture and Engineering, Gent, Belgium
Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart, Germany

This glazed roof covers the six sided courtyard with a very irregular shape and sides of different
lengths. Support conditions are also complex, since the roof is supported one level above the floor
of courtyard, on a horizontal cornice just below second row of windows. High curvature of the shape
of roof allowed for the construction of lightweight, single layered structure and placing
the Meeting Hall under it. The layout of nodes and members is not regular in top projection,
however the continuity of trusses is very consistent, since the positions of individual nodes
were optimized.
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Source of photo: http://www.arrowarchitecture.be/
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New Milan Trade Fair, Vela roof

Location: Milan, Italy

Date of construction: 2005

Architecture: Massimiliano Fuksas

Structural engineering: sbp — Schlaich Bergermann Partner, Stuttgart

Engineering: Hans Schober (engineer)

Steel construction: Mero GmbH & Co. KG, Wiirzburg

The Vela-roof is a 1,3 km long glazed roof containing planar, single- and doubly-curved regions
which have synclastic and anticlastic curvatures. The roof is supported by tree-like columns
and volcanos, i.e. funnels descending from planar regions into the ground level.
The diamond pattern creates tessellation on the planar region and was also initially projected
on curved regions, however on the later ones the tessellation was optimized by adding
diagonal members creating triangular pattern, shifting locations of nodes and changing their
valency. The criteria for optimisation were the allowed extreme lengths of members (0,8 to 3,0 m)
and the least angle between adjacent members (20°, preferably 30°). Detailed description
of the roof design is in (Schlaich, Schober, and Kiirschner 2005).
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Source of photo: https://www.sbp.de/fileadmin/sbp.de/projects/
0605F10876C38E48C1257E7500364FE2_0_ 12109 1221 _b_MAX.jpg
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Feria Valencia - Foro Sur / Centro de Eventos

Location: Valencia, Spain

Date of construction: 2006

Design: Tomas Llavador Arquitectos+Ingenieros, José Maria Tomas Llavador, Valencia

Structural engineering: Areas Ingenieria y Arquitectura S.L., Madrid; MC2 Estudio de Ingenieria,
S.L., Madrid

Roof system / Facade: Mero GmbH & Co. KG, Wiirzburg

The roof / facade is in half-oval shape which intersects with orthogonal form of the building on which
it stands. It covers four-story high hall and doubles its height by rising over the building. It is a single
layered grid shell which is supported along two horizontal edges and one edge placed on vertical
wall of the building. On one side the form is cut and closed by vertical fagade.
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Source of photos: https://www.mero.de/index.php/en/construction-systems/references-en/
36-space-structures/89-foro-sur-valencia-spanien-en
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Roof over inner courtyard of Odeon

Location: Munich, Germany

Date of construction: 2007

Architecture: Ackermann and Partner, Munich

Structural engineering: Knippers Helbig GmbH, Stuttgart, Berlin, New York

The grid shell covers a courtyard, which three sides are in form of straight lines, whereas the fourth
one is a semicircle. Initially the form of roof was modelled as doubly curved NURBS surface on which
a regular mesh of equilateral triangles was projected. The mesh created by this projection was used
as cable network to simulate inverted hanging model. That form-finding method generated the final,
optimized form of the grid shell. Mode details of this procedure are discussed in (Schober 2015b)
pp. 163-164.
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Source of photo: https://www.sbp.de/en/project/roof-over-inner-courtyard-of-odeon/
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Ztote tarasy

Location: Warsaw, Poland

Date of construction: 2007

Architecture: Jon Jerde Partnership, Venice, Los Angeles, California; Epstein Sp. z.0.0., Warszawa
Structural design: Ove Arup & Partners, Zenkner & Handel, Graz
Steel construction: Waagner-Biro, Vienna

The structure is arbitrarily shaped and additionally supported by tree-like columns. It is constructed
with steel RHS members connected through welding to nodes cut from steel plates, i.e. End-Face
Connectors WABI-1 (Soeren, Sanchez-Alvarez, and Knebel 2004). Facets are almost isosceles right
triangles resulting with differentiated lengths of edges.

Sources of photos: https://d2qq3nindk9vv6.cloudfront.net/images_dynam/reference_big/
wb_steel glass zlote-tarasy_shutterstock 12751525 rgb3.jpg
https://www.wacker.com/cms/en/wacker_group/innovations/magazine2013/stahltraeger_im_sch
aummantel/stahltraeger_schaummantel_1.jsp
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Bolton Sixth Form College

Location: Bolton, England

Date of construction: 2008

Architect: Taylor Young
Roof design and engineering: Novum Structures, Menomonee Falls, USA

In this example the assumptions are similar as in previous example, however the tessellation
is not regular in top projection. Positions of individual nodes are shifted in order to compromise
the continuity of trusses, i.e. rows of members are more continuous than in previous example,
and the uniformity of shapes of glass panels. The grid shell is constructed of laminated timber
members and tubular steel nodes with fin plate connectors.

Source of photo: https://novumstructures.com/wp-content/uploads/2010/11/
project_bolton-sixth-form-college_0.jpg
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MyZeil

Location: Frankfurt, Germany

Date of construction: 2009

Architecture: Massimiliano Fuksas
Structural design: Knippers Helbig GmbH, Stuttgart, Berlin, New York
Steel construction: Waagner-Biro AG, Vienna

The grid shell in MyZeil is composed of facade part, glazed roof and a tunnel connecting both parts.
Planar facade is planar composed of diamond shaped, flat cells, whereas the free formed tunnel
and glazed roof are tessellated into triangles. Due to large amounts of angular defect the valency
of some nodes had to be optimized (reduced) from 6 to 5. A large curvature of the form also causes
high heterogeneity of triangles’ forms, sizes and member lengths.

Sources of photos: https://commons.wikimedia.org/wiki/File:Myzeil-knippershelbig-02.jpg
https://files1.structurae.de/files/photos/2621/myzeil_02.jpg
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Madrid City Hall

Location: Madrid, Spain

Date of construction: 2009

Architecture: Arquimatica S.L., Madrid

Structural design: sbp — Schlaich Bergermann Partner, Stuttgart
Contractor: Lanik, San Sebastian, Spain

Facade engineering: Ove Arup & Partners

The structure is form-found using the idea of catenary surfaces. Due to the geometrically complex
shape of the courtyard the triangular topology was adopted. Triangular tessellation of the mesh
is composed of almost equilateral triangles resulting with similar lengths of members. The structure
is constructed with RHS components connected by nodes using bolted connections.
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Sources of photos:
https://www.arup.com/projects/communications-palace
https://www.sbp.de/en/project/palacio-de-comunicaciones-courtyard-roof/
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Expo Axis Megastructure

Location: Shanghai, China

Date of construction: 2009

Architecture: SBA GmbH, Stuttgart, Miinchen, Shanghai; Hong Li, Bianca Nitsch
Structural engineering: Knippers Helbig GmbH, Stuttgart, Berlin, New York

The grid shells in Expo Axis Megastructure are in form of funnels supported only at the bottom.
The form expands from the bottom ending with top outline which area significantly exceeds
the bottom footprint. The tessellation not only include topological aspects like diverse valency
of nodes (from 5 to 8, all panels being triangular) compensating angle defect, but also the best
possible alignment of nodes in terms of static performance.

Source of photo: https://www.knippershelbig.com/sites/default/files/styles/projekt1494/public/
image_project//12421-picture.jpg?itok=hBzgsg3e
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Rossignol World Headquarters

Location: Saint-Jean-de-Moirans, France

Date of construction: 2009

Architect: Hérault Arnod Architectes, Pantin, France

The grid shell in this example is a facade of generally free formed elevation. It is composed
of triangular panels, whose dimensions decrease towards the top. The fagade has doubly-curved,
synclastic form of small, regular curvature.

Source of photo: http://objektiv-online.de/en/home/projects/project-detail/object/460/
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Chenshan Botanical Garden

Location: Shanghai, China

Date of construction: 2010

Architecture: Auer+Weber+Assoziierte, Munich
Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart

Shape of the structure was a subject of form finding optimization. The grid shell is made
of aluminium instead of usually used steel. Due to the large spans, up to 200 m, and joint-less
connections the structure required special solutions to compensate considerable thermal
expansions.

Sources of photos: https://www.sbp.de/en/project/botanical-garden-shanghai/
http://www.auer-weber.de/en/projects/details/buildings-in-the-botanical-garden-shanghai.html
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Admirant Eindhoven

Location: Eindhoven, Netherlands

Date of construction: 2010

Architecture: Massimiliano Fuksas

Structural engineering: Knippers Helbig GmbH, Stuttgart, Berlin, New York

The building is completely covered by triangular, doubly curved grid shell containing synclastic
and anticlastic regions. The pattern of triangles is visibly regular and their shapes are similar
to each other. Four nodes near the top are 5-valent in order to compensate angle defect.
Also, in the indentation and narrowing regions the latitude (horizontal) members decline in order
to preserve homogeneity of tessellation.

'ViNGIND ©

Source of photo: https://upload.wikimedia.org/wikipedia/commons/8/8a/
The_Blob_in_Eindhoven%2C_Netherlands.jpg
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Glazed roof in Muzeum Armii Krajowej

Location: Krakéw, Poland

Date of construction: 2011

Architecture: AIR Jurkowscy Architekci, Katowice

The roof is constructed over a courtyard which has regular, rectangular form with elongated
proportions. Synclastic double-curvature of the structure allowed for application of lightweight
reticulated shell instead of heavier space truss. The grid shell is composed of welded RHS members
aligned in two, diagonal directions creating non-planar quadrilateral pattern. Diagonally to each
quad cell a bracing rod is added. The layer of glass is composed of triangular panels, which have high
similarity of shapes. The glass layer is connected to the structure through spider-like point
connectors of one type.

Sources of photos:
https://archirama.muratorplus.pl/architektura/muzeum-armii-krajowej-w-krakowie-architektura-
korespondujaca-z-przeszloscia,67_2329.html

https://www.tarsilvex.pl/images/mak.html
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Salvador Dali Museum

Location: Saint Petersburg, Florida, USA

Date of construction: 2011

Architecture & engineering: HOK, St. Louis, USA
Facade system, design and engineering: Novum Structures, Menomonee Falls, USA

Grid shell in this example plays a role of a fagcade smoothly transforming into a glass roof.
This structure was designed and tested in scale for resistance to hurricanes. Double curvature
strengthens the structure and harmonizes with the aesthetics of works of art presented
in the museum. This example emphasizes the fact that even triangular grid shells can be designed
according to the bottom-up methodology, due to the fact that the result displays high consistency
in the shapes of triangular glass panels as well in the continuity of members given the complexity
of the base form, which is normally difficult to achieve while designing according to top-down
design rules.

Source of photo: https://novumstructures.com/project/salvador-dali-museum/
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Devon Energy World HQ: Oculus Rotunda Skylight

Location: Oklahoma City, USA

Date of construction: 2012

Architecture: Kendall/Heaton Associates Inc., Houston, Texas ; Pickard Chilton Architects, Inc.,
New Haven, Connecticut
Roof design and engineering: Novum Structures, Menomonee Falls, USA

The glazed roof is based on a form of geodesic dome with low rise allowing the construction of single
layered structure. Tessellation is regular when in top projection, however individual dimensions
of members and shapes of glass panels are different. The tessellation regularity is distorted
at the perimeter in order to align the vertices and obtain only triangular panels. Therefore,
in this grid shell the directions of individual trusses are not straight in top projection.

Source of photo: https://novumstructures.com/project/
devon-energy-world-hg-oculus-rotunda-skylight/
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Heydar Aliyev International Airport

Location: Baku, Azerbaijan

Date of construction: 2013

Design: Ove Arup & Partners

Architecture: Woods Bagot, Brisbane
Structural engineering: BuroHappold, Bath, UK
Steel construction: Waagner-Biro AG, Vienna

Three canopies above the entrances to the terminal are construct as triangular, steel, glazed grid
shells — two of which are synclastic and one is anticlastic. The facade of terminal also contains parts
with non-planar quadrilateral cells covered with curved glass.
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Source of photo: https://www.arch2o0.com/wp-content/uploads/2017/10/
Arch20-Heydar-Aliyev-Airport-Woods-Bagot-05.jpg
https://en.azvision.az/news/55735/logistics-hub-may-appear-at-baku-int%E2%80%99I-
airport.html
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Carioca Wave

Location: Rio de Janeiro

Date of construction: 2013

Architecture: Nir Sivan Architects
Structural design: Knippers Helbig GmbH, Stuttgart, Berlin, New York
Structural engineering: Knippers Helbig GmbH, Stuttgart, Berlin, New York

The form of this structure is a result of evolution, which started from architectural concept assuming
more dynamic composition of regions with greater and smaller curvatures and rapid transitions
between them. The lack of curvature in some regions would not be able to permit transferring
in-plane forces and therefore a slender single-layered structure would not be possible to exist
in such a form. Although the form is not a result of form finding, it is optimised in terms of the criteria
described above. The result of such optimisation is a form. Which has more homogeneous
curvatures. Detailed description of the design is in (Helbig, Giampellegrini, and Oppe 2014)
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Source of photo: https://www.knippershelbig.com/sites/default/files/styles/projekt1494/public/
image_project//29728-picture.jpg?itok=eNHgQBPA
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Ottawa Conference and Event Centre

Location: Ottawa, Ontario, Canada

Date of construction: 2013

Design: Brisbin Brook Beynon Architects, Toronto, Canada
Facade design and engineering: Novum Structures, Menomonee Falls, USA

Freeformed, triangular grid shell wraps the building almost completely around being its dominant
and form of expression. Groups of members have consistent directions, e.g. one group is composed
of horizontal members only. The curvature of vertical sections of the skin of this building is diverse,
from almost straight, vertical sections into far cantilevering parts of fagade.

Vo
|

OB | TR S,

4 oA AVAN =

s

Sources of photos: https://novumstructures.com/project/ottowa-conference-and-event-centre/
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Tornado Roof in Bory Mall

Location: Bratislava, Slovakia

Date of construction: 2014

Architecture: Massimiliano Fuksas

Associate architect: Jancina architekti, Bratislava

Structural engineering: Knippers Helbig GmbH, Thorsten Helbig, Stuttgart, Berlin, New York
Steel construction: Metal Yapi A.S. (shell), Istanbul

The Tornado roof is a grid shell with mixed glazed and opaque cladding, in form of funnel creating
a partition between interior and patio of the mall. It is supported at the top and bottom outlines.
Depending on the results of non-linear FE analysis varied cross sections of grid members and two
node types are used. Less heavily loaded nodes are bolted, whereas more heavily loaded
are welded. Detailed description of the roof structure is in (Helbig et al. 2016)

Source of photo: https://www.knippershelbig.com/en/projects/port-mall-shopping-centre
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Perdana Garden Canopy

Location: Kuala Lumpur, Malaysia

Date of construction: 2014

Architecture: GDP Architects Sdn. Bhd., Kuala Lumpur
Steel construction: Mero GmbH & Co. KG, Wiirzburg

Free formed triangular grid shell is supported on five funnels, which stand on reinforced concrete
bases continuing the form of the roof. The curvature of the roof and funnels provide structural
stability and allows for wide span coverage.
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Source of photos: http://gdparchitects.com/2015/?project=perdana-canopy-2
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Ak-Asya Mall: Skylights

Location: Istanbul, Turkey

Date of construction: 2014

Design: Omerler Mimarlik, Istanbul, Turkey
Roof design and engineering: Novum Structures, Menomonee Falls, USA

The shape of this glazed roof is composed of two, smoothed surfaces, ruled between two perimeter,
concentric arch curves and one wavy ridge curve.
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Sources of photos: https://novumstructures.com/project/akasya-mall-skylights/
https://www.omerlermimarlik.com/ak-asya-shopping-mall
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Konya Tropical Butterfly Garden

Location: Konya, Turkey

Date of construction: 2015

Architecture & facade engineering: Ove Arup & Partners

Single layered, doubly-curved structure is composed of steel lattice shell made of tubular sections
in non-planar quadrilateral topology. Over that shell a layer of glass supporting RHS members
is added, with one additional diagonal member for each cell of main lattice shell. The structure’s
double curvature prevents its out-of-plane buckling during seismic activities occurring in that area.

Source of photo: http://www.guardian-inspiration.com/sites/guardian/files/2018-03/
KonyaTropicalButterflyGarden_large.jpg
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Mall of Africa

Location: Gauteng, South Africa

Date of construction: 2016

Architecture: MDS Architecture, Sandton, South Africa

Facade design and engineering: Novum Structures, Menomonee Falls, USA

Although this grid shell is filled with ETFE pneumatic cushions, which have no planarity restrictions,
the tessellation is triangular. This is due to the fact, that the perimeter of this cover has very complex
shape consisting of branches and various curves.
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Sources of photos: https://novumstructures.com/project/mall-of-africa/, Google Maps
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A-3.2 Grid shells based on PQ topology

List of objects in chronological order:
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Museum of Hamburg History

Location: Hamburg, Germany

Date of construction: 1989

Architecture: von Gerkan Marg und Partner, Hamburg
Structural design and engineering: sbp — Schlaich Bergermann Partner, Stuttgart

The roof covers L—shaped courtyard. It is based on mesh composed of two single curved regions
and one doubly curved. The generatrixes of both single curved regions were used as directrix
and generatrix of the doubly curved region allowing for creating translational PQ mesh.
However, that region was also optimized by means of inverted hanging model form-finding
method dividing some of the initially planar quads into two triangles or by introduction
of cold bent laminated glass, especially near the corners. In order to provide geometrical invariance
of quads diagonal cables are introduced. Finally, the cable trusses were introduced
to the single curved barrels to replace the second curvature. The design process of this construction
is discussed in (Schober 2015b), pp. 44—-47.
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Source of photo: http://shells.princeton.edu/Ham.html
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Swimming Bath Aquatoll

Location: Neckarsulm, Germany

Date of construction: 1990

Architecture: Kohlmeier und Bechler, Heilbronn, Germany

Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart

The dome was designed with the adoption of translational method resulting with circular plan
and members of equal widths, i.e. 1 m. The grid is prestressed by diagonal cables.
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Source of photos: https://www.sbp.de/en/project/swimming-bath-aquatoll-neckarsulm/
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House for Hippopotamus, Zoo Berlin

Location: Berlin, Germany

Date of construction: 1996

Architecture: J. Gribl, Munich
Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart

Two glass domes and smooth transition between them was achieved thanks to the adoption
of translational method for designing PQ grid shells. The generatrix curve is an arch line segment,
whereas the directrix curve is composed of three alternately curved arch line segments which create
curve of continuous curvature, therefore allowing for generating smooth form of the structure.
Part of the generated surface is trimmed by single curved, vertical glass facade resulting with
morphologically complex outcome.
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Source of photos: https://www.sbp.de/en/project/house-for-hippopotamus-zoo-berlin/
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Railway Station Frankfurt Airport

Location: Frankfurt, Germany

Date of construction: 1999

Architecture: Hadi Teherani, Hamburg, Germany
Structural engineering: INGENIEURBURO Dr. Binnewies, Hamburg, Germany;

The form of this glass shell is supported on the floor level creating the walls and roof of the hall
beneath. Smoothness of the surface is obtained by highly consistent is shape rectangular PQ glass
panels with structural silicon sealings. Reversed order of layers in the structure additionally
emphasize the smoothness from inside, that is glass panels are suspended on spider-like point
connectors which are connected to tubular trusses above the layer of glass, outside the dome.

Source of photo: https://commons.wikimedia.org/wiki/Category:Frankfurt_(Main)_Flughafen_
Fernbahnhof#/media/File:Frankfurt-Flughafen_2011-08-by-RaBoe-03.jpg
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Osaka Maritime Museum

Location: Osaka, Japan

Date of construction: 2000

Architecture: Aéroports de Paris, Paul Andreu, Paris
Structural engineering: Ove Arup & Partners, Tohata Architects & Engineers Inc., Japan

The spherical dome is tessellated into PQ topology by loxodromic pattern, i.e. the edges intersect
with latitudinal and longitudinal lines at the same angle. The supporting grid shell is constructed
in the same pattern, however only half as genes as glazing pattern, i.e. only two opposite vertices
of each panel are directly supported. Other vertices of panels are supported on cable network
attached to the grid shell. The cable network is composed of cables running in latitudinal
and longitudinal directions.

Source of photo: https://commons.wikimedia.org/wiki/Category:Osaka_Maritime_Museum#/
media/File:Osaka_maritime_museum01s3200.jpg
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Great Glass House

Location: Carmarthenshire, Wales

Date of construction: 2000

Architecture: Foster + Partners, London
Structural engineering: Anthony Hunt Associates, London

The structure is designed using translational PQ mesh method. It is a synclastic, doubly-curved
structure which is set on round, slightly leaning concrete base. The main trusses of the structure
are therefore deviated from the vertical planes.

Source of photo: https://www.flickr.com/photos/sevendipity/1375231075/
https://www.fosterandpartners.com/media/2632329/
img0_0861 fp138118.jpg?width=1920&quality=85
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Bosch Areal

Location: Stuttgart, Germany

Date of construction: 2001

Architecture: Prof. Ostertag und Vornholt Architekten, Stuttgart

Steel Structure and Glazing: Mero GmbH & Co. KG, Wirzburg

Single layered grid shell with pre-stressed tensile cables covers area with complex shape between
several buildings. Translational base surface is trimmed by walls of adjacent buildings resulting
with non-horizontal edges. The structure is additionally reinforced by radial tension trusses.
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Sources of photos: Google Maps,
https://commons.wikimedia.org/wiki/File:Bosch-Areal_Stuttgart_08.jpg
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Schubert Club Band Shell

Location: Saint Paul, Minnesota, USA

Date of construction: 2002

Architecture: Peter Kramer
Associate architects: James Carpenter Design Associates
Structural engineering: Shane McCormick; Skidmore, Owings & Merrill, Chicago; William F. Baker

The grid shell has a negatively curved form and tessellation in this example is planar quadrilateral.
It is worth emphasizing that the strips of planar quads follow principal curvature lines of the form,
see section 3.7.1. In negatively curved forms different alignment of PQ strips would cause
to generate planar panels in forms of elongated parallelograms.

Source of photo: https://structurae.net/photos/290221-schubert-club-band-shell
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Schliiterhof Roof, German Historical Museum

Location: Berlin, Germany

Date of construction: 2002

Architecture: I. M. Pei & Partners, New York; Eller + Eller Architekten, Berlin
Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart

Translational method was used to obtain doubly curved PQ mesh of this grid shell.
Trusses of members are aligned diagonally to the courtyard, which har rectangular shape in plan
with two cylindrical extensions at the corners. The doubly curved surface of the grid shell touches
the building at corners only, whereas along the edges vertical facades were constructed to close
the gaps between building and roof. Each quadrilateral cell is stabilized with two diagonal tensile
ties. All glass panels have almost identical shapes and dimensions, i.e. about 1.75 x 1.75 m.

Source of photos: https://www.sbp.de/en/project/schlueterhof-roof-german-historical-museum/
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Sage Gateshead

Location: Gateshead, UK

Date of construction: 2004

Architecture: Foster + Partners, London
Structural engineering: BuroHappold, Bath, UK; Mott MacDonald, Croydon, UK

The skin of the Sage Gateshead is a PQ scalar-translational grid shell, with glass and opaque cladding.
Crosswise the structure is supported by six transverse trusses, two located at the sides leaning
out and four inside the structure, located beneath the negatively curved regions of grid shell.

Sources of photos: https://commons.wikimedia.org/wiki/
File:Sage _Centre_from_North_bank_of Tyne - geograph.org.uk_- 707019.jpg
https://upload.wikimedia.org/wikipedia/commons/9/91/Sage_087.jpg
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University of Zurich Law Faculty

Location: Zurich, Switzerland

Date of construction: 2004

Design: Santiago Calatrava Valls AG, Zirich, Switzerland

Glazed cover of oval courtyard was designed using scale — trans PQ mesh, which is additionally
supported along truss running along central ridge.

Sources of photos:
https://calatrava.com/projects/university-of-zurich-law-faculty-zuerich.html
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Wrigley: Global Innovation Center

Location: Chicago, Illinois, USA

Date of construction: 2005

Architecture: HOK, St. Louis, USA
Roof design and engineering: Novum Structures, Menomonee Falls, USA

The grid shell covers a courtyard which has irregular shape composed of six edges. Instead
of supporting the roof on the walls it is supported by steel frames composed of mullions and arched
beams hidden within vertical glass facades.

Source of photo: https://novumstructures.com/project/wrigley-global-innovation-center/
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Seattle-Tacoma International Airport

Location: Seattle, USA

Date of construction: 2005

Architecture: Fentress Architects, Denver, Los Angeles, San Francisco, Washington D.C., Houston
Facade design and engineering: Novum Structures, Menomonee Falls, USA

The facade is composed of PQ glass panels obtained by rotational method. Each panel is fixed
in place by four point, spider connectors, which in turn are retained in place by steel cables running
along and across the facade. Due to negative gaussian curvature the facade each cable retaining
a joint is curved in different direction, so that the forces perpendicular to it are in balance.
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Sources of photos: https://novumstructures.com/project/sea-tac-international-airport/

https://commons.wikimedia.org/wiki/File:Glass_Facade_of Anthony%27s_Restaurant_and_Fish_
Bar_at_Sea-Tac_Airport.JPG
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Swinhay House

Location: Swinhay, UK

Date of construction: 2006

Architecture: Roberts Limbrick Architects, Gloucester, UK

Although the grid shell has triangular topology, the glazing cover is in PQ topology. For each PQ glass
panel one diagonal member is applied for the grid shell underneath in alternating directions,
creating pattern of pairs of coplanar triangles.

e

Sources of photos: http://www.homecrux.com/wp-content/gallery/30-million-swinhay-house/30-
million-swinhay-house_3.jpg
http://www.robertslimbrick.com/wp-content/uploads/2012/12/Swinhay%203.jpg
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Elephant House

Location: Copenhagen, Denmark

Date of construction: 2008

Architecture: Foster + Partners, London
Structural design: BuroHappold, Bath, UK

In the Elephant House in Copenhagen there are actually two PQ glass roofs of different sizes,
however designed according to similar principles. Individual trusses of these grid shells lie
on non-parallel planes. Such effect can be obtained by using the rotational method for PQ mesh
generation. Furthermore the axes of rotation are neither vertical nor horizontal, resulting with
unobvious, original solution.
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Source of photos: https://www.fosterandpartners.com/projects/elephant-house-copenhagen-zoo/
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Cabot Circus

Location: Bristol, UK

Date of construction: 2008

Architecture: Chapman Taylor LLP Architects Masterplanners, London
Conceptual & roof design: sbp — Schlaich Bergermann Partner, Stuttgart

The central roof (shown in picture below) is a doubly-curved, single layer, glazed grid shell
in PQ topology obtained by rotational method, where the axis of rotation is neither vertical
nor horizontal. Smaller roofs are also doubly curved, PQ, glazed grid shells in both positive
and negative gaussian curvatures.

Source of photo: https://www.sbp.de/en/project/cabot-circus-bristol/
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Mint Hotel Tower of London

Location: London, England

Date of construction: 2010

Architecture: Bennetts Associates, London
Roof design and engineering: Novum Structures, Menomonee Falls, USA

This low-rise doubly curved PQ grid shell covers quadrilateral courtyard with irregular shape.
Edges of the grid shell adjacent to walls are slightly arched. Small curvature values of the lattice shell
cause substantial values of support force horizontal components reacting on the walls.
However, in case of newly constructed structures, such forces can be provided in the construction
of the building.

Source of photos: https://novumstructures.com/project/mint-hotel-tower-of-london/
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Pearl River Tower

Location: Guangzhou, China

Date of construction: 2011

Architecture: Adrian Smith + Gordon Gill Architecture (AS+GG), Chicago;
Guangzhou Chengzong Design Institute, Guangzhou
Structural engineering: Skidmore, Owings & Merrill, Chicago

The Pearl River Tower belongs to one of the most environmentally friendly building in the world,
among other things thanks to its innovative shape. Doubly curved facade divided into three
segments direct streams of air blowing from the dominant direction into the channels equipped
with power generating turbines. The shape was not only optimized according to these requirements
but also taking into consideration the possibility of constructing the facades basing
on the PQ tessellations. The segments of facade are based on a rotational PQ meshes and the shapes
of individual panels have reasonably unified shapes.

Source of photos: https://www.som.com/projects/pearl_river_tower
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Georgian Parliament Building

Location: Kutaisi, Georgia

Date of construction: 2012

Architecture: Alberto Domingo Cabo

Structural engineering: CMD Domingo y Lazaro Ingenieros SL, Valencia; Kawaguchi & Engineers:
Mamoru Kawaguchi, Kenichi Kawaguchi, Tokyo

Glass cover over the dome of Georgian Parliament Building is tessellated in PQ fashion,

which was generated using translational method. The cover is constructed over space truss.
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Sources of photos: https://fi.wikipedia.org/wiki/Georgian_parlamentti#/media/

File:Parlament_of_Georgia_(Kutaisi)_copy.jpg
https://images.adsttc.com/media/images/55e6/db24/8450/b545/5500/1166/slideshow/7-

img_6307.jpg?1441192735
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Paunsdorf Center glass roofs

Location: Leipzig, Germany

Date of construction: 2012

Conceptual & construction design: sbp — Schlaich Bergermann Partner, Stuttgart

Glazing layer has PQ topology obtained by translational method. Each individual panel has the same
shape of elongated parallelogram when projected on horizontal plane. Due to the disproportion
between lengths of diagonals of glass panels additional member was added along each shorter
diagonal creating pattern of proportionally balanced triangles in the grid shell.

Source of photos: https://www.sbp.de/en/project/glass-roofs-paunsdorf-center-1/
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Statoil Regional and International Offices

Location: Fornebu, Norway

Date of construction: 2012

Architecture: A-lab, Oslo, Norway

All facades in this buildings are PQ glazed grid shells based on negatively curved, hyperbolic
paraboloid surfaces, which are also doubly ruled surfaces. Each one of these surfaces is bounded
by four straight edges, which are not placed on a common plane. Although ruled surfaces contain
straight lines, structural members of this structures are diagonally aligned to those due to the fact
that quadrangles generated by intersections of ruling lines would not be planar. In fact strip
of PQ panels are aligned along the smallest and the largest curvatures (see section 3.7.1
describing conjugate curvature networks of doubly curved surfaces). Since the surfaces
are negatively curved, the value of curvature of straight lines is between the most (positively)
and least (negatively) curved directions.
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Sources of photos:
https://www.archdaily.com/359599/statoil-regional-and-international-offices-a-lab
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EGO Roof

Location: Erbach, Germany

Date of construction: 2013

Architecture: Heusel & Schantz, Michelstadt, Germany

Roof design: MERO-TSK International GmbH & Co. KG, Wiirzburg, Germany

This lightweight glass roof has been formed as translational PQ mesh consisting of positive
and negative gaussian curvatures. The roof requires additional supports in forms of tree-like
columns. The surface is tessellated in a particular manner, which results with obtaining two types
of nodes: four and eight valent. Each PQ cell of the grid shell, not the glass panels, has been
diagonally divided by additional member. Individual grid cells are equilateral right triangles,
the same in shape from top projection, while in fact there is high diversity in their shapes.

Sources of photos: https://www.mero.de/index.php/en/construction-systems/references-en/36-
space-structures/720-ego-roof-erbach-wave-in-free-form-en
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Trinity

Location: Leeds, England
Date of construction: 2013
Architecture: Chapman Taylor LLP Architects Masterplanners, London

The grid shell in PQ topology, obtained by rotational method has high regularity and consistency
of shape and tessellation. However it covers a courtyard of highly irregular shape with additional
four outgoing hallways. Boundary edges of the roof are therefore curved in plan or spatially curved.
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Source of photo: https://www.chapmantaylor.com/projects/trinity-leeds#&gid=1&pid=1
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A-3.3 Grid shells based on hybrid topology

List of objects in chronological order:
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Robert and Arlene Kogod Courtyard Roof (Smithsonian American Art
Museum)

Location: Washington, District of Columbia

Date of construction: 2007

Architecture: Foster + Partners, London
Facade construction: Josef Gartner GmbH

Due to the fact, that the roof cannot be clearly classified neither as planar quadrilateral
nor as triangular, it is presented in this section. Although the individual facets are planar quads,
corresponding edges of adjacent panels are not colinear and vertices of adjacent panels
are not placed in a common point. These two constraints are always satisfied in the other examples
in this section. Although the construction acquired the status of an architectural icon it is the only
one of its type and such solution was never adopted again due to the costliness and complexity.

Sources of photos:
https://www.fosterandpartners.com/projects/smithsonian-institution-courtyard/#gallery
https://structurae.net/structures/robert-and-arlene-kogod-courtyard-roof-smithsonian-american-
art-museum

317



Dubai Festival City glazed roof

Location: Dubai, United Arab Emirates

Date of construction: 2008

Roof construction: Waagner-Biro AG, Vienna

The double curvature of the roof comes from the transverse arch-like profile and the longitudinal
curved shape of the hall it covers. Members of the grid shell run in three directions: two diagonal
and one longitudinal. The longitudinal members are implemented only in every second row, dividing
only half of the original quadrilateral facets. The vertices along longitudinal members are also shifted
allowing the planarity of remaining quadrilateral facets. Such solution allowed for reduction of every
sixth steel member, simplification of half of all nodes from 6- to 4- valent and finally savings
on quadrilateral glass panels manufacturing.

Source of photo: https://www.waagner-biro.com/en/divisions/steel-glass-structures/references/
reference/dubai-festival-city
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ION Orchard

Location: Singapore

Date of construction: 2009

Architecture: RSP Architects Planners & Engineers Ltd, Benoy
Structural & Fagade engineering: Ove Arup & Partners

The glazed canopy has arbitrarily free formed shape according to the top-down approach.
Its tessellation was optimized, so that only part of the panels are triangular, according to the intrinsic
geometrical properties of the surface. However, the shapes of resultant panels are highly irregular,
i.e. the quads are sheared and the lengths of members are varied greatly, so are the geometries
of nodes. The structure is additionally supported by tree-like columns.

Source of photo: https://www.arup.com/projects/ion-orchard
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Balna CET

Location: Budapest, Hungary

Date of construction: 2010

Architecture: ONL, Kas Oosterhuis, llona Lénard, Utrecht, Netherlands
Implementation: Central Industry Group — CIG Architecture, Osloweg, Netherlands

This structure creates an individual building between two historical buildings. Several grid shells
filled with opaque and glass panels form roof and walls. Edges between individual surfaces
are visible in the types of cladding and transitions between layouts of grids. The tessellation
is not consistent, various shapes and topologies of glass panels are present including PQ panels
where it was possible. Transverse tensile members are introduces along the ridges of existing
buildings, where part of the grid shell is supported, in order to eliminate horizontal components
of support forces.

Sources of photos: https://www.archdaily.com/264394/cet-building-onl/
502dbe2a28ba0d1b4d00002a-cet-building-onl-photo
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Cour Visconti, Louvre

Location: Paris, France

Date of construction: 2012

Architecture: Mario Bellini and Rudy Ricciotti

Structural design: Waagner-Biro, Vienna

Although the glazed roof is designed over arbitrarily freeformed surface, its tessellation is highly
regular. The top layer of space truss underneath glazing consists of two types of cells filling
the surface in a chessboard pattern. The structure was optimized in such a manner, that the vertices
of half of the cells were shifted at the expense of the other half of panels, resulting with 50%
of PQ panels and 50% of non-PQ panels, which are covered by two triangular glass panels each.
The shapes of PQ panels are close to squares whereas triangular panels are right, isosceles triangles.
All panels are highly similar in shape. The structure is constructed as steel space truss.

Source of photo: http://www.formakers.eu/media/1.39.1327070323.13413263553745pngpng.png
https://files1.structurae.de/files/photos/f011315/das_fertige_glasdach.jpg
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Galeria Katowicka

Location: Katowice, Poland

Date of construction: 2013

Architecture: SUD Architects, Lyon, France

Structural design: Ove Arup & Partners

The facade and roof covering the entrance hall of Galeria Katowicka was designed according
to the rotational method of generating PQ meshes. Axis of rotation is vertical in this case.
The other glass roof in the building include using sweep method (see section 4.1.5) for generating
initial PQ mesh, which was later modified to fit the resultant shape into desired shape of corridor
walls, making some of the facets non-planar in return.

Source of photo: http://www.stekra.pl/static/uploaded_files/galeria-katowicka-6/
galeria-katowicka-2.jpg
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