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The multimode (MM) optical fiber maximum operational range is defined by the fiber bandwidth
(related to the intermodal dispersion) rather than by the fiber attenuation. The relationship between
the modal bandwidth of the fiber, the launching condition and mode coupling is fairly complicated.
There is presented a theoretical study on the modal bandwidth of the multimode fiber. The theory
is based on a numerical solution of the coupled mode diffusion equation that allows the bandwidth
of the MM optical fiber to be calculated. It is shown that appropriate modal filtering at the receiver
side of the fiber link increases the link bandwidth.
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1. Introduction

The multimode (MM) optical fibers are used nowadays in LANs for high bit rate data
transmission (up to 10 Gbit /s) and distances of a few hundred meters. The crucial issue
is to determine basic transmission parameters of such a fiber, especially its modal
bandwidth as the attenuation is rarely an issue for silica fibers, since the links are not
longer than a few hundred meters. Due to the modulation speed, semiconductor lasers
have to be used instead of LEDs. The lasers excite fewer modes than LEDs realizing
the so called restricted launch (RL). As the modes have different modal group delays
and these delays determine the modal bandwidth, it is very important which modes are
excited and which are not during the light launch. The situation is even more
complicated as the modes propagating in the fiber are coupled and they interchange
their energies. A combination of restricted launch and a flaw in the index of refraction
profile (such as central dip) leads to a reduction of the MM fiber modal bandwidth
[1, 2]. In this paper, we deal with the case of the modal filtering at the fiber output.
We shall prove theoretically that appropriate modal filtering at the receiver side of the
fiber link increases the link bandwidth. The approach presented combines the
numerical solution of the mode diffusion equation with the exact calculation of the
launch conditions. 
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2. Theory

Let us denote by P (x, z, t) the mean value of the power of the mode belonging to
the compound mode described by x, at a distance z from the transmitter end of
the fiber, and at the time moment t. Here x = m / mc is the compound mode number
(mode group number) normalized to mc, the latter being the number of maximum
guided compound mode. To calculate the frequency response of the optical fiber and
its bandwidth it is more suitable to use the Fourier transform of P (x, z, t) [3, 4]

(1)

Then the equation that describes the behavior of F(x, z, f ) (the diffusion equation)
may be written as [3, 4] 

(2)

Here, τ (x) is the mode group delay, α (x) is the mode attenuation, M is the number of
all guided modes, and d (x) is the mode-coupling coefficient. In the following, we shall
discuss these parameters.

For regular profile of the index of refraction n(r) the mode delay is given by [5, 6]

(3)

Here N1 is the group index of refraction at the core center,  (where
NA is the numerical aperture, and n1 = n(0)), ε is the profile dispersion parameter, and
g is the parameter that defines the shape of the index profile:

(4)

where a is the core radius. 
The values of τ (x) obtained from Eq. (3) were compared with the exact numerical

results calculated according to the finite element method presented in [7]. It turned out
that except for the highest order modes both methods give very close results. Therefore,
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we shall use Eq. (3) as a good approximation of the modal delay for regular n(r)
profiles.

The modal attenuation α (x) is a function of x. The value of α (x) is determined by
effects common to all the modes, such as absorption and Rayleigh scattering as well
as phenomena related to the irregularities between core and cladding and the cladding
effects. The latter two phenomena bring about a substantial increase of the attenuation
of higher modes. For silica fibers this increase is several dB/km [1, 3]. In this paper,
we assume that the modal attenuation is given by

(5)

where α0 is the common attenuation, ∆α is the attenuation increase, and c is a parameter
describing the shape of function α (x), its value is usually between 4 and 8 [1, 3].

The mode-coupling coefficient d (x) is most often expressed as [6, 7]

(6)

where d0 [1/km] defines the coupling strength between modes belonging to the adjacent
compound modes, and the exponential q describes its functional form. Both parameters
depend on the fiber type, and its perturbations (core diameter variations, micro- and
macrobends, etc.). For a gradient index GI (parabolic profile) fiber it is usually assumed
that q = 0 or q = –0.5 [3, 6, 8, 9]. The value of the coupling coefficient d0 may be as
high as 30 1/km [4, 8]. In modern fibers, however, it is usually less, so sometimes one
assumes no coupling at all (i.e., d0 = 0, no mode mixing) [10].

In order to solve Eq. (2) it is necessary to define the boundary conditions. These
are the following [8, 9, 11]: 

(7)

(8)

(9)

Here, p(x) is the initial power of the mode belonging to the compound mode x:

(10)

and δ (t) is the delta Dirac function.
The number of modes in a given compound mode x is proportional to x. Besides,

two orthogonal polarizations are possible. Thus, the power P(x) of this compound mode
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(mode group) is 2xP(x, z, t), and the total powers at the input and output of the fiber
are respectively

(11)

(12)

Taking the Fourier transform of (11), (12) we finally get the frequency response
of the fiber

(13)

Here, F(x, z, f ) is the solution of Eq. (2) with the boundary conditions (7)–(9). In this
paper, Eqs. (2) and (13) were solved numerically. Writing Eq. (13) we neglected
the chromatic dispersion of the fiber. This is justified when the source linewidth is
small. For instance, for linewidths below 1 nm and λ = 0.85 µm this assumption
is satisfied for modal bandwidths in excess of 1.8 GHz [12].

 In Eqs. (12) and (13), we introduced the possibility of modal filtering at the fiber
output. It is described by the function H(x) (H(x) ≤ 1). In the absence of filtering
H(x) = 1. Modal filtering may be realized by the following methods:

1. Winding a few turns of the fiber on a reel with a small diameter; such a filter
cuts off higher order modes. The smaller the reel diameter, the lower order modes are
damped. Due to the possible fiber break the reel diameter must not be very small, so
in practice only the modes with x > 0.5 can be filtered off [13–15]. 

2. Using a single mode (SM) patchcord (in general, a small core fiber) as the modal
filter at the MM fiber receiver end. The modal transfer function of such a patchcord,
H(x), corresponds to the function p(x), see Eq. (9). The principal disadvantage here
is high loss (around 10 dB and more) related to the coupling between MM and SM
fibers.

3. Spatial filtering of the light beam coming out of the MM fiber end. It may be
realized by placing a diaphragm between the fiber end and the photodetector, or simply
by moving the photodetector away from the fiber [16]. A more sophisticated approach
is also possible: various mode groups are received by different photodetectors and these
signals are electronically processed to compensate for different modal delays [17].

 Two approaches are possible to calculate the initial distribution of compound
mode powers at the fiber input. First, the incoming light beam may be decomposed
into the MM fiber modes by calculating the correlations between the input field
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distribution and distributions of all MM fiber guided modes [1, 2]. These correlations
define the coupling coefficients between the input and all the modes. This may be done
numerically. The second approach assumes the Gaussian beam input as well as both
the weak guiding and infinite parabolic profile of the MM fiber. Then, both the modal
fields and coupling coefficients may be expressed analytically, the latter by means of
the generalized Laguerre polynomials [18]. Both approaches were tested showing
an excellent agreement for a quadratic index of refraction profile. The mean power of
a mode belonging to the compound mode m is given by 

(14)

Here, k is the number of modes in the compound mode m, and clp is the coupling
coefficient between the input field and a linearly polarized mode LPlp.

3. Results

As mentioned before, Eq. (2) in general case may be solved only numerically. To this
end, we used finite difference methods [19], namely the explicit method and the DuFort
and Frankel method [19]. Each case was solved independently by these two methods
until the convergence of the results was obtained. If not stated otherwise the results
presented were obtained for a GI MM optical fiber with the following parameters:
g = 1.8, ε = 0.05, λ = 0.85 µm, D = 62.5 µm, NA = 0.275, n1 = 1.48, L = 1 km.
The modal bandwidth as defined here corresponds to a 3 dB optical power reduction
(optical bandwidth) and it is consistent with a standard definition [12].

 We are interested primarily in the influence of the index of refraction flaws on
the MM fiber bandwidth. The most often encountered fault, namely the central dip, is
modeled here by adding a triangle disturbance to the regular function (3) describing
the modal delay:

(15)

Here, h is the relative depth of a dip, typically 0 < h < 1, and x0 defines the maximum
distorted modal group number. The function (15) is somewhat arbitrary, and it is used
to test the influence of modal filtering on the fiber bandwidth.

The modal bandwidth for a distorted profile, and the group delay given by (15)
(h = 0.5, x0 = 0.05) is shown in Fig. 1 for various offsets. The Gaussian beam launch
of 9 µm diameter is assumed. It is readily seen that the bandwidth is highly reduced
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Fig. 1. Modal bandwidth B, versus offset: the exciting beam diameter is 9 µm, d (x) = d0 = const [1/km].
The profile is distorted according to (15): h = 0.5 and x0 = 0.05.

Fig. 2. Modal bandwidth in the presence of modal filtering with the filter (16) and for a distorted
profile (15), launch beam diameter is 9 µm, d(x) = d0 = const [1/km].

Fig. 3. Modal bandwidth in the absence of modal filtering (solid line), and in its presence (dashed line).
Modal filtering is with the filter (16) and for the distorted profile (15), launch beam diameter is 9 µm,
d (x) = d0 = 10 [1/km]. Modal filtering loss does not exceed here 6.1 dB.
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especially for the central launches because the distortion affects mostly the lower order
modes. This bandwidth reduction is less pronounced for intense mode mixing (greater
d0). If the modes are highly coupled the bandwidth only weakly depends on the offset.

 It turns out that appropriate modal filtering applied at the fiber output brings about
the modal bandwidth increase. In exemplary calculation we used a modal filter
described by:

(16)

This is a hypothetical filter that may or may not be realized in practice. Possible
approximation is shown in Fig. 5. Such a filter or a similar one eliminates some mode
groups that have extremely different modal delays, decreases the impulse spreading,
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Fig. 4. Modal filtering loss for the data from Fig. 3 for various coupling coefficients d (x) = d0 [1/km].

Fig. 5. Transfer function H(x) realized in a MM fiber (λ = 0.78 µm, D = 50 µm, g = 2, NA = 0.2,
n1 = 1.48) by a circular diaphragm located at the fiber end that is opaque for r < 10 µm and for
r > 15 µm, and transparent elsewhere. 
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and increases the fiber modal bandwidth. It is shown in Fig. 2. Figure 3 compares
the bandwidths obtained with and without the modal filtering. It is necessary to stress
that the modal filtering induces the signal loss. This effect is shown in Fig. 4. Usually,
the greater the bandwidth increase, the greater the loss, however, if the filter is
appropriately designed, the signal loss is moderate.

 The modal filter may be realized, for example, by a circular diaphragm located at
the fiber end. The resulting H(x) function is depicted in Fig. 5, and the filter realization
in Fig. 6.

4. Conclusions

It has been proved theoretically that it is possible to increase the modal bandwidth of
the MM fiber applying the pass-band modal filtering at the fiber output. A twofold
bandwidth increase may be obtained with moderate signal loss related to this modal
filtering. The mechanism behind the bandwidth improvement is straightforward:
the filter simply suppresses the mode groups that have the most different modal
delays. Further research is necessary to verify the results obtained. In particular,
an experimental confirmation of the bandwidth increase is necessary. Furthermore,
optimum filters that may be practically implemented should be found.
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