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Multi-stage ring resonator all-pass filters 
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This paper describes group delay time property of the multi-stage ring resonator all-pass filters
(RRAPF) in either cascading single stages or using lattice architectures. The present analysis is
restricted to directional couplers and waveguides characterized by various parameters, and careful
design of these parameters can optimize the group delay response. The extra phase shifters of each
single stage have been adjusted to yield a broadband group delay. By increasing the number of
filter stages, a larger bandwidth over the dispersion can be obtained. This device is able to provide
dispersion compensation to systems such as the high speed dense wavelength division multiplexer
(DWDM) for the optical fiber communication system.
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1. Introduction
The basic type of an autoregressive moving average (ARMA) planar waveguide filter
is a single ring resonator connected to one coupler which provides no path back to
the input port. This filter is called an all-pass or, in the absence of loss, unit
transmittance networks [1], because the magnitude of their transmission factor is unity
on the whole spectrum, independent of wavelength. Although lossless all-pass filters
do not display magnitude filter characteristics, their phase response is frequency
dependent. Therefore, they can be configured for group delay equalization and
dispersion compensation [2–4], polarization mode dispersion compensation [5], and
other applications based on their phase-frequency characteristics such as band-pass
filtering when used in conjunction with other optical components. There have been
growing interests in tunable dispersion compensators (TDC) for high-speed
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wavelength division multiplexed (WDM) networks. This is because the chromatic
dispersion of transmission path could be changed frequently in a dynamically
reconfigurable WDM networks. The TDC based on a ring resonator all-pass filter is
one of the key components in these networks. Optical ring resonator all-pass filters
(RRAPF) can be realized using multi-stage ring resonator in either cascading single
stages or using lattice architectures [6]. In this paper, multi-stage RRAPF for dispersion
compensation is proposed and analyzed. Desired group delay shape, which has a larger
value and is sharper, can be tuned by the amount of power coupling to the ring.

2. Transfer functions of ring resonator all-pass filters

2.1. Cascaded ring resonator all-pass filters

The architecture of single ring and three stage cascaded RRAPF is illustrated in Fig. 1,
whose every stage is constructed by one ring resonator and one 2×2 optical coupler.
The insertion loss of the coupler γ  and κi is the coupling factor of the i-th coupler.
When a coherent source is input into a device, the coupling intensity for the throughput
path in each stage is denoted by  and for the cross path it is

, where –j represents the –(π/2) phase shift. As to the transmission of
light along the ring resonator (the closed pass), we can represent as xz–1, where
x = exp(–α L /2) is the one round-trip losses coefficient, and the z–1 is the Z-transform
parameter, which is defined in terms of normalized angular frequency ω as

z–1 = exp(– jω ) = exp(– jβ L ) (1)

where β = kneff is the propagation constant, k = 2π/λ is the vacuum wave number,
neff is the effective refractive index of the waveguide and the circumference of the ring
is L = 2πR, here R is the radius of the ring.

When all rings have the same circumference, a device we call a uniform cascaded
RRAPF. Therefore, each single stage has the same periodic resonant responses in the
frequency domain with the free spectral range (FSR) between two resonance peaks
given by

(2)

where ng = neff + fo(dneff /d f )fo is the group index of the ring waveguide, fo is the center
frequency and c is the velocity of light in vacuum. The optical resonators resonate at
a high order mode. At the fo, the perimeter of the ring is an integer number of guide
wavelengths, and this integer Mr is the order number of mode and fo = MrFSR. Using
the scattering matrix with Z-transform or signal flow graph technique as in [7, 8], we
can express the transfer function for single RRAPF by

(3)

ci 1 κi–=
jsi– j κi–=

FSR Δ f c
ng L
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----------- c xz 1––

1 cxz 1––
---------------------------= =
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By evaluating S (z) at z = exp( jω ) and defining the phase delay by S (ω ) =
= |S (ω )| exp( jθ (ω )), we obtain from (3) the relative intensity transfer

(4)

and the phase delay is given by

(5)

The resonances for Fig. 1a occur at frequencies where cos (ω ) = 1, that are at f =
= Mr c /neff L. The minimum transmission of |S |2 at resonance is

(6)

and if the coupling coefficient reaches the critical value of κ = κc = 1 – x2, the intensity
reaches zero, and there is no transmission, i.e., the fractional loss around the ring is
exactly the same as the fractional loss through the coupler.

S 2 c2 x2 2xc ω( )cos–+

1 cx( )2 2xc ω( )cos–+
--------------------------------------------------------------=

θ ω( ) tan 1– x 1 c2–( ) ω( )sin

c 1 x2+( ) x 1 c2+( ) ω( )cos–
----------------------------------------------------------------------------=

S fo

2 c x–( )2

cx 1–( )2
---------------------------=

Fig. 1. Schematic layout of single ring (a), and three stage cascaded RRAPF (b).

a b

Fig. 2. Schematic layout of two stage lattice RRAPF (a), and lattice RRAPF 2×2 array (b).

a b
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2.2. Lattice ring resonator all-pass filters

Figure 2 illustrates the two stage lattice RRAPF and lattice RRAPF 2×2 arrays which
the improved group delay can be obtained. For simplicity, the waveguide is considered
lossless so that x = 1, the transfer function of Fig. 2a can be expressed as

(7)

where φ  is the phase delay shift resulting from the upper ring resonator which is given by

(8)

3. Group delay of ring resonator all-pass filters

The filter’s group delay is defined as the negative derivative of the phase of the transfer
function with respect to the angular frequency as follows [6]:

(9)

where τn is normalized to the unit delay of the waveguide T. The absolute group delay
is given by τg = Tτ n. Thus, we substitute (5) into (9) and given that d tan–1[g(x)]/dx =
= g'(x)/[1 + g2(x)], the normalized group delay of Fig. 1a is given explicitly in terms
of c, x and ω as follows:

(10)

Equation (10) is a periodic group delay response in frequency domain, which exhibits
sharp peaks at ω = 2Mrπ. The value of (10) at resonance where cos(ω ) = 1 is

(11)

The normalized group delay as a function of normalized angular frequency ω  for
a lossless waveguide is given by

(12)
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which simplifies to

(13)

In the case of the three stage cascaded RRAPF as in Fig. 1b, it can be shown that
the normalized group delay τn which is the sum of the individual normalized group
delay τni is induced by each single stage ring resonator. For a lossless waveguide τn is
given by

(14)

The extra tunable phase shifters of each single stage can be added to yield
a broadband group delay. Therefore, in this case, the result in (14) in term of cos(ω )
which is replaced by cos(ω + ϕi ), where ϕi is an additional phase shift of each ring.

Similarly, by using Eqs. (7) and (8), we obtain from (9) the normalized group delay
τn of the lattice RRAPF 2×2 array (as Fig. 2b) is expressed by

(15)

where c1i, c2i are the coupling intensity coefficients for the throughput path of the i-th
column for lattice RRAPF 2×2 array. The resonance of Fig. 2a occurs at frequency
where ω = 2π and φ = π, due to the fact that the light from the upper ring must pass
through the coupled arm of the upper coupler twice. The value of (15) at resonance
for Fig. 2a is then given by

(16)

Using identical symmetrical couplers κ1 = κ2, the normalized group delay in (16)
at resonance simplifies to small value of 2/(1 + c1).

4. Simulation results

The normalized group delay response of single RRAPF in Fig. 1a is shown in Fig. 3.
The parameters of the circuit used for this simulation were the design frequency
(wavelength) fo = 193.1 THz (λo = c/fo = 1552.52 nm), Mr = 1931, FSR = 100 GHz
and ng = 3.46 (for the III–V semiconductor materials waveguide), which determines
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the circumference of the ring as L = Mrλo /ng =0.86 mm. The internal ring losses are
assumed to be fully compensated (α = 0). The normalized group delay response is
periodic functions of the frequency of 100 GHz, which is the same as the FSR of
the ring resonator and it has been found that as κ  is decreased it became sharper and
steeper at the resonant point.

Figure 4 is a plot of the normalized group delay of Fig. 1a by varying six values
of round trip losses coefficient x based on Eq. (10). The coupling coefficient is fixed
to be κ = 0.2 and the other parameters are the same as those used for Fig. 3. The critical
value of the round trip losses coefficient is calculated to be xc = (1 – κ )1/2 = 0.894.
For x > xc the normalized group delay has a positive peak at resonance indicating that
the signal is trapped and spends a relatively long time circulating in the ring. After

Fig. 3. Normalized group delay response of single RRAPF with lossless as in Fig. 1a comparing different
coupling coefficients of κ = 0.1, 0.4 and 0.7.

Fig. 4. Normalized group delay response of single RRAPF as in Fig. 1a by keeping κ  fixed and varying
round trip losses coefficient as: x = 0.978 (a), x = 0.947 (b), x = 0.926 (c), x = 0.872 (d ), x = 0.860 (e),
and x = 0.834 ( f ). 
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decreasing x, while keeping κ fixed, τn becomes sharper and large positive as x
approaches its critical value, then flips to a large negative value and sharper as x is in
the region x < xc and finally decreases in magnitude (remaining negative and broader)
as x is further decreased. As we see, the result in Fig. 4 is following: the parameter is
x when κ  is fixed. Similarly, the same group delay response is realized for a fixed x
under a variable κ  as shown in Fig. 5. Here, the round trip losses coefficient is set to
be x = 0.894, which results in critical value of κc = (1 – a)1/2 = 0.2.

A difficulty with the single-stage RRAPF is that the group delay response and
the bandwidth over which a desired response can be approximated are limited. By
using multi-stage RRAPF, a desired response can be more closely approximated, and
it can be achieved over a broader portion of the period compared to single-stage
RRAPF. Figure 6 shows the group delay response using three stage cascaded RRAPF
as in Fig. 1b for compensation filter dispersion. The parameters of each ring resonator

Fig. 5. Normalized group delay response of single RRAPF as in Fig. 1a by keeping x fixed and varying
coupling coefficient as: κ = 0.35 (a), κ = 0.30 (b), κ = 0.25 (c), κ = 0.15 (d), κ = 0.10 (e), and κ = 0.05 ( f ).

Fig. 6. Normalized group delay response of three stage cascaded RRAPF with lossless as in Fig. 1b for
various identical coupling coefficients in each stage of κ = 0.1, 0.4, and 0.7.
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are identical and the circumference of each ring is 0.86 mm. As a result (shown in
Fig. 6), a larger bandwidth or FWHM over which the dispersion can be obtained due
to increasing the number of filter stages.

By appropriately adjusting the coupling coefficient κi and the phase shift ϕi of each
single stage, a broadband group delay response can be achieved as shown in Fig. 7.
The delay curve of a ring resonator always has a constant surface independent of
the coupling coefficient κi. As a consequence, there is a trade-off between the maxi-
mum delay and bandwidth for a certain bandwidth ripple. The filter response result
from the sum of each single stage response shows a maximum delay of τmax = 0.16 ns
for bandwidth of Δ fBW = 8.6 GHz and a ripple (Δτ ) of 5 ps.

The plot of the normalized group delay at resonance for the two stage lattice
RRAPF in Fig. 2a is shown in Fig. 8. After decreasing κ2, while κ1 is fixed at 0.9,

Fig. 7. Normalized group delay response of three stage cascaded RRAPF with lossless as in Fig. 1b, where
the coupling coefficients and phase shifters of each single stage have been adjusted to yield a broadband
group delay.

Fig. 8. Normalized group delay response of two stage lattice RRAPF with lossless as in Fig. 2a, for various
coupling coefficients of κ2 = 0.1, 0.4 and 0.7, while κ1 = 0.9.
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becomes a larger positive value and sharper compared with those with the result in
Fig. 3 at the resonant point. The use of such configuration as a dispersion compensation
filter is limited by unwanted additional sidemode peaks around the resonant point as
shown in Fig. 9. A possible solution for realizing only a single group delay peak is
obtained for the coupling coefficient κ1, higher than 0.5.

5. Conclusions

Multi-stage ring resonator all-pass filters can be used as dispersion compensation. As
shown above, the bandwidth utilization can be increased by increasing the number of
filter stages. By appropriately adjusting the coupling coefficient κi and the phase shift
ϕi of each single stage for cascaded RRAPF, a broadband group delay response can
be achieved. Using lattice RRAPF, a normalized group delay at resonance with larger
positive value and sharper is achieved compared with those of the cascaded RRAPF.
For lattice RRAPF, a possible solution for realizing only a single group delay peak is
obtained for coupling coefficient κ1, higher than 0.5.
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