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1. Introduction

The purpose of this article is very simple, it is to prove the strong duality 
theorem of linear programming (LP) without either using the simplex method 
or any theorem of alternatives. 

The simplex method has its own problems related to degenerate basic 
feasible solutions. While such solutions are infrequent, from a theoretical 
standpoint proof of the strong duality theorem that uses the simplex method 
is not complete until it has taken a few extra steps. Furthermore, for econo-
mists the duality theorem is extremely important whereas the simplex method 
is not necessarily so. If we add to this the fact that the simplex method has 
faster substitutes for computational purpose, an alternative proof of the strong 
duality theorem which does not use the simplex method would be very wel-
come.  

The alternative route is to use Farkas’s lemma or a theorem of alternative 
that can be derived from it. Such proofs, while being extremely elegant, pre-
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empt deriving Farkas’s lemma itself from the strong duality theorem of LP. 
Thus it would be very desirable to have a proof of the strong duality theorem 
of LP which does not use any theorem of alternative, either. Such a proof is 
provided in this paper. 

The crucial step in our proof is the proposition which states the following: 
if a canonical LP minimization problem is such that the set of feasible solu-
tions is non-empty and the image under its objective function of the set of 
feasible solutions is bounded below, then this LP problem has an optimal so-
lution. In order to prove this proposition we make use of a very simple and 
straightforward result in linear algebra which goes as follows: given a matrix 
whose columns are linearly independent, the square matrix obtained by pre-
multiplying the given matrix by its transpose is of full rank and hence invert-
ible.  

A general all-purpose reference for the material presented in this paper is 
Dorfman, Samuelson and Solow [1958]. A very purposive and lucid exposi-
tion of the role of linear programming in microeconomic analysis in the past 
as well its future prospects is available in Burkett [2006].   

2. The primal and dual LP problems 

Let M and N be positive integers and let A be a M×N real matrix such 
that (i) every row of A has at least one non-zero entry, and (ii) every column 
of A has at least one non-zero entry. Let b be a real M-vector i.e. b∈ℝ𝑀𝑀 and 
c be a real N-vector i.e. c∈ℝ𝑁𝑁. All vectors are assumed to be column vectors 
unless otherwise mentioned. To distinguish the transpose of a column vector 
or a matrix from the original column vector or matrix we use a “superscript” 
‘T’. 

The canonical primal linear programming is (by definition) the fol-
lowing: 

Minimize cT x subject to Ax = b, x∈ℝ+
𝑁𝑁. 

This is denoted by (P).  
The dual of (P) is the following: 

Maximize yTb subject to yTA≤cT, y∈ℝ𝑀𝑀. 
This is denoted by (D). 
A vector x is said to be feasible for (P) if Ax = b, x∈ℝ+

𝑁𝑁. 
A vector y is said to be feasible for (D) if yTA≤cT, y∈ℝ𝑀𝑀. 
A vector x which solves (P) is said to be an optimal solution for (P).  
A vector y which solves (D) is said to be an optimal solution for (D).  
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The optimal value of (P) is the value of the objective function of (P) at 
any optimal solution of (P). 

The optimal value of (D) is the value of the objective function of (D) at 
any optimal solution of (D). 

The strong duality theorem of linear programming says that if both (P) 
and (D) have feasible solutions, then both have optimal solutions and the op-
timal value of both are the same. 

3. Basic solutions 

Let Aj denote the jth column of A and Ai denote its ith row. 
A vector x is said to be basic for P if x∈ℝ𝑁𝑁 and the list of columns  

< Aj| xj> 0> is linearly independent. If in addition x is feasible for (P) then x 
is said to be a basic feasible solution for (P). 

If x is a basic feasible solution for (P), then <Aj| xj> 0> is denoted by B, 
xB is the sub-vector of x corresponding to the columns in B. Further in such 
a situation we often write the equation Ax = b as [B|E]�𝑥𝑥𝐵𝐵0 � = b or BxB = b. 

Claim 1. If B has linearly independent columns, then BTB is an invertible 
square matrix, (i.e. has full column and row rank). 

Proof. Clearly BTB is a square matrix. Towards a contradiction, suppose 
that BTB is not invertible in spite of B having linearly independent columns. 
Hence there exists a column vector x (of a dimension equal to the number of 
columns of B) such that x ≠ 0 and BTBx = 0. Thus 0 = xTBTBx = (Bx)T(Bx). 
But this implies Bx = 0 with x ≠ 0, contradicting that B has linearly independ-
ent columns. This proves the claim. Q.E.D.  

An optimal solution for (P) that is basic for (P) is called a basic optimal 
solution for (P). 

The obvious proof of the following proposition is being omitted. 
Proposition 1. If x is feasible for (P) and y is feasible for (D), then  

cTx ≥ yTb. 
Proposition 2. Suppose (P) has a feasible solution and the image of the 

feasible set of (P) under the objective function of (P) is bounded below. Then 
there is a basic feasible solution x* for (P) such that the value of the objective 
function for (P) at the given feasible solution is not less than cTx*(i.e. the value 
of the objective function at x*). 
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Proof. Let x be a given feasible solution and let F(P) = {x'∈ℝ+
𝑁𝑁 |Ax' = b}. 

By hypothesis F(P) is non-empty. Let VF(P) = {cTx'|x'∈F(P)}. Clearly VF(P) 
is non-empty, and by hypothesis VF(P) is bounded below. Let α∈ℝ such that 
cTx' ≥ α for all x'∈F(P). If x is a basic feasible solution then we can set x = x* 
and it is done. Hence suppose x is not basic.  

Thus the list of columns <Aj|xj> 0> are linearly dependent. Hence there 
exists a list of real numbers <λj|xj> 0> not all of which are zero such that 
∑ 𝜆𝜆𝑗𝑗𝐴𝐴𝑗𝑗𝑥𝑥𝑗𝑗>0 = 0.  

Case 1. ∑ 𝑐𝑐𝑗𝑗𝜆𝜆𝑗𝑗𝑥𝑥𝑗𝑗>0 > 0. 
If λj ≤ 0 for all j, then the N-vector x(t) whose jth coordinate is 0 if xj = 0, 

and whose jth coordinate is xj– tλj if xj> 0, satisfies Ax(t) = b for all t ≥ 0 and 
x(t)∈ℝ+

𝑁𝑁. Furthermore cTx(t) diverges to -∞ as t →∞, contradicting our as-
sumption which requires cTx(t) ≥ α for all t ≥ 0.Hence λj> 0 for some j. 

Let µ = max{t ≥ 0|xj– tλj ≥ 0 for all j satisfying xj> 0 and λj> 0}.Then 
Ax(µ) = b, x(µ)∈ℝ+

𝑁𝑁 and |{j| xj(µ) > 0}| < |{j| xj> 0}|. Also 
cTx(µ) <cTx.  

Case 2. ∑ 𝑐𝑐𝑗𝑗𝜆𝜆𝑗𝑗𝑥𝑥𝑗𝑗>0 < 0. 

In this case ∑ 𝑐𝑐𝑗𝑗(−𝜆𝜆𝑗𝑗)𝑥𝑥𝑗𝑗>0 < 0.  
Repeat case 1 with λ replaced by -λ to obtain a µ and a x(µ) as before 

such that jth coordinate of x(µ) is 0 if xj = 0, and whose jth coordinate is  
xj + µλj if xj> 0. Then Ax(µ) = b, x(µ)∈ℝ+

𝑁𝑁 and |{j| xj(µ) > 0}| < |{j| xj> 0}|. 
Also cTx(µ) <cTx.  

Case 3. ∑ 𝑐𝑐𝑗𝑗𝜆𝜆𝑗𝑗𝑥𝑥𝑗𝑗>0  = 0. 

If λj> 0 for some i, then proceed as in Case 1 with λ; if not consider –λ 
instead of λ and proceed as before. In either case we obtain a x(µ)∈ℝ+

𝑁𝑁 such 
that  

Ax(µ) = b and |{j| xj(µ) > 0}| < |{j| xj> 0}|. 
Furthermore, cTx(µ) = cTx. Thus there exists an x(µ)∈ℝ+

𝑁𝑁 such that  
Ax(µ) = b and |{j| xj(µ) > 0}| < |{j| xj(µ) > 0}|. Also, cTx(µ) ≤ cTx. 

The process terminates once we have a basic feasible solution x*. The 
value of the objective function at the feasible solution x (i.e. cTx) is not less 
than cTx*. Q.E.D. 
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The following corollary of Proposition 2 follows once we take notice of 
Proposition 1. 

Corollary of Proposition 2. Suppose that both (P) and (D) have feasible 
solutions. Let x be a feasible solution for (P). Then there is a basic feasible 
solution x* for (P) such that the value of the objective function for (P) at the 
feasible solution x is not less than cTx*. 

Proposition 3. Suppose (P) has a feasible solution and the image of the 
feasible set of (P) under the objective function of (P) is bounded below. Then 
(P) has a basic optimal solution. 

Proof. As in the proof of Proposition 2, let F(P) = {x∈ℝ+
𝑁𝑁 |Ax = b}. By 

hypothesis F(P) is non-empty. 

Let VF(P) = {cTx|x∈F(P)}. Clearly VF(P) is non-empty. Thus by hypo-
thesis VF(P) is bounded below.  

Each basic feasible solution is of the form [((BTB)-1BTb)T,0]T where B is 
a submatrix of A whose columns are linearly independent and further all co-
ordinates of (BTB)-1BTb) are non-negative. Clearly, there are only a finite 
number of basic feasible solutions since there only finitely many collections 
of linearly independent columns of A. By Proposition 2, the set of basic fea-
sible solutions is non-empty and for each feasible solution there is a basic 
feasible solution such that the value of the objective function at the given 
feasible solution is not less than the value of the objective function at the 
corresponding basic feasible solution. 

Let 𝑥𝑥� be a basic feasible solution such that cT𝑥𝑥� = min{cTx| x is a basic 
feasible solution}. 

Since VF(P) is bounded below, 𝑥𝑥� must be an optimal solution for P, since 
if x is any other feasible solution with cTx<cT𝑥𝑥�, then we would get cTx<cTx' 
for all basic feasible solutions, thereby contradicting proposition 2. This 
proves the proposition. Q.E.D. 

Corollary of Proposition 3. Suppose both (P) and (D) have feasible so-
lutions. Then (P) has a basic optimal solution. 

Proof. Follows from Proposition 1, by observing that if both (P) and (D) 
have feasible solutions, then the image of the feasible set of (P) under the 
objective function of (P) is bounded below. Q.E.D. 
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4. Strong duality theorem 

We begin this section with a lemma whose proof is easy. 
Lemma 1. If x is a feasible solution for (P) and y is a feasible solution 

for (D) and if the value of the objective function for (P) at x is equal to the 
value of the objective function for (D) at y, then x is an optimal solution for 
(P) and y is an optimal solution for (D). 
The next proposition is the key to the Strong Duality Theorem of LP. 

Proposition 4. Suppose (P) has an optimal solution. Then (D) also has 
an optimal solution and the optimal value of both are the same. 

Proof. If (P) has an optimal solution then by Proposition 2, it has an op-
timal basic solution �𝑥𝑥𝐵𝐵0 � corresponding to the linearly independent columns 
B of A, i.e. A = [B|E] and xB = (BTB)-1Bb. 

Let x be any other feasible solution for P. Let x = �
𝑥𝑥(1)
𝑥𝑥(2)�, where x(1) is 

the sub-vector of x corresponding to the columns in B and x(2) is the sub-
vector of x corresponding to the columns in E. 

Then, x(1) = (BTB)-1BT(b-Ex(2)) = xB - (BTB)-1BTEx(2). Thus, 

𝑐𝑐𝐵𝐵𝑇𝑇x(1) + 𝑐𝑐𝐸𝐸𝑇𝑇x(2) = 
𝑐𝑐𝐵𝐵𝑇𝑇xB -𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTEx(2) + 𝑐𝑐𝐸𝐸𝑇𝑇x(2) =𝑐𝑐𝐵𝐵𝑇𝑇xB + (𝑐𝑐𝐸𝐸𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1 BT E)x(2). 

Towards a contradiction suppose (𝑐𝑐𝐸𝐸𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTE)j < 0, for some j cor-
responding to a non-basic column Aj of A. 

Consider the vector x(2), where xj(2) = t ≥ 0, xk(2) = 0, for all other k 
where k corresponds to a non-basic column Ak of A. 

For t = 0, x(1) = xB>>0 and so for t > 0 sufficiently small x(1) >>0. Thus 

A�
𝑥𝑥(1)
𝑥𝑥(2)� = b. 

Also, 𝑐𝑐𝐵𝐵𝑇𝑇x(1) + 𝑐𝑐𝐸𝐸𝑇𝑇x(2) = 𝑐𝑐𝐵𝐵𝑇𝑇xB + t(𝑐𝑐𝐸𝐸𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BT E)j < 𝑐𝑐𝐵𝐵𝑇𝑇xB since 
t(𝑐𝑐𝐸𝐸𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTE)j < 0.This contradicts the optimality of �𝑥𝑥𝐵𝐵0 �. Thus it must 
be the case that 𝑐𝑐𝐸𝐸𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTE ≥ 0.  

Furthermore, 𝑐𝑐𝐵𝐵𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTB = 0. Thus 𝑐𝑐𝑗𝑗𝑇𝑇-𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTAj ≥ 0 for all  
j = 1,...,N. Thus, cT - 𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTA ≥ 0. Let yT = 𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BT. Thus,  
yTA≤cT. Thus, y is feasible for (D).  Also yTb = 𝑐𝑐𝐵𝐵𝑇𝑇(BTB)-1BTb = 𝑐𝑐𝐵𝐵𝑇𝑇xB. 
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By lemma 1, y is an optimal solution for (D) and the optimal value of (P) 
is equal to the optimal value of (D). Q.E.D. 

Note. The method we have adopted to prove Proposition 4 is the one used 
by simplex to obtain an optimal solution for the dual, given a basic optimal 
solution for the primal. 

The following well-known result now follows immediately from the Cor-
ollary of Proposition 3 and Proposition 4.  

Strong duality theorem of LP. If both (P) and (D) have feasible solu-
tions then both have optimal solutions and the optimal value of both are the 
same. 

5. Farkas’s lemma 

A very simple proof of the well-known Farkas’s lemma follows very easily 
from Proposition 3. 

Farkas’s lemma. Either Ax = b has a solution in ℝ+
N or yTA≤ 0,  

yTb> 0 has a non-negative solution, but never both. 
Proof. Since the proof of “never both is standard” let us suppose Ax = b, 

x∈ℝ+
𝑁𝑁 does not have a solution. 

If yTA≤ 0, yTb> 0 does not have a solution, then since 0TA ≤ 0,  
0Tb = 0, 0 is an optimal solution for the LP problem. Maximize yTb subject 
to yTA≤ 0. Thus (0,0,0) is an optimal solution for the LP problem. Minimize  

𝑦𝑦1𝑇𝑇(-)b + 𝑦𝑦2𝑇𝑇b + wT0. Subject to (AT|-AT|I)�
𝑦𝑦1
𝑦𝑦2
𝑤𝑤
�= 0,�

𝑦𝑦1
𝑦𝑦2
𝑤𝑤
�∈ℝ+

𝑁𝑁×ℝ+
𝑁𝑁×ℝ+

𝑀𝑀. 

By Proposition 4, it’s dual. 

Maximize 0Tx subject to xT(AT|-AT|I) ≤ (-bT|bT|0) has an optimal solution. 

Now xT(AT|-AT|I) ≤ (-bT|bT|0) is equivalent to Ax = b and x ≤ 0. 
Thus, the system Ax = b and x ≤ 0 has a solution. The negative of any 

solution to this system will satisfy the system Ax = b, x∈ℝ+
𝑁𝑁. 

Thus, Ax = b, x∈ℝ+
𝑁𝑁 has a solution leading to a contradiction. This proves 

the lemma. Q.E.D. 
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6. Conclusion 

After obtaining the main results in the paper, the author was able to locate 
an unpublished 2008 paper entitled “An Elementary Proof Of Optimality 
Conditions For Linear Programming” by Anders Forsgren, whose stated ob-
jective is similar to ours. They rely on a perturbation technique to bypass 
problems concerning non-degenerate basic feasible solutions. However, this 
non-degeneracy problem is also the shortcoming of the simplex method and 
our technique of proof makes no distinction between a degenerate and non-
degenerate basis feasible solution. The method of proof of lemma 3.1 in the 
Forsgren paper is similar to the proof of our Proposition 2. The real novelty 
of our paper is Proposition 3, which to the best of the author’s knowledge has 
no precedents. All things considered our proof is simpler and shorter, assum-
ing that Forsgren has succeeded in achieving his goal. 

There is a result in Frank and Wolfe [1956] which is similar in spirit to 
Proposition 3, and says that a quadratic programming problem admits an op-
timal solution if the objective function is bounded from below on the feasible 
set. They do not show that such a solution is basic feasible and we require 
basic feasibility to prove the strong duality theorem. Furthermore, to refer to 
Frank and Wolfe to show that a linear programming problem admits an opti-
mal solution if the objective function is bounded from below on the feasible 
set, would be like “using a sledge-hammer to crack a pea pod”.  
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