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Kinetic description of microwave Raman regime 
free-electron laser in the presence 
of helical wiggler and guiding magnetic fields
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A full dispersion relation obtained for free-electron laser by kinetic approach based on the method
of characteristics in the presence of circularly polarized, periodic, static helical wiggler magnetic
field and guide magnetic field incorporating the detailed relativistic particle trajectories is
reduced to Raman regime approximations. The temporal and spatial growth rates are evaluated
in microwave region. A detailed analysis has been done for temporal and spatial growth rates in
Raman regime, especially for microwave region. The spatial growth rate is more than that of
temporal growth. The results have been compared with available results obtained by other
techniques.
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1. Introduction

The wave amplification in free-electron lasers has been thoroughly studied in
a configuration consisting of helical wiggler and guide magnetic fields [1]. The use of
the axial guide field was originally considered for enhancing the focusing of intense
electron beam. It also enhances transverse wiggler velocity and increases both the gain
and efficiency of the interaction. The Raman regime is characterized by collective
interaction between the electrons for high electron beam current and low electron
energy. In free-electron lasers, the electron oscillates in the buckets of the
pondermotive potential with the synchrotron frequency. These oscillations get mixed
with the emission and absorption processes to create radiation at frequencies shifted
from fundamentals by the synchrotron frequency. At sufficiently high intensity, gain
is observed on the long wavelength sideband. Because of this analogy to the molecular
Raman effect, the free-electron laser synchrotron instability is sometimes referred to
as Raman instability.

BERNSTEIN and FRIEDLAND [2], KWAN and DAWSON [3], UHM and DAVIDSON [4], YIN
and BEKEFI [5] and QIAN et al. [6] have studied free-electron lasers in Raman regime
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using hydrodynamic approach in the presence of planar wiggler and helical wiggler
fields. DAVIES et al. studied Compton and Raman free-electron laser instability for a
cold [7] and warm [8] electron beam propagating through helical wiggler without a
guide magnetic field using kinetic and vector potential approaches. ROBERSON and
SPRANGLE [9] carried out a review on free-electron lasers in Compton and Raman
regimes using hydrodynamic approach with and without the guide magnetic field. The
kinetic description of low gain free-electron laser has also been investigated using
Einstein coefficient method incorporation with detailed particle trajectories for perfect
and imperfect injections of a beam in a circularly polarized, static, periodic helical
wiggler and axial guide magnetic fields [10].

Therefore, in the present paper, free-electron laser instability is studied by kinetic
approach incorporating the details of particle trajectories, using the method of
characteristics, in the helical wiggler and guide magnetic fields. The dispersion relation
obtained [11] is reduced to Raman regime dispersion relation [12] for the upper shifted
frequencies. Temporal and spatial growth rates are obtained from Raman regime
dispersion relation in microwave region for the same plasma frequency and cavity
parameters. Further temporal and spatial growth rates are studied in detail.

2. Full dispersion relation

All the components of dielectric tensor have been obtained [11] for tenuous electron
beam with finite spread in horizontal and vertical velocities. With the help of these
tensors, while neglecting smaller order terms and after some algebraic manipulations,
the full dispersion relation (FDR) is obtained as:
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where 

and (2)

Now, when the guide field is put to zero, our expression (1) for FDR reduces exactly
to that of DAVIDSON [13]. 

3. Dispersion relation in Raman regime

When the beam density is sufficiently high, the longitudinal electric field Ez plays an
important role in determining detailed properties of free-electron laser instability. In
this case, a more accurate analysis of the full dispersion relation shown in Eq. (1) is
required, which includes the effects of the longitudinal plasma oscillations occurring
in the dielectric factor { }. In the vicinity of the growth
rate maximum, one approximates the electrostatic part of the full dispersion relation
appearing in the third bracket on the left-hand side as:

(3)

The electromagnetic part of the full dispersion relation, appearing in the first
bracket on the left-hand side, is obtained making use of approximations
ω – (kz + k0) = vz0 in the Doppler shifted frequency and subsequently replacing
ω ≈ ckz in the electromagnetic term as:

(4)

The remaining factor of ω 2 in brackets on the left-hand side and the right-hand
side of Eq. (1) is also approximated considering the resonance condition as: 
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The approximation mentioned above and algebraic manipulations reduce the full
dispersion relation given in Eq. (1) to Raman regime as:

(5)

Equation (5) may be reduced to a simple quadratic equation as: 

(6)

with R, the coupling term, being defined on right-hand side of Eq. (5) and 

(7)

where µ may be defined as the frequency mismatch between the electrostatic and
electromagnetic waves.

Equation (5) is often referred to as the Raman regime dispersion relation. If one
considers electromagnetic waves with frequency less than the Doppler-shifted
cyclotron frequency, the dispersion relation is approximately given by ω = ckz. By
setting the coupling coefficient R equal to zero, one obtains the uncoupled electrostatic
and electromagnetic waves. At the intersection of the dispersion curves, where
the wave number and frequency matching conditions are satisfied, negative energy
electrostatic beam mode and positive energy electromagnetic wave are strongly
coupled together and, therefore, give rise to instability [11].
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By expanding Eq. (6) about  at which electrostatic and electromagnetic
dispersion relations are simultaneously satisfied, one determines the frequency

 for  of the unstable electromagnetic wave [13]. The procedure
yields the solution:

(8)

Thus solution of the dispersion relation (6) reduces to:

(9)

Equation (9) indicates that the electromagnetic wave is unstable and the width of the
unstable spectrum is determined by the various parameters, such as the beam energy
and the strength of the wiggler field and the axial guide magnetic field. 

3.1. Temporal growth rate of free-electron laser

The dimensionless temporal growth rate is given by [7, 12, 13]: 

(10)

and

(11)

From Equation (5), it is seen that R is proportional to  therefore, the width of
unstable spectrum is linearly dependent on the strength of the helical wiggler magnetic
field. When the axial guide magnetic field is withdrawn from Eq. (10), the expression
reduces to that of DAVIDSON [13].

3.2. Spatial growth rate of free-electron laser

The dimensionless spatial growth rate is given as: 
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The expression for absolute instability in Raman regime obtained in Eq. (10) and
group velocity is determined from Equation (11) under approximation ω ≅ ckz and
gives the spatial growth rate with  as:

(13)
where

(14)

4. Detail analysis of microwave Raman regime

Variation of temporal growth rate in Raman regime with kz/k0 for γ0 = 2, γ z = 1.41,
plasma frequency   and 
is shown in Fig. 1a for different values of the guide magnetic field  being
more than one. The real frequency  plotted on the other axis indicates
that the maximum growth rate cuts the real frequency at kz /k0 = 3 and corresponds to
the real frequency ωr = 2.05×1011 cm–1 and wavelength λr = 0.919 cm. The increase
of the guide magnetic field decreases the growth rate as well as widths of the spectrum
extending over large kz /k0. If the choice is made for  then the temporal growth
rate increases. The picture is opposite on either side of the resonance value of as ,
shown in Fig. 2a, which indicates variation in the growth rate with guide magnetic
field for the same parameter of Fig. 1a. Near the resonance, where  which
corresponds to the guide magnetic field  the expression shows singularity
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and maximum growth is possible little below the resonance or away from the
resonance. The results shown in Figs. 1a and 2a are in agreement with those obtained
by YIN and BEKEFI [5].

Spatial dimensionless growth rate versus ω /ck0 is shown in Fig. 1b for the various
dimensionless guide magnetic field parameters  in the microwave Raman
region. The spatial growth rate is enhanced up to five times compared to the temporal
growth rate for the same value of the guide magnetic field having . Thus, Fig. 2a
corresponding to the temporal growth rate and Fig. 2b corresponding to the spatial
growth rate clearly indicate the choice and role of the guide field for controlling
the growth rate.

Figure 3a shows variation in the growth rate (Imω /ck0) with kz /k0 in Raman regime
for different values of wiggler magnetic field ωc for a fixed value of guide magnetic
field  i.e.,  away from singularity  The growth rate

Ω̂ 1>

Ω̂ 1>

Ω̂ 2,= B|| 16 kG= Ω̂ 1.=

Fig. 1. Dependence of dimensionless: a – temporal growth rate on dimensionless wave number for various
guide field strengths (   ), and b – spatial growth rate on dimensionless
wave number for various guide field strengths (   ). 

γ 0 2,= ω̂c 0.5,= ω̂ p 0.06=
γ 0 2,= ω̂c 0.5,= ω̂ p 0.08=

a b

Fig. 2. Dependence of dimensionless: a – temporal growth rate on dimensionless guide magnetic field
(    ), and b – spatial growth rate on dimensionless guide field
strength (    ). 
γ 0 2,= ω̂c 0.5,= ω̂ p 0.08,= kz k0⁄ 3=

γ 0 2,= ω̂c 0.5,= ω̂ p 0.08,= kz k0⁄ 3=

a b
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increases with an increase of wiggler field, but maxima remain fixed at kz /k0 = 3, and
corresponds to the frequency generated ωr = 2.05×1011 cm–1 and wavelength of
radiation field λr = 0.919 cm, which is the same as in Fig. 1a. However, there exists
an extremum value of the wiggler field for these parameters to obtain lasing action
with sufficient gain. The results are in conformity with those obtained by DEMOKAN
and KABAK [14] using the hydrodynamic approach. The results are very sensitive to
the parameter chosen for wiggler field, wiggler wave number, beam density and beam
energy. One has to search for optimum values of these parameters in the region to
obtain a reasonable values of the growth rate. 

In Figure 3b, spatial growth rate ki /k0 versus ω /ck0 in Raman regime for different
values of dimensionless wiggler magnetic fields has been discussed for the same
parameters as in the figures mentioned above and a fixed value of the dimensionless
guide magnetic field  The wiggler magnetic field enhances the growth
rate as well as the unstable spectrum of ω /ck0. The maxima remain at the fixed point
for ω/ck0 = 3.

Figure 4a shows the variation in the growth rate (Imω /ck0) with kz /k0 for the
different values of dimensionless plasma frequencies  (beam density) and other
fixed parameters given in the caption. The increase of the beam density makes
the growth rate as well as the width of unstable spectrum increases. The control of
beam density is depicted in Fig. 5a for temporal growth rate. The growth rate increases
and reaches a maximum and then falls, indicating that choice has to be made for
a particular value of beam density and energy for generating growth rate and desired
wavelength by free-electron laser action. One has to compensate the wiggler magnetic
field, guide magnetic field and various other parameters. The results are in agreement
with those of KWAN and DAWSON [3].

Ω̂ 2.=

ω̂ p

Fig. 3. Dependence of dimensionless: a – temporal growth rate on dimensionless wave number for
various wiggler magnetic field strengths (   ), and b – spatial growth rate on
dimensionless frequency for various wiggler magnetic field strengths (   ).
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The effect of the beam density on dimensionless spatial growth rate ki /k0
versus ω /ck0 for the same parameters and fixed value of dimensionless wiggler field

 for different values of dimensionless plasma frequency  (beam
density) is shown in Fig. 4b. The spatial growth rate and unstable spectrum increase
with the increase of beam density. The maxima for spatial growth rate appear at the
same point of the axis ω /ck0. The choice of beam density is very sensitive parameter
for obtaining the spatial growth rate as shown in Fig. 5b. The growth rate increases
with an increase of the dimensionless plasma frequency  up to some extent and
then decreases substantially with an increase of  This figure also indicates that

ωc γ 0
1 2⁄⁄ ck0 0.5= ω̂p

ω̂ p
ω̂p .

Fig. 5. Dependence of dimensionless: a – temporal growth rate on dimensionless plasma
frequency (   , ), and b – spatial growth rate on dimensionless
plasma frequency (   , ).

γ 0 2,= ω̂ c 0.5,= Ω̂ 2= kz k0⁄ 3=
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a b

Fig. 4. Dependence of dimensionless: a – temporal growth rate on dimensionless wave number for various
beam densities (   ), and b – spatial growth rate on dimensionless frequency
for various beam densities (   ).
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free-electron laser in Raman regime can be tuned for different wavelengths and
frequencies of radiations in the microwave region by changing the beam density.
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