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Lyapunov exponent of the optical radiation 
scattered by the Brownian particles
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The computer and physical simulation of light scattering by the system of Brownian particles has
been carried out. Temporary fluctuations of field intensity have been found to save chaotic
properties of driving particles. Empirical diagnostic links have been retrieved of the largest
Lyapunov exponent of fluctuations of field intensity with parameters of the dispersive media.
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1. Introduction

The light scattering of coherent optical radiation on Brownian particles causes
a complicated space–time modulation of field intensity as a result of interference
composition of partial waves with random amplitudes and phases. Time correlation
of scattered radiation field is defined with the help of particle motion speed and
experiment geometry, which is the subject of research in Doppler spectroscopy [1, 2].
Gorelik was the first scientist to propose the method of optical detection in 1947 [3].
Forrester’s, Town’s, Cummins’s, Pike’s, and other scientists’ experiments being
discussed in detail [4] are considered to be the basis of a new trend, i.e., optical mixing
spectroscopy which is successfully used in physical and chemical investigation,
biology and medicine.

At present the application of optical mixing spectroscopy has a definite critical
state. On the one hand, the coefficient determination of translation diffusion of
macromolecules, eritrocites, colloid particles, viruses and others has become a standard
and rather reliable measuring method [5]. On the other hand, when investigating more
complicated systems (polydispersed, with high particle concentration, inhomogeneous)
there appear some problems requiring the development of theory and mastering of
experimental techniques.

According to modern views Brownian motion of particles is either random or chaotic.
Moreover, it possesses fractal properties [6, 7]. That is why one can use the theory of



540 M.S. GAVRYLYAK, O.P. MAKSIMYAK, P.P. MAKSIMYAK

stochastic and chaotic fluctuations for describing Brownian motion [8]. There arises
an important question concerning the character of space-time chaotization of scattered
radiation field, quantitative diagnostic of relationship between stochastic characteristic
features of medium and field, advantages of stochastic approach in determining
structural and dynamic characteristic features of media with Brownian particles.

We will consider the mathematical modeling of Brownian particle motion and
calculate the optical radiation field scattered on them. We will carry out experimental
investigation of light scattering by sulfur hydrosols. We will use the largest
Lyapunov exponent as an example for researching the time chaotization of parameters
of light-scattering medium. We will show the possibility of taking into account
the errors of defining Brownian particle sizes with the help of measured largest
Lyapunov exponent.

2. The modeling of Brownian particle motion

The replacement of Brownian particle along axis OX at time t  is given by the normal
probability distribution:

(1)

The succession of such random values {xi} is a set of independent random numbers
with Gaussian distribution and dispersion [9]:

(2)

where D – diffusion coefficient, defined by astringent medium resistance. For
spherical particles of radius R:

(3)

where k – Boltzmann constant, T – absolute temperature, μ – medium ductility.
Particle coordinate at axis x at time moment t = nτ  is as follows:

(4)

In an extreme case for great n and small τ  the set of n random numbers are graded
into a random function X (t ) [7] having the same properties as the replacement x.
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A program for modeling N Brownian particle motion been elaborated. The initial
particle motion was given with the help of equiprobable distribution of their
coordinates (X, Y, Z ) within volume L3 being investigated. Particles size was given by
Gaussian distribution function with an average volume R0 and size dispersion σ.
Particle replacement x, y, z was given under a normal law (1), and the replacement
dispersion of particle (2Dτ )1/2 depended on particle size as well. Particle coordinates
after each replacement step were determined with the help of relationship (4).

For calculating scattered radiation field distribution the Rayleigh–Gans–Debye
light scattering model was chosen [10]. For monodisperse ensemble such particles
scatter the intensity, which is proportional to R [6] at the same angle. The field
amplitude at an arbitrary point of space (z0, ξ, ζ ) is defined as a sum of complex
field amplitudes scattered by all Brownian particles:

(5)

where ri = [(zi – z0)2 + (xi –ξ )2 + ( yi – ζ )2]1/2 is the distance from i-Brownian particle
to the point in the observation plane; z0 – the distance between the plane where there
is a scattering volume and observation plane, xi, yi, zi, ξ, ζ, z0 – rectangular coordinates
in object plane and observation plane, respectively; k = 2π /λ – a wave number, where
λ is a wavelength.

The complex field amplitude was calculated and written down in the form of
U = ReU + i ImU. It was used for determining amplitude A, phase ϕ  and field
intensity I.

3. Objects of experimental investigation

Sulfur hydrosols were chosen for physical modeling objects [11]. They are obtained
by mixing l – normal solutions of hydrochloric acid and sodium thiosulfate. Then,
molecularly dispersion sulfur is condensed in the form of the drops of overcooled
sulfur, which are equally increased in size with the rate of sol deterioration. Sulfur
refraction index is equal to 1.44 relative to water. In the absence of extraneous
nuclei of condensation the drops are formed after gaining the definite solution
supersaturation. Then, their initial radii will be of the order of 0.01 μm.

When using sulfur hydrosols in physical experiment they have to be calibrated,
i.e., the definite particle size is to be brought to correspondence with the definite time
of sol growth. Assuming that particle sizes of sulfur hydrosols (0.01–2 μm) correspond
to Rayleigh–Gans–Debye particles, we used light scattering tables edited by Shifrin
for their calibration [12]. The essence of calibration consists in comparing scattering
indicatrices, measured experimentally, to theoretical ones, obtained from the tables,
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for the definite parameters of sulfur particles. The main criterion of the comparative
estimation was the coincidence of diffraction extremes in scattering indicatrices.

Figure 1 shows the calibrated dependence of particle sizes of sulfur hydrosols
on their growth time. Under inclination of environment temperature ±5 °C it leads to
the inclination of hydrosol sizes not greater than 10%.

4. Definition of Brownian particle sizes

The correlation function of radiation field scattered by Brownian particle system once
is as follows [13]:

(6)

where the light scattering vector .

For Gaussian distribution spectral density of scattered radiation is determined as
follows [4]:

(7)

Laurents’s counter with a halfwidth Δω1/2 = u2DT and center ω = ωR is described by
means of this expression.

According to (6) and (7) for Gaussian distribution one has [4]:

(8)

Measuring the inclination angle of line  (in linear approximation)
to axis t we found the values of diffusion coefficient and particle size.

Experimental investigation of sulfur hydrosols was carried out for the growth time
from 2 to 25 hours. This corresponded to sizes of sulfur particles from 0.01 to 1 μm
as one can see in the calibrated diagram of  Fig. 1. The values of initial concentration
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Fig. 1. Calibrated dependence of particle sizes
of sulfur hydrosols on their growth time.
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of condensed sulfur particles in forming the hydrosols in various sources are
different [14], being of the order of 3×109–1010 particles per 1 mm3. We decreased
the initial concentration a hundred times. The smallest concentration under study was
approximately 5×107 particles per 1 mm3, and it was defined by photoelectronic
multiplier capability to register weak scattered streams. However, this limit
corresponds to sulfur particles less than 0.2 μm only, as the intensity of light scattering
increases as R with the particle radius growth R6.

Having a halfwidth of power spectrum, according to relation (7), we defined
the coefficient of translation diffusion DT , which we used for calculating particle
radius.

Figure 2 represents the dependence of halfwidth of power spectrum Δω on
particle concentration for sulfur hydrosols of three sizes (R = 0.2, 0.5 and 0.9 μm) with
the following parameters of the experiment: d = 0.1 mm, θ = 0.02, z0 = 100 mm,
ω = 0.001.

At small concentrations of sulfur particles spectrum halfwidth cannot be practically
changed, and at big concentrations it increases. Obviously, this is connected with
the appearance of multiple scattering effects and the appropriate spectrum widening.
From rectilinear parts of concentration dependence of power spectrum halfwidth we
defined Brownian particle size. It was equal to 0.31, 0.72 and 1.15 μm, respectively,
and it exceeded by 35% the values obtained when calibrating the process of
hydrosol growth. The reason for that may be the error of experimental measurements,
temperature instability of hydrosol growth. However, the main reason can be
the increase of a real size of sulfur particles at the expense of the formation of
the transitional layer of water molecules [15]. Hydrodynamic radius at light scattering
is impossible to be studied, and the real movability of particles increases.

A more complicated situation is observed when investigating the concentration of
particles greater than 5×109 per 1 mm3. Figure 2 shows that halfwidth of power
spectrum Δω increases abruptly. This is connected with the chaotization growth of
scattered radiation field upon the growth of scattering multiplicity. For qualitative
estimation of chaotization degree of scattered radiation intensity we used the largest
Lyapunov exponent [8].

Fig. 2. Dependence Δω on particle
concentration for sulfur hydrosols of
three sizes.
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5. Investigation of the largest Lyapunov exponent 
of radiation field scattered by Brownian particles

Lyapunov exponents play an important role in studying dynamic systems. They
characterize the average velocity of exponential divergence of close phase
trajectories. Taking the initial distance d0 between two initial points of phase
trajectories, the distance between trajectories, coming off these points, at time t will
be as follows:

d (t ) = d0exp(λ t ) (9)

The value λ is called Lyapunov exponent [8]. Each dynamic system is characterized
by Lyapunov exponent spectrum λ i (i = 1, 2, ..., n), where n – quantity of differential
equations which are necessary for system description. For experimental data, obtained
at observing dynamic systems, the availability of positive Lyapunov exponent can be
the proof of chaos existence in the system. Generally speaking, chaotic system is
characterized by the divergence of phase trajectories in similar directions and their
convergence in others, i.e., there are both positive and negative Lyapunov exponents
in chaotic system. The sum of all the indices is negative, i.e., the trajectory convergence
degree exceeds that of divergence. If this condition is not met, dynamic system is
instable, and the behavior of such a system is recognized easily. Thus, in most cases,
it is sufficient to calculate the largest Lyapunov exponent only. The positive value of
the largest Lyapunov exponent gives the possibility of chaos existing in the system,
and the value of this index characterizes chaoticness intensity.

Most algorithms for calculating the largest Lyapunov exponent have some
disadvantages. For example, a great quantity of experimental data is required, there is
a relative complexity of algorithm program realization, and numerous calculations are
time consuming [8]. Using theoretical conclusion, described in paper [15], we have
elaborated the algorithm and calculation program of the largest Lyapunov exponent,
which is free of the above-mentioned disadvantages.

The first step of the algorithm consists in reconstructing the phase trajectory.
The latter is represented in the form of matrix X, each column of which is a vector in
phase space:

where Xi – system condition at time moment i. For a series of N measurements
{x1, x2, …, xN} any X  is defined as follows:

where J – time delay (reconstruction delay), m – embedding dimension.
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T
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Embedding dimension is usually estimated based on Takens’ theorem, according
to which m > 2n, where n is the system order. However, the method described enables
obtaining correct result at lesser value m. Reconstruction delay is chosen as being equal
to time at which autocorrelation function decreases by 1–1/e compared to its initial
value.

After reconstructing the phase trajectory by the algorithm the search is expected
of the nearest “neighbor” for each trajectory point. The point Xl is considered to be
the nearest “neighbor” with minimum distance dj (0) from it to the basic point Xj:

A couple of “neighbor” points diverges exponentially in some period of time:

where λ1 – the largest Lyapunov exponent. It can be found as a line inclination defined
by the formula:

(10)

where  means the average value for all j.
This algorithm was used as a basis for compiling a program in Pascal. For testing

program the model and experiment chaotic signals were used. Henon’s mapping was
regarded as a model signal: xi+1 = 1 – a + yi ; yi+1 = bxi ; a = 1.4; b = 0.3.

The calculation results for Henon’s mapping are demonstrated in Fig. 3. Diagram
inclination was calculated with the help of the least squares, and there were
obtained the values λ1 = 0.403. The latter almost corresponds to the theoretical value
λ1 = 0.418.

Experimental investigation of the largest Lyapunov exponent did not testify to
the availability of radiation intensity fluctuations scattered by sulfur hydrosols and
did not find its dependence on sulfur particle sizes. This can be explained by that fact
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that the size change of sulfur monodisperse particles leads to the change of general
intensity of scattered radiation field, and not to its distribution. However, the largest
Lyapunov exponent depended essentially on particle concentration C and angle of
scattering θ.

Figure 4 shows the dependence of the largest Lyapunov exponent on concentration
for particle sizes 0.2, 0.5 and 0.9 μm for geometrical experimental parameters
corresponding to Fig. 2.

One can observe practically a similar dependence for the above-mentioned size
particles. Moreover, the dependences given in Figs. 2 and 4 appear to have similar
course. This fact was taken as a basis for increasing the measurement accuracy of
Browne’s particle sizes with the help of the method of correlation spectroscopy.
Dependences, obtained by standardization curves in Fig. 2 for coefficients ,
do not practically depend on concentration of Brownian particles and give the values
of particle sizes which are closer to real ones: 0.25, 0.59 and 1.04 μm. And these
exceed by only 20% the results of optical measurements at calibrating the hydrosol
growth process.
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Fig. 4. Dependence λ1 on concentration for
particles with the sizes of 0.2, 0.5 and 0.9 μm.
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The decrease of the angle of scattering influences λ1 behavior sufficiently. Figure 5
demonstrates dependences of the largest Lyapunov exponent on the angle of scattering
θ  for three types of concentration: 108, 109 and 1010 particles per mm3. One can observe
λ1 to increase with θ  upon its next saturation. And for great saturation concentrations
the process is realized quicker.

Computer modeling enabled us to consider situations which are impossible to
realize in a real, physical experiment. It has been found out with the help of computer
modeling that the scattering of Brownian particles by sizes has not essential influence
on the correlation integral course essentially. The normal distribution dispersion was
changed from 0 to 0.1 μm for the average particle size  R = 0.3 μm.

6. Conclusions
The results of carrying out the computer and physical modeling of light scattering by
Brownian particle system consist in the fact that temporal intensity fluctuations
of scattered radiation field have a chaotic character, as largest Lyapunov exponent is
positive.

Stochastic field parameters actually do not depend on particle sizes. The increase
of Brownian particle concentration and of the angle of scattering leads to the chaotization
increase of temporal intensity fluctuations of scattered radiation field.

There have been determined the empirical diagnostic relationship of largest
Lyapunov exponent and the widening of the spectrum of temporal intensity fluctuations.
This gave the possibility to widen the concentration range and increase the measurement
accuracy of Brownian particle sizes.
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