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Abstract. Using approximate, rounded values implies, in a sense, that an exact numerical 
value may be ignored. In many cases the difference between the exact and approximate val-
ues is not important, and replacing exact numbers by their approximate values does not result 
in undesired consequences. Yet in certain circumstances, rounding significantly influences 
the solutions of given problems. This is the case, among others, when we allocate indivisible 
goods. It may happen that the rounding mode affects the result of allocation so much that the 
rounding differences cannot be neglected by the agents participating in distribution. This pa-
per presents the classic problem of distributing mandates in representative bodies along with 
different rounding modes in respective solution procedures. 
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1. Introduction 

In practical applications, approximate numbers are often used instead of 
exact numerical values. The standard example is the number π. The decisive 
majority of people asked about the number π will answer 3.14, i.e. will use its 
approximate value, often unconsciously. The advancement of technology 
supports such thinking. All computers and calculators display approximate 
values of numbers whose decimal representations exceed the accuracy of 
those devices. All agree to such a state of affairs and, mostly unconsciously, 
accept it. Approximate values are very often given when dealing with aver-
ages. Average scores of pupils and students, average monthly temperatures, 
and the average price of a given good in a given market represent instances 
when giving exact numbers is often impossible or simply unnecessary. Ap-
proximations are easily accepted, especially when they do not significantly 
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distort the nature of things. It is well-known, for example, that in some engineer-
ing applications one may cut off a certain part of a number’s fraction without any 
harm to the usability of the produced machine. Certainly, a different accuracy is 
needed when producing advanced optical instruments compared with prefabri-
cated building units, but suitable approximations are not challenged. 

Similar behaviour can also be detected in the area of economic applica-
tions. Prices of goods are very often remembered as approximations. When 
buying a car in Poland, the buyer is focused on thousands of zloty, ignoring 
hundreds, tens, units and ‘grosze’(‘grosz’ i.e. 100th of a Polish ‘złoty’). When 
repairing a car or buying spare parts, one forgets grosze as a rule, while the 
price in zlotys is remembered. At a filling station one deals with the exact 
price of fuel in zlotys and grosze. Such a behaviour notably result from the 
significance of the ignored parts of the price of a given good or service. The 
greater the amounts of currency we deal with, the easier the approximations 
with smaller accuracy. 

The prices of goods are often rounded as a consequence of legal regula-
tions. With the introduction of the euro, one common currency, all prices had 
to be re-denominated, often after suitable rounding. Later on, for example, all 
prices in Finland have been rounded up to five cents, with one eurocent and two 
eurocent coins practically eliminated from the circulation. A similar situation 
also exists in Poland. It is emphasized that the number of one grosz and two grosz 
coins needed to pay for goods is so large that most people leave them at home in 
order to carry wallets or purses which weigh less. As a result, those coins disap-
pear from the market and have to be replenished. The follow-on costs of such 
operations can exceed the gains of pricing by means of more exact values. 

The disappearance of tens or even hundreds of units of given currencies 
is often commonplace in times of heavy inflation. Increasingly the higher 
prices of goods reduce the purchasing power of smaller units of currency 
which are then withdrawn from circulation. For example, at present in Iran 
the smallest unit of currency, the Iranian rial, is a 50 rial coin, and conse-
quently all prices of goods and services are rounded up to this value. The rial 
is not divided into smaller units, corresponding to cents (or grosze). On a large 
scale this phenomenon has been recently observed in Zimbabwe, with 
a 100,000,000,000,000 Zimbabwean dollar banknote circulating there in the 
market before its subsequent withdrawal and denomination. Due to hyperin-
flation in this country, neither thousands or millions could express the prices 
of goods, therefore large numbers had to be used to describe the market value 
of goods. 
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In all the examples above, when approximating, one deals with a quantity 
which differs from the exact numerical value to a practically insignificant de-
gree. As a consequence, the rule leading to a particular approximation does 
not have to be specified. The problem of distributing indivisible goods is dif-
ferent because rounding is to integers, while cut-off fractions can create a 
situation where a given agent will be allocated a unit of the good or will be 
not. A typical example here is how the representations in collective bodies 
are determined, and particularly how the mandates are distributed in various 
legislative bodies endowed with decision making authority, such as councils 
or parliaments. The role and significance of the rules leading to rounding are 
so critical that they must be settled via political negotiations. Those rules have 
also been mathematically analyzed in detail as regards the expected social 
equity. Considering that approximate values have to be indicated, in many 
aspects an insignificant problem, the wealth of the proposed solutions is really 
striking.  

2. Distribution of indivisible goods 

In the realm of European culture, the fundamental rule of distributing 
gains and burdens was formulated by Aristotle [2002], according to which 
each agent participating in distribution should be allocated a share of good or 
burden in proportion to each agent’s contribution to the total worth of all 
agents. The worth is typically given numerically, but its interpretation can be 
significantly diverse. When a firm’s profit is distributed, the worth of an agent 
is represented by the number of shares held; when the cost of a common in-
vestment is divided, it is a degree to which respective investors benefit from 
it, whereas in the case of determining a social representation under study, it 
is the population in the respective constituencies. At present, the proportional 
rule is not challenged as a means to shape parliamentary representations. Nev-
ertheless,  debate continues as regards the mode of rounding the results ob-
tained according to the rule, because the total worth of agents, i.e. the total 
population of all constituencies exceeds by far the number of all mandates, 
therefore the rounding problem is practically unavoidable. 

The problem was first solved [Young 1994] around the beginning of the 
19th century, when the seats in the United States House of Representatives 
were apportioned to the representatives of the states. The so-called divisor 
methods proposed at that time and their equivalent variants are used in prac-
tice in many democracies today. The divisor methods are obviously consistent 
with the classic Aristotelian principle of proportional allocation. 
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Formally, the issue can be represented as follows. Let ( )1 2, ,..., mp p p p=  
be a vector of positive natural numbers, with ip  denoting the population in 
constituency i , and 0H ≥  – the total number of seats to be allocated. The 

vector of quotas ( )1 2, ,..., mq q q q=  where 
1

i
i m

ii

p Hq
p

=

=
∑

, determines the alloca-

tion that is proportional with respect to populations in individual constituen-
cies. However, in most cases the quantities iq  are not natural numbers. Hence, 
the problem consists in determining a vector of nonnegative natural numbers 

( )1 2, ,..., ma a a a=  such that 
1

m
ii

a H
=

=∑  [Baliński, Young 1980]. 

The divisor methods solving the problem of seat allocation in representa-
tive bodies are by Jefferson, Adams, Webster, Hill–Huntington and Dean. 
The first method was put forward by Thomas Jefferson, the first United States 
Secretary of State. According to his procedure, the divisor d  is determined 

leading to the sequence of modified quotas ( )' ' ' '
1 2, ,..., mq q q q= , where ' i

i
pq
d

= . 

Next, each constituency is allocated ip
d

 
  

 mandates. If 
1

m i
i

p H
d=

  >  
∑ ,  

the divisor d should be increased, if 
1

m i
i

p H
d=

  <  
∑  – decreased [Lauwers, 

Puyenbroeck 2006].  
The Adams and Webster methods are simple modifications of the Jeffer-

son method. The author of the first one believed that the quantities ip
d

 should 

be rounded upwards, therefore the divisor d  should be determined so that 

1

m i
i

p H
d=

  =  
∑  holds. In the Webster method the fractions are rounded to the 

nearest integer [Baliński, Young 1980]. 
The Hill–Huntington method and the Dean method are also based on 

modified quotas, with rounding of their values applied to the geometric mean 
and harmonic mean, respectively. That is, the ith constituency is allocated 

'
iq     mandates, if its modified quota is smaller than the geometric (harmonic) 

mean of its two nearest integers, and '
iq    otherwise [Baliński, Young 1977]. 
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It is easily seen that both mentioned methods differ basically in threshold t, 
i.e. a number from the interval [n, n + 1] whose consequence is whether the 
specific value of allocation, or rounding of the modified quota qi′, is the lower 
or the upper endpoint of this interval. In the first three cases the value t  does 
not move its position in the interval depending on n. These are its endpoints 
and its midpoint. The two remaining cases are different because the placement 
of geometric and harmonic means depends on n. Introducing a movable 
threshold is justified in practice. Cutting off a fractional part signifies some-
thing different to an agent entitled to a large amount of a good, than to another 
agent whose entitlement is smaller. When rounding numbers 100.25 and 1.25 
to the nearest integer, we remove 0.25 unit of the good, but in the first item it 
means only the subtraction of 0.25 percent of belongings, whereas in the other 
as much as 25 percent. Therefore the threshold t should be varied depending 
on the integer part of a given number. It is worth emphasizing that in each of 
the above-mentioned cases a number from the interval [n, n + 1] is rounded 
either to n or to n + 1. It turns out that generally this is not always true, there-
fore the creation of the rules leading to acceptable approximations is even 
more significant. However, in the case of any distribution of indivisible goods 
this problem has no solution that would satisfy all the participating agents. 

3. Rounding rules 

The problem of rounding is examined in its generality by Pukelsheim 
[2014]. The book introduces the so-called rounding functions and rounding 
rules. The definition of a rounding function shows that the approach general-
izes the standard ideas of rounding. 

Definition 1. A function f: [0, ∞) → ℕ1 is a rounding function if it is 
increasing and onto. 

Basic examples of rounding functions are the floor function x   , the ceil-
ing function x    and the nearest integer function [ ]x , which for 0x ≥  are 
defined as follows: 

  x := max{n∈ℕn ≤ x}, (1) 

  x := min{n∈ℕn ≥ x}, (2) 

                                                 
1 ℕ := {0, 1, 2, 3,…} is assumed in the entire paper. 
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  [ ]  for  0.5 
:

 for  0.5 
x x x

x
x x x

 − ≥      =  − <      
. (3) 

Rounding rules are more flexible variants of rounding functions, which 
in some cases are too weak and unable to solve a particular allocation problem 
(see Example 1). Modifications of rounding functions into rounding rules for 
basic examples of the floor function x   , the ceiling function x    and the 
nearest integer function [ ]x  are, respectively, for 0x ≥ , the rule of downward 
rounding x   , the rule of upward rounding x    and the rule of standard 

rounding [ ]x , defined as follows: 

 { }
{ }

       for  1,2,3,...
:

1,   for  1,2,3,...

x x
x

x x x

 ≠   =   
− =

 , (4) 

 
{ }
{ }

      for  1,2,3,...
:

, 1   for  1,2,3,...

x x
x

x x x

 ≠   =   
+ =

 , (5) 

 [ ]
{ }
{ }
{ }

          for  0.5

: ,    for 0.5 

          for  0.5

x x x

x x x x x

x x x

 − >      = − =           
 − <      

. (6) 

For example, for 1 25,  3.7x x= = , we have { }1 4,5x =   , { }1 5,6x =   , 

{ }2 3x =   . 

Although definitions of downward, upward and standard rounding rules 
are quite easy to be written with a formula, it is much more convenient to 
define general rounding rule using the so-called jump-point sequences, where 
for a given rounding function f , its nth jump point is defined by the formula 

{ }( ) : inf 0 | ( )s n x f x n= ≥ ≥ . 

Definition 2. A jump point sequence (0), (1), (2),...s s s  is an unbounded 
sequence satisfying (0) 0 (1) (2) ...s s s= ≤ < < . A jump-point sequence defines 
a rounding rule ⟦∙⟧ by setting, for all 0x ≥  and n ∈ ℕ:  
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{ } ( )
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=
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x
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For the basic rounding rules we have jump-point sequences as follows: 
Downward rounding x   :  0, 1, 2, 3, … 
Upward rounding x   :  0, 0, 1, 2, … 

Standard rounding [ ]x :  0, 0.5, 1.5, 2.5, … 

Notice that all these jump-point sequences place the nth jump point in an 
interval [n – 1, n]. However, it is not always necessarily so. Consider2 the 
rounding rule with jump points s(n) = n0.9 for n ≥ 1. Then s(9) = 90.9 = 7.2 and 
s(10) = 100.9 = 7.9, hence 7.5 is rounded to 9. Another example is a jump-
point sequence with jump points s(n) = 2n for n ≥ 1. We have then x ∈ (0, 2) 
rounded to 0, x ∈ (2, 4) rounded to 1, and so on. A convenient property of 
a jump-point sequence placing its nth jump-point in an interval [n – 1, n] is 
characteristic for signpost sequences which are, in a sense, more natural. 

Definition 3. A signpost sequence s(0), s(1), s(2),… is characterized by 
the three properties: 

1)   s(0) = 0, 
2)  [ ]( ) 1,s n n n∈ −  for all 1, 2,3,...n = , 
3)  ( ) 1  for some 1    1  ( )s n n n n s n n= − ≥ ⇒ ∀ ≥ < , 
  ( )   for some 1    1  ( ) 1s n n n n s n n= ≥ ⇒ ∀ ≥ > − . 

Obviously every signpost sequence is a jump-point sequence, therefore 
it defines some rounding rule. Classic divisor methods of apportionment are 
defined by some signpost sequences. However, note that the procedures de-
scribed in Section 2 relate to the basic rounding functions which are in practice 
sufficient tools to determine a desired allocation. Yet it is easy to demonstrate 
examples of cases with the so-called ties, when rounding rules are indispensable. 

Example 1. Let us consider six constituencies with the following popu-
lations: 840,000, 700,000, 506,092, 364,207, 284,505, 131,261. Then with 

17H =  and the floor rounding function we have: for divisors 140,000d < , the 
                                                 

2 The provided examples of rounding rules are used for parliamentary elections in Estonia 
and Macau, respectively [Pukelsheim 2014]. 
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sum 6

1
18i

i

p
d=

  ≥  
∑ , and for divisors 140,000d > , the sum 6

1
16i

i

p
d=

  <  
∑ . But 

when we apply the downward rounding rule, then for the divisor 140,000d =  
we obtain ' ' ' ' ' '

1 2 3 4 5 66,  5,  3.6,  2.6,  2.03,  0.9q q q q q q= = = = = =  and 

{ }'
1 5,6q  =  , { }'

2 4,5q  =  , { }'
3 3q  =  , { }' '

4 5 2q q   = =    , { }'
6 0q  =  . There-

fore the allocations ( )6,4,3,2,2,0  and ( )5,5,3,2, 2,0  are the sought-after so-
lutions [Pukelsheim 2014].  

Classic divisor methods are intuitively understandable and usually do not 
generate practical difficulties. They can be defined by rounding rules. 

Definition 4. For given H ∈ ℕ and vector ( )1 2, , , mp p p p= …  of positive 
numbers a divisor method A  is induced by the rounding rule ⟦∙⟧ such that 

( ) ( ){ ∈= maapHA ,...,:, 1 ℕm ∈1a �
d
p1 � ∈ma,..., �

d

p m �for some d > 0, }.
1

Ha
m

i
i=∑

=

 

Thus classic divisor methods are induced by the respective rounding rules 
whose definitions by signpost sequences are of the form: 

Downward rounding (Jefferson method): ( )s n n= . 
Upward rounding (Adams method): (0) 0,  ( ) 1s s n n= = −  for 1n ≥ . 
Standard rounding (Webster method): (0) 0,  ( ) 0.5s s n n= = − for 1n ≥ . 
Geometric rounding (Hill–Huntington method): ( )( ) 1s n n n= − . 

Harmonic rounding (Dean method): 2( )
1 ( 1) 1 /

s n
n n

=
− +

 . 

4. Significance of rounding  

In Section 2 we argued that rounding to integers ignores fractions, which 
may be of different importance for agents as regards the amount of eventually 
allocated goods. Hence the problem arises as to the strength of this fact af-
fecting the selection of rounding rule, so that the obtained solution may be 
considered fair from the viewpoint of each agent. In order to explain this is-
sue, randomness of deviations between a mean quota and a mean number of 
allocated mandates was assumed as the criterion of fairness of the allocation, 
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and then a simple experiment was performed to test the difference between 
these two quantities, depending on the rounding rule. 

Table 1. The results of the experiment with constant rounding thresholds  
in classic divisor methods 

Downward rounding Upward rounding Standard rounding 

iq  ia  iq - ia  iq  ia  iq - ia  iq  ia  iq - ia  

3.487 3.191 0.296 3.471 3.826 -0.356 3.460 3.402 0.058 
3.890 3.610 0.280 3.858 4.170 -0.312 3.862 3.859 0.003 
4.278 4.012 0.266 4.286 4.553 -0.267 4.267 4.273 -0.006 
4.701 4.461 0.240 4.701 4.930 -0.229 4.676 4.687 -0.011 
5.090 4.880 0.210 5.115 5.337 -0.222 5.090 5.090 0.000 
5.506 5.317 0.189 5.532 5.740 -0.208 5.497 5.498 -0.001 
5.915 5.746 0.169 5.933 6.096 -0.163 5.928 5.944 -0.016 
6.334 6.179 0.155 6.364 6.508 -0.144 6.353 6.353 0.000 
6.761 6.631 0.130 6.765 6.874 -0.110 6.757 6.772 -0.015 
7.188 7.076 0.112 7.189 7.308 -0.119 7.167 7.165 0.002 
7.606 7.525 0.081 7.594 7.671 -0.077 7.593 7.567 0.026 
8.015 7.943 0.072 8.005 8.062 -0.057 7.992 8.002 -0.011 
8.448 8.417 0.031 8.420 8.456 -0.037 8.409 8.406 0.003 
8.852 8.831 0.021 8.833 8.826 0.007 8.843 8.852 -0.010 
9.272 9.280 -0.008 9.253 9.251 0.002 9.281 9.260 0.021 
9.700 9.743 -0.043 9.675 9.653 0.022 9.713 9.717 -0.004 

10.109 10.149 -0.040 10.091 10.030 0.061 10.160 10.158 0.002 
10.545 10.622 -0.077 10.522 10.435 0.087 10.560 10.568 -0.008 
10.964 11.061 -0.097 10.959 10.860 0.099 10.970 10.987 -0.017 
11.391 11.525 -0.135 11.371 11.238 0.133 11.413 11.392 0.021 
11.812 11.963 -0.151 11.826 11.679 0.147 11.836 11.836 0.000 
12.238 12.412 -0.174 12.233 12.049 0.184 12.253 12.250 0.003 
12.664 12.848 -0.184 12.680 12.479 0.201 12.685 12.692 -0.007 
13.069 13.285 -0.216 13.109 12.880 0.229 13.095 13.121 -0.026 
13.519 13.779 -0.261 13.533 13.289 0.244 13.520 13.523 -0.003 
13.957 14.218 -0.261 13.968 13.694 0.274 13.938 13.940 -0.002 
14.383 14.663 -0.280 14.390 14.091 0.299 14.381 14.388 -0.007 
14.806 15.136 -0.330 14.826 14.512 0.314 14.802 14.800 0.002 

Source: own elaboration. 



14 Katarzyna Cegiełka, Janusz Łyko 
  

The experiment was performed as follows. Given the number of agents 
m = 28 and the rounding rule, 1000 sequences of populations were randomly 
chosen, where the population of the ith constituency [ ]100,000;500,000ip ∈  
and the total number of mandates [ ]250;259H ∈ . Based on this input, 1000 
sequences of quotas and 1000 integer allocations were generated, and respec-
tive means were calculated, i.e. mean quotas iq  and mean numbers of man-
dates ia . The results of the experiment are presented in Tables 1 to 3. 

Table 2. The results of the experiment with variable rounding thresholds  
in classic divisor methods 

Geometric rounding Harmonic rounding 

iq  ia  iq - ia  iq  ia  iq - ia  
3.460 3.439 0.021 3.460 3.470 -0.010 
3.862 3.884 -0.022 3.862 3.916 -0.054 
4.267 4.303 -0.036 4.267 4.327 -0.060 
4.676 4.706 -0.030 4.676 4.719 -0.043 
5.090 5.104 -0.014 5.090 5.117 -0.027 
5.497 5.506 -0.009 5.497 5.513 -0.016 
5.928 5.955 -0.027 5.928 5.964 -0.036 
6.353 6.370 -0.017 6.353 6.378 -0.025 
6.757 6.782 -0.025 6.757 6.791 -0.034 
7.167 7.170 -0.003 7.167 7.176 -0.009 
7.593 7.573 0.020 7.593 7.583 0.010 
7.992 8.002 -0.011 7.992 7.998 -0.006 
8.409 8.403 0.006 8.409 8.404 0.005 
8.843 8.847 -0.005 8.843 8.846 -0.004 
9.281 9.258 0.023 9.281 9.256 0.025 
9.713 9.710 0.003 9.713 9.704 0.009 

10.160 10.152 0.008 10.160 10.146 0.014 
10.560 10.558 0.002 10.560 10.547 0.013 
10.970 10.974 -0.004 10.970 10.955 0.015 
11.413 11.389 0.024 11.413 11.378 0.034 
11.836 11.828 0.008 11.836 11.819 0.017 
12.253 12.237 0.016 12.253 12.227 0.026 
12.685 12.674 0.011 12.685 12.662 0.023 
13.095 13.100 -0.005 13.095 13.078 0.017 
13.520 13.498 0.022 13.520 13.483 0.037 
13.938 13.915 0.023 13.938 13.903 0.035 
14.381 14.376 0.005 14.381 14.362 0.019 
14.802 14.783 0.019 14.802 14.772 0.030 

Source: own elaboration. 
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Table 3. The results of the experiment with variable rounding thresholds  
in chosen signpost sequences 

1( )s n  2 ( )s n  3( )s n  

iq  ia  iq - ia  iq  ia  iq - ia  iq  ia  iq - ia  

3.455 3.318 0.137 3.460 3.980 -0.520 3.460 3.807 -0.347 

3.855 3.744 0.111 3.862 4.302 -0.440 3.862 4.182 -0.320 

4.251 4.141 0.110 4.267 4.670 -0.403 4.267 4.526 -0.259 

4.667 4.575 0.092 4.676 5.038 -0.362 4.676 4.920 -0.244 

5.081 4.968 0.113 5.090 5.409 -0.319 5.090 5.299 -0.209 

5.493 5.403 0.090 5.497 5.796 -0.299 5.497 5.701 -0.204 

5.927 5.831 0.096 5.928 6.186 -0.258 5.928 6.104 -0.176 

6.353 6.267 0.086 6.353 6.579 -0.226 6.353 6.500 -0.147 

6.754 6.695 0.059 6.757 6.942 -0.185 6.757 6.889 -0.132 

7.158 7.096 0.062 7.167 7.303 -0.136 7.167 7.246 -0.079 

7.587 7.512 0.075 7.593 7.714 -0.121 7.593 7.661 -0.068 

7.986 7.956 0.030 7.992 8.082 -0.091 7.992 8.055 -0.063 

8.403 8.376 0.027 8.409 8.470 -0.061 8.409 8.451 -0.042 

8.840 8.818 0.021 8.843 8.861 -0.019 8.843 8.862 -0.020 

9.282 9.261 0.021 9.281 9.237 0.044 9.281 9.258 0.023 

9.719 9.709 0.010 9.713 9.659 0.054 9.713 9.671 0.042 

10.163 10.164 -0.001 10.160 10.071 0.089 10.160 10.097 0.063 

10.568 10.591 -0.023 10.560 10.438 0.122 10.560 10.467 0.093 

10.981 11.028 -0.047 10.970 10.820 0.150 10.970 10.873 0.097 

11.420 11.464 -0.044 11.413 11.227 0.185 11.413 11.295 0.118 

11.840 11.908 -0.068 11.836 11.595 0.241 11.836 11.686 0.150 

12.251 12.329 -0.079 12.253 12.005 0.248 12.253 12.082 0.171 

12.685 12.807 -0.122 12.685 12.380 0.305 12.685 12.477 0.208 

13.102 13.234 -0.132 13.095 12.757 0.338 13.095 12.877 0.218 

13.526 13.653 -0.127 13.520 13.151 0.369 13.520 13.286 0.234 

13.951 14.104 -0.153 13.938 13.536 0.402 13.938 13.656 0.282 

14.395 14.547 -0.152 14.381 13.954 0.427 14.381 14.081 0.300 

14.810 15.004 -0.194 14.802 14.338 0.464 14.802 14.485 0.317 

Source: own elaboration. 
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Tables 1 and 2 include the results of the experiment for classic divisor 
methods. Table 1 presents the results for the Jefferson, Adams and Webster 
methods, i.e. for the constant rounding thresholds. Table 2 presents the results 
for the Hill–Huntington and Dean methods, the classic methods with variable 
rounding threshold, i.e. depending on the endpoints of the interval [ ], 1n n + . 
Table 3 in turn presents the results for the variable rounding thresholds, cho-
sen by the authors, and defined by the signpost sequences of the form 

( )1( ) / 1s n n n= + , ( ) /ns n n m=   and 3 1
( ) / m

ii
s n n p

=
= ∑ . 

5. Conclusions 

Based on the performed experiment, one may argue that considering the 
difference between the mean quota and the mean number of allocated man-
dates, the only neutral rounding method which does not favour any constitu-
ency is rounding to the nearest integer. This result is consistent with the ex-
pectations implied by the theorem [Young 1994], stating that the only con-
stant threshold, neutral in this sense, is the centre of the segment. Upward or 
downward rounding methods, when the threshold t  is the lower or the upper 
endpoint of the interval, evidently favours small or great constituencies, re-
spectively. The thresholds determined by geometric and harmonic means also 
favour smaller constituencies, although to a smaller degree. This is a conse-
quence of the fact that both means are smaller than the arithmetic mean. It is 
also known that their convergence to the arithmetic mean is very quick, as n  
increases. As soon as with 25n = ,  the difference between the arithmetic mean 
and the harmonic mean of n  and 1n +  is smaller than 0.01. In the case of the 
geometric mean such a difference is achieved even sooner, for 14n = . There-
fore, when assuming the geometric mean as the rounding threshold, one may 
pretend to safeguard the interests of the smaller constituencies on one hand, 
while on the other to move towards an unbiased solution. This property of the 
Hill–Huntington method may have contributed to its great popularity in the 
U.S. and it has been used as the apportionment method of the seats in the 
United States House of Representatives among the states since 1941, when it 
was endorsed by law. 

The application of variable thresholds introduces only minor changes. 
Even if they recognize different weights of fractional parts depending on the 
amount of goods held by agents, but still the trap of favouring smaller or 
greater electoral districts is unavoidable. The preferences move actually to-
wards either direction depending on the position of the threshold against the 
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centre of the interval [n, n + 1]. That is why the signpost sequences considered 
in our experiment: s1(n) = n / (n + 1), ( ) /ns n n m= and 3 1

( ) / m
ii

s n n p
=

= ∑ , 
behave similarly to constant thresholds as regards favouring smaller or greater 
agents: the first one behaves like a signpost sequence defining downward 
rounding, and the two remaining like a signpost sequence defining upward 
rounding. 

Therefore one can plainly see that the choice of rounding rule cannot 
comply with the distributive justice, even if it is reduced only to the two fac-
tors – recognizing a heavier weight of cancelled parts in the case of smaller 
constituencies, and matching the distribution with the actual proportions rep-
resented by the modified quotas. Needless to say, this problem becomes irrel-
evant when all electoral districts have approximately equal populations. How-
ever it becomes increasingly aggravated as differences widen, and then it can 
provoke giving a preference to smaller agents. As a result, current electoral 
systems include diverse solutions, for example the Webster method is applied 
by electoral systems in New Zealand, Norway and Sweden, implying that 
legislators assign more weight to the compliance of allocation with a modified 
quota and do not allow the biased treatment of any electoral districts. The 
legally binding solution in the U.S. at present, with geometric mean rounding, 
can be seen as the wish to find a halfway solution. Finally, the distribution of 
seats in the European Parliament, known as the Cambridge Compromise, 
seems to be an encouragement given to the least populous member countries 
in the European Union, because it ensures a degressively proportional alloca-
tion imposed by the Treaty of Lisbon, as well as including a proportional 
component with upward rounding to the nearest integer. This solution is not 
a surprise though if we compare the populations of Malta and Germany – the 
least and the most populous state in the community. 
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