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The modelling of high-contrast photonic crystal slabs 
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This paper presents a new approach to determination of the band structure in two-dimensional (2D)
photonic crystal slabs using the enhanced effective index approximation. The proposed method
remains valid in the wide frequency range even for high-index contrast heterostructures.
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1. Introduction

Determination of the photonic band structure in photonic crystals (PCs) is one of
the crucial steps in numerical simulations of all PC devices including two-dimensional
photonic crystal slabs, which are of particular interest because of their easy fabrication
and suitability for a wide range of applications. While exact numerical modelling of
such PC slabs requires fully vectorial 3D calculations, it can often be reduced to
the simpler 2D ones using the effective index method (EIM) [1, 2]. Such an approach
has recently proved to be well suited for low-index-contrast heterostructures [2].
However, in high-contrast heterostructures, the effective index varies significantly
with frequency and hence the classical techniques for PC band structure determination,
in which permittivity is assumed to be constant, can only be used for the narrow
frequency range.

In our work, the classical frequency-domain finite-difference method for 2D PCs
analysis is enhanced to allow for a strong refractive index dispersion which consequently
makes it possible to analyse properly photonic crystal slabs with high-index-contrast
heterostructures. Moreover, the same technique can be straightforwardly used for
dispersive materials, as they only introduce the small variation for effective index.

2. Computational method

As some authors [2, 3] have shown, the guided modes in symmetric photonic crystal
slabs can be divided into quasi-TE and quasi-TM ones which correspond to H and E
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modes of the two-dimensional PC structure. Therefore, it is possible to use a 2D
approximation in photonic band computations by means of several techniques among
which the EIM is the most popular.

In this method, the 3D profile of refractive indices in a multilayer slab is replaced
with a single effective index of unperturbed waveguide. When the contrast ratio
between all waveguide layers is low, the effective index varies no more than a few
percent for a large frequency range, which allows us to use the finite-difference
time-domain (FDTD) method or any technique in which the frequencies are obtained
as eigenvalues of the structure-dependent matrix. The latter approach includes plane
-wave method, finite element method or the finite difference method, which is used in
our calculations.

2.1. Finite difference method

Take the photonic crystal slab and introduce the Cartesian coordinate system where
the periodicity is introduced in the xy plane (Fig. 1).

In order to determine eigenfrequencies for a fixed effective index we utilise
the two-dimensional decoupled Maxwell equations [4]

(1)

(2)

where Eq. (1) corresponds to quasi-TE and Eq. (2) to quasi-TH modes, to which we
apply the Bloch theorem by expressing the field components as

Ez(x, y) = Ψk (x, y)exp(ikxx + iky y) (3)

Hz(x, y) = Φk(x, y)exp(ikxx + iky y) (4)
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Fig. 1. Photonic crystal with rectangular 2D lattice and the unperturbed slab.
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where the functions Ψk and Φk are periodic in the x and y directions. After
substituting (3) and (4) into (2) and (1) we obtain the eigenmode equations with
ω2/c2 as the eigenvalue and Ψ (x, y) and Φ (x, y) as the eigenmodes. Then, we convert
them using central finite-differences into the non-Hermitian matrix, whose eigenvalues
are the squared frequencies of the effective-index modes.

It is important to realize that the proposed finite-difference approach is only
an example and the enhanced effective index method presented below can be as well
applied when using different computation techniques (i.e., plane wave expansion or
FDTD). Thus, in the two-dimensional plane all the properties of this technique
(e.g., periodic boundary conditions of plane-wave expansion or possibility to handle
the non-rectangular lattices) are retained.

2.2. Enhanced effective index method for high-contrast heterostructures

For waveguides with a high contrast ratio, the effective index varies strongly with
frequency. This adds additional unknown parameters to the problem, making it
impossible to use the classical techniques, in which the frequency is determined as
an eigenvalue of some matrix. This difficulty can be overcome by determining
eigenfrequencies of the 2D photonic crystal as functions of the effective index
appearing in Eqs. (1) and (2) (see Fig. 2). As the effective index is a continuous

Fig. 2. Dependence of photonic bands on effective index at Γ, X and M and the real effective
index–frequency relation for the first-order even modes in SiO2/Si/SiO2 photonic crystal slab.
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function of frequency, we can compute the effective index appropriate for each of
the photonic bands by solving the equation

ωN (neff (ω )) = ω (5)

where ωN(neff ) is the frequency of the N-th photonic band for the two-dimensional
photonic crystal, in which the effective index is assumed to be neff and neff (ω) is the
function to the frequency-dependence of effective index.

For more general structures with spacial dependence of the effective index the
solution of Eq. (5) is still possible. In such a case, the computational domain must be
divided into several sections with different effective indices 
Then, the N-th photonic band of the two-dimensional crystal depends on m parameters

 which consequently are all functions of frequency. Thus,
the problem to solve takes the form

(6)

which still is the equation with the single variable ω.
If the structure has only one section with the frequency-dependent effective index

and the function neff (ω) is invertible (which is the case, e.g., for the simple three- or
four-layer slabs), it is possible to reformulate Eq. (5) into a simpler form

ωN (neff) – ω (neff) = 0 (7)

In our calculations, we have obtained the continuous form of ωN(neff) by
determining the PC eigenfrequencies for several arbitrary effective index values and
using the third-order spline interpolation to get the continuous function. The solutions
of Eq. (7) were found with the Newton–Raphson method [5].

3. Results

3.1. High-contrast planar waveguide PC

The sample calculations have been carried out for a simple three-layer SiO2/Si/SiO2
waveguide (Fig. 1). The core and the cladding had refractive indices nc = 3.6 and
ns = 1.5, respectively. The PC structure was composed of a square lattice of air holes
with the lattice constant a and the hole radius 0.3a. The Si core thickness was
h = 0.4a. The computational domain was a single lattice cell implemented with the grid
of 1024 nodes under periodic boundary conditions.

We have considered only the fundamental symmetric TE guided mode, but
the calculations could be easily generalised to cover every guided mode in the slab.
The effective index has been computed assuming the analytical solution in z direction
of the form
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(8)

where the constants A and neff are chosen to ensure the continuity of Ψ (z) and dΨ /dz
at the interface of the layers. The distribution of the field in the z direction for the
fundamental mode is presented in Fig. 3.

3.2. Computations

The effective index of the analysed SiO2/Si/SiO2 waveguide varied from 1.5 to 3.6.
In this range, the photonic eigenfrequencies were determined at 9 points for every
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Fig. 3. Distribution of the field along z  axis for the fundamental mode.
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Fig. 4. Photonic bands structure of the first-order even modes in SiO2/Si/SiO2 photonic crystal slab
obtained with our approach (solid lines) compared to the classical effective index method (dashed lines).
Note that around the frequency of k0 ≈ 0.35(2π/a) both methods yield similar results.
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wavevector to obtain ωN (neff) relations. They are depicted for Γ, X and M points in
Fig. 2 together with the curve representing frequency dependence of the effective
index. Only the common points of these two lines are physically meaningful.

3.3. Band structure

Figure 4 presents a photonic band diagram of the sample waveguide (solid lines). For
comparison, there is a solution obtained after assuming effective index to have constant
arbitrary value 2.95 (dashed lines). As can be seen from the picture, the difference
is significant, which shows that in the exact calculation of high-contrast structures
the dependence of the refractive index on frequency cannot be neglected.

It is important to notice that when we take the narrow frequency range at any
frequency, the method reduces to the classical effective index procedure which has
already been verified and proved to be valid [2]. Our approach is merely its
generalisation for the wide frequency range.

4. Conclusions

The effective index method is simple, yet often efficient and rationally exact tool for
performing band calculations of photonic crystal slabs. The possibility of reducing
the problem to 2D allows the computational time to be significantly reduced. One
of the major drawbacks of this method was the inability to handle high-contrast
waveguides due to the strong dispersion of the effective index.

In this work, we have presented a simple method of photonic band structure
computations in such a situation. Although the computational effort in our approach
is bigger than in the case of classical methods (the eigenvalues must be determined
several times for a single wavevector) it is still much smaller than in the case of
full-scale 3D calculations.
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