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Transmission analysis of long-period fiber grating 
with trapezoid index modulation
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The long-period fiber grating (LPG) with trapezoid index modulation is presented as a novel
grating. The influence of the difference between the top width and the bottom width (simplified
to d  in the following text) of the trapezoid index modulation on the transmission characteristics
is analyzed. Calculated results show that the resonance location displaces to the long wavelength
when the d increases. Compared with the long-period fiber grating with rectangle index
modulation, the advantage of this novel grating is that it needs a smaller refractive index change.
When d is zero, this model can be used to simulate the LPG with a rectangular index modulation,
and the theoretical results are in good agreement with the experimental ones.
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1. Introduction 

The long-period fiber grating (LPG) is a transmission-type notch filter. By using this
device, optical power can be coupled from the fundamental core mode to the phase
-matched cladding modes [1, 2]. It has a wide variety of applications, such as gain
flattening of erbium-doped fiber amplifiers [3], multi-channel filtering [4], wavelength
division multiplexing communication system [5], dispersion compensation [6, 7], and
temperature, strain and refractive index sensing [8–12].

There is a refractive index modulation for fiber Bragg grating or LPG. Based
on the perturbation theory, the refractive index modulation can be considered as
a perturbation of the fiber core refractive index. In the initially theoretical model of
the grating, the perturbation can be regarded as a sinusoidal function [1, 2]. This model
can accurately simulate the spectrum property of the Bragg grating and the LPG that
are fabricated by the phase mask method. However, for the LPG fabricated with
the amplitude mask method, the perturbation is a rectangular index modulation (RIM)
[13, 14]. Some errors would appear if we computed the spectrum property of LPG with
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RIM with the sinusoidal model. Therefore, a LPG model with RIM was proposed for
avoiding the mistakes caused by the initial model [14].

In this paper, a novel model of LPG is presented, which has a trapezoid index
modulation (TIM). The coupling interactions considered in this new model include
not only the coupling between the fundamental core mode and the cladding modes,
but also the self-coupling of the cladding modes. The material dispersion of fiber is
considered in the simulation. The advantage of the LPG with TIM is that it can deduce
the refractive index change. When the d of TIM is equal to zero, the LPG with TIM is
transformed to the LPG with RIM. In this case, the LPG with TIM model can be used
to simulate the LPG with RIM. Calculation shows that theoretical results agree with
the experimental ones.

This paper is organized as follows. In Section 2, we present the refractive index
distribution in the LPG with TIM. Then in Section 3, based on the coupled-mode
theory, the formulae of coupling coefficients and coupled-mode equations are derived
for the LPG with TIM. Furthermore in Section 4, we perform the analysis of the effects
on the grating transmission spectrum, including the difference between the top width
and the bottom width of TIM. Finally, conclusions are drawn in Section 5.

2. Refractive index distributing in TIM-LPG

The fiber considered in this paper has a step-index profile and a three-layer structure.
The three-layer structure comprises a core, a cladding and air. The parameters of the
fiber are as follows: the core radius a1 = 2.5 µm, cladding radius a2 = 62.5 µm, index
difference  where n1 is the core index and n2 is
the cladding index. The air index is 1. The material dispersion must be considered
when the range of wavelength during the process of calculation is very large (for
example, 0.9–1.6 µm). The material dispersion equations we considered in this paper
are the same as those in [14].

The refractive index distribution in the fiber core of the LPG with TIM is illustrated
in Fig. 1, and can be expressed as:
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Fig. 1. Trapezoid index modulation in the fiber core.
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where σ (z) is the apodization, and f (z) is the trapezoid function given by:

(2)

where n = 0, 1, 2, 3, ..., N (N is the number of the period along the grating length),
Λ is the grating period, p = W1/Λ and d is defined as d = (W2 – W1)/2 (W1 is the top
width of TIM and W2 is the bottom width of TIM). The grating length is L = NΛ.

Expanding Eq. (2) to the Fourier series, we have
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where j = 1, 2, 3, .... Substituting Eqs. (3) and (4) into Eq. (1), we can express
the refractive index distribution in the fiber core as

(5)

and then we obtain

(6)

The mode fields in the single mode fiber are composed of by the core mode,
the cladding modes and the radiation modes. The expressions for these mode fields
can be found in some previous papers [1, 2].

3. Coupling coefficient and coupled-mode function

The transverse coupling coefficient  between modes j  and k  is given by [1, 2]

(7)

since δnco is small enough (generally, 10–4~10–3), we can make the approximation

(8)

We further define the coupling constant as

(9)

By substituting Eqs. (3) and (8) into Eq. (7), the transverse coupling coefficient is
given by:
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Then, substituting the field expression of the core mode and the cladding modes
into Eq. (9), the coupling constant between different modes can be written as
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(11)

(12)

(13)

with b, ∆, V, u1, σ 2 and ζ 0 being defined in [1].
According to the coupled-mode theory, the general coupled-mode equations can

be written as [1]

(14a)

(14b)

where Aµ  and Bµ  are the amplitudes for the transverse mode field traveling to the right
(+z direction ) and to the left (–z direction), respectively, βν  and βµ  are the propagation
constants of these modes and  is the longitudinal coupling coefficient between
modes ν  and µ.

Since the longitudinal coupling coefficients  are substantially smaller than
the transverse coupling coefficients  [1], we neglect the  in Eqs. (14).
Furthermore, the coupling interactions in the LPG mainly exist between the
co-propagating modes, so we disregard the influence of the counter-propagating
modes. It is well known that << <<  so we can ignore the coupling
between the different cladding modes. Therefore, the main coupling interactions in
the LPG with TIM include the self-coupling of the core mode LP01, self-coupling of
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the cladding modes HE1ν , and coupling of the core mode to the cladding modes.
Finally, by using the synchronous approximation, Eqs. (14) is simplified to

(15)

(16)

( j = 1, 2, 3, ...) (17)

where Aco is the amplitude for the core mode LP01, and  is the amplitude for
the cladding mode HE1ν . Compared with the coupled-mode equations of the LPG
with RIM (Eqs. (30) and (31) in [15]), Eqs. (15) and (16) have the additional items

 and , respectively.

The boundary conditions of the TIM-LPG with length L  are 

(18)

The transmission rate of this grating can be written as

(19)

In order to get the transmission spectrum of the TIM-LPG, a numerical solution of
Eq. (14) is necessary. The fourth-order, adaptive-step-size Runge–Kutta algorithm
subject to the boundary conditions is sufficient and accurate.

4. Calculation and discussion

In this section, we investigate the transmission spectrum of the LPG with TIM when
the TIM parameter d  has different value.

Figure 2 shows a theoretical calculation of the transmission of the LPG with
TIM. The grating parameters are given as follows: Λ = 250 µm, L = 7.6 mm,
∆n = 1.26×10–3, p = 0.5 and d = 20 µm. The six main dips in the spectrum correspond
to the core mode coupling to the cladding modes of ν = 5, 7, 9, 11, 13, 15.
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We investigate the resonance wavelength as a function of the d of TIM, as
illustrated in Fig. 3. The grating parameters are the same as those in Fig. 2. From
Fig. 3, we can conclude that the resonance wavelength displaces to the long wavelength
as d  increases. For example, the resonance wavelength between the LP01 mode and
the HE1, 15 mode displaces from 1298.2 to 1311.4 nm when d increases from 10 to
25 nm.

From Eq. (10), we can see that the transverse coupling coefficient  increases
with an increase of the parameter d. The resonance strength, which is brought about
by the coupling between the core mode and cladding modes, becomes stronger when
the transverse coupling coefficient increases, and more power of the core mode is
transferred to the cladding mode. So, the transmission dips increase with an increase
of parameter d. When the value of parameter d  is great enough, the power of the core
mode is fully transferred to the cladding mode. In this case, the power begins to transfer

Kνµ
t

Fig. 2. Transmission spectra of the LPG with TIM, where Λ = 250 µm, L = 7600 mm, ∆n = 1.26×10–3,
p = 0.5 and d = 20 µm.

Fig. 3. Resonance wavelength as a function of parameter d, where m denote the order of the l = 1 cladding
modes.
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back from the cladding modes to the core mode when the parameter d keeps on
increasing. The final result is that the transmission dips become weaker when the d
increases. The curves of transmission dips as a function of parameter d are illustrated
in Fig. 4.

Compared to the LPG with RIM, the advantage of the LPG with TIM is that it
needs a smaller refractive index change ∆n for the same resonance location and
strength. For example, the refractive index change as a function of d is illustrated in
Fig. 5, in which the coupling appears between the core mode and cladding mode of
ν = 13. The resonance location is at λ = 1.148 µm and the resonance dip strength is
–29.2 dB. The grating parameters are the same as those in Fig. 2. For the LPG with
RIM, the value of the refractive index change is 1.26×10–3, but for the LPG with TIM,
it could be obviously deduced. For instance, when d = 30 µm, the value of ∆n is
1.01×10–3, which is only 80.2% of the LPG with RIM.

We notice that if d = 0, the trapezoid index modulation in Fig. 1 will convert to
the rectangle index modulation. In this case, the LPG model with a TIM can be used
to simulate the long period grating with RIM. Using this method, we calculate a long
period grating transmission spectrum. The results are illustrated in Fig. 6 (dashed line).
The solid line in Fig. 6 (cf., Fig. 7 in [15]) is the measured transmission spectrum of
a long period grating with the same parameters. The grating parameters in our
calculation are listed as Λ = 1.98 µm, L = 7.6 mm, ∆n = 1.26×10–3, p = 0.5 and d = 0.
Comparing the solid and dashed lines in Fig. 6, we can conclude that the theoretical
results match the experimental results mutually. The theoretical resonance wavelengths

Fig. 4. Transmission dip in resonance wavelength as a function of d, where m denote the order of the l = 1
cladding modes.
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are 944, 978, 1024, 1106, 1267 and 1306 nm, respectively; and the experimental
resonance wavelengths are 930, 965, 1020, 1104, 1267 and 1306 nm. But the strength
of transmission dips is stronger in theory than that found in experiment. The reason is
that because of the limited slit function of optical spectrum analyzer,  the lowest point
of the transmission spectra cannot be measured.

5. Conclusions

In this paper, a new type long period grating with a trapezoid index modulation has
been presented. A theoretical method has been proposed for analyzing the spectral
characteristics of the novel grating presented. The calculated results show that the
resonance location displaces to the long wavelength when the d of TIM increases.
Compared with the LPG with RIM, the LPG with TIM needs a smaller refractive index

Fig. 6. Theoretically calculated (dashed line) and experimental (solid line) transmission spectra of a LPG
with RIM.

Fig. 5. Refractive index change as a function of parameter d, where  denotes the LPG with RIM and
 denotes the LPG with TIM.
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modulation for the same coupling degree. Furthermore, when w = 0, the grating model
can be used to simulate the long period grating spectra with a RIM, and the theoretical
results are in good agreement with the experimental ones.
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