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Light propagation is analyzed in thermally expanded core (TEC) fibers with graded-index
profile. Used as power mixers among others, their core structure at the boundary between the heated
and non-heated regions is represented by linear taper. Ray optics is used as the transverse taper
dimensions are large relative to the wavelength of propagating light. Trajectories of meridian
rays are derived analytically. Numerical results presented show ray trajectories as functions of
the position within the taper and taper slope. These are modulated sinusoidal functions whose
amplitude and period rise with the taper radius. Both, bound and leaky rays have been examined.
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1. Introduction

Because of the complexity of Maxwell’s and derivative equations describing light
propagation through optical waveguides, simpler but approximate solutions are often
sought. Asymptotic theory, with ray optics as its main component, has been found to
be adequate for most aspects of light propagation in step- and graded-index optical
waveguides (e.g., [1]). A comparison of wave and ray techniques for solving
graded-index (GI) optical waveguide problems is presented in [2]. As a wide range of
problems involving GI waveguides cannot be solved analytically, techniques of ray
optics elaborated in [2] are often attempted. Ray optics has attracted the attention of
researchers because its applications for various types of optical fibers have made it
possible to calculate ray-path parameters and analyze the ray temporal dispersion.
Application of geometric (ray) optics to investigate the ray dispersion, light power
acceptance properties of multi-step fibers, and coupling losses for multi-step index
plastic optical fibers have been reported [3].
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Tapered dielectric structures maximize the coupling of light into optical fibers and
integrated-optic devices or waveguides in general. With the advancement of optical
communication networks and optical switching and fiber sensing systems, the thermally
diffused expanded core (TEC) fibers [4–6] have gained in prominence. TEC fibers
have an expanded mode field diameter obtained by heating a step-index single-mode
fiber locally at high temperature (of approximately 1300 °C to 1650 °C) and
diffusing the germanium dopant into the core. The expansion rate of the core depends
on the heating temperature and duration and dopant intensity in the fiber core. When
a TEC fiber is applied to low-connection loss connectors and laser diode modules,
the enlarged mode field diameter is an important factor which is related to fabrication
time and cost. Theoretical and experimental analysis of TEC fiber characteristics
has been reported [7]. Methods for analyzing the propagation, modal and coupling
characteristics of same fibers have been elaborated [8, 9].

In this paper, the propagation is described of meridian rays in TEC fibers using
a geometric optics approach. Ray trajectories in the expanded core region of the fiber
are estimated. Using the model of linear taper with small angles, the analytical solution
for trajectories of meridian rays is obtained. This solution describes the ray path in
terms of sinusoidal functions with amplitudes proportional to the taper core radius.
Attention is given to rays that remain bound to the core region for a specified length
of taper.

In terms of the structure of the paper, we first present briefly the refractive-index
profile of a TEC fiber under isotropic thermal diffusion in order to explain the linear
taper model. We then use the general equation for the ray path in the medium of
refractive index n in order to obtain an equation of ray trajectories. Finally, the prop-
agation of merdian rays in TEC fibers is described and numerical simulation of the ray
trajectories is presented.

2. Linearly taper model for TEC fibers

Longitudinal view of a graded-index tapered core of thermally diffused expanded core
fibers is shown in Fig. 1 in references [8] and [9]. Following the formalism used in
ref. [9], the variation of the refractive index profile under conditions of isotropic
thermal diffusion has the form

(1)

where Δ =  is the index profile height, n1 is the maximum core refractive
index (on the taper axis), n2 is the refractive index of the cladding layer, f (r) =
= 1 – (a2/A2)exp[–(r2/A2)] while a is the radius of the input end of taper, and A is
radius of the larger end of taper. A feature of TEC fibers is that the dopants in the core
are thermally diffused into the radial direction as the core expands. Variation of
the refractive index profile of a TEC fiber as a function of heating time is given in
Fig. 2 in ref. [8].

n2 r( ) n1
2 1 2 f r( )Δ–=

n1
2 n2

2–( ) 2n1
2⁄



Light propagation in thermally expanded core fibers with graded-index 269

We assume that the thermally diffused expanded core fibers have a slow change
in non-uniformity along the fiber. If α is the slope of the taper, the variable taper’s
radius is defined as A(z) = a + α z. In this manner, the refractive profile could be
approximated by

(2)

where the approximation exp(–nx) ≅ (1 – nx) was used. In this manner, the TEC fiber
considered is modeled as linearly tapered graded-index fiber as shown in Fig. 1. For
tapered graded-index fibers, the cladding in the region r > a + α z is a homogeneous
medium with refractive index n2 = n (a, 0) = n (a + α z, z). For the taper of  length L,
the core radius increases linearly from a at z = 0 to A = (a + α L) at the larger end of
the taper. It is assumed that both Δ and α  are much smaller than unity. It is also assumed
that A is much larger than the wavelength of light propagating in the fiber, allowing
us to use ray-optics in studying the propagation of light trough the tapered region of
the fiber.

3. Rays in graded-index linearly tapered fiber: analytical solution

The general vector form of equation for the ray path in the medium of refractive index
n is [10]

(3)

where s is the distance measured along the ray path and R is the position vector for
a point on the ray path as shown in Fig. 2. This equation can be regarded as a gener-
alization of  Snell’s law. It can be derived in more than one way [11]. The ray equation
describes the beam trajectory in terms of the position vector R along the ray measured
from some starting point. In this analysis, propagation properties of multimode
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Fig. 1. Geometry and dimensions of the linear
taper.
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Gaussian index profile linear taper are investigated using geometric optics on which
the Eq. (3) is based.

Since the transverse dimensions of the tapers are assumed to be large compared
with the wavelength of light, the ray optics approach is sufficiently accurate, yet simple
for the description of light propagation within the taper. Consider a tapered dielectric
waveguide with geometry shown in Fig. 1. This waveguide serves as a simplified
model for TC fibers with graded-index refractive profile. The parameter Δ << 1 is
the index profile height, n1 is the maximum core index and r, z represent the cylindrical
radial and longitudinal coordinates, respectively. This waveguide is tapered in such
way that the core radius increases linearly in the z direction from its initial value of a
to a final value of A over a length L. The core-cladding boundaries of  the taper form
a plane defined by A(z) = a + αz where α = (A – a)/L is the slope of the taper. It is
assumed that the taper angle is small so that tan–1α ≈ α << 1. Using this model in
the ray equation, ray trajectories of merdian rays are investigated. In the vector
form (3), ray equation is independent of any particular choice of coordinate system.
In Cartesian coordinates, it can be expressed as

(4a)

(4b)

(4c)

For applications involving optical fibers, ray equation in cylindrical coordinates
must be known. The transformation from Cartesian coordinates (x, y, z) to cylindrical
coordinates (r, ϕ, z) is accomplished by the following transformations
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Fig. 2. Ray trajectory; s is distance measured along the ray
trajectory, r, ϕ, z are cylindrical coordinates, P (R) =
= P(x, y, z) = P (rcosϕ, rsinϕ, z).
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x = r cosϕ 

y = r sinϕ

z = z (5)

r = (x 2 + y2)1/2

ϕ = arctan( y/x )

The partial derivatives of n with respect to x and y may be expressed as

(6)

(7)

and the derivatives of x and y with respect to s become

(8)

(9)

Using Eqs. (5) to (9), the ray equation can be derived in cylindrical coordinates.
Listed below are r, ϕ and z in cylindrical coordinates of the ray equation:

(10a)

(10b)

(10c)

For the meridian rays (d/(dϕ) = 0) of the TEC fibers with refractive index profile
given by (2), the Eqs. (10) are summarized as follows:
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(11b)

(11c)

It is noted that the z component of  ∇n is of order α Δ, and its r component is of
the order Δ, which is much larger than the z component for the tapers with small slope
(α << 1). Hence, the right-hand side of  Eq. (11c) is set to zero in order to determine
the solution for the ray trajectories. After this assumption is made, this equation
becomes

(12)

Integrating both sides of  Eq. (6), it is obtained that

(13)

Equation (7) is Snell’s law derived from ray optics. For the case of Δ << 1
the assumption γ ≈ n1 can be used. Using the result (13) and noting that d/ds =
= (d/dz)(dz/ds) = (γ /n)(d/dz), the first equation in the set (11) becomes

(14)

Substituting for n(r, z) from Eq. (2), Equation (14) reduces to

(15)

In order to solve (15), a new variable ρ, such that ρ = (a + αz)/a is introduced.
Then, in terms of ρ, Eq. (9) becomes

(16)

where . For solving Eq. (16), we used the transformation ρ = 1/t.

Equation (16), in terms of t, is then expressed as
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Next, we state that r = u/t, where u is a new function of t. Then, Eq. (17) becomes

u'' + ω u = 0 (18)

The solution of (18) is readily available as . After
some arithmetic, the solution of  Eq. (15) is obtained as

(19)

where C0 and θ0 are constants of integration. These constants can be determined by
using the initial ray conditions at z = 0 for r and dr/dz. If we assume that at z = 0, r = 0
and dr/dz = α0, the constant C0 and θ 0 are obtained in the following form:

The solution (19) together with ϕ = ϕ0 = const completely describe the ray
trajectories of meridian rays in the tapered region of TEC fibers.

The solution (19) indicates that the ray trajectories of meridian rays are described
by sinusoidal functions. Their amplitude and period increase as rays propagate from
smaller to larger end of the taper. It is emphasized that (19) describes ray trajectories
of meridian rays in the core of the fibers only. If a ray reaches the core-cladding
boundary of the taper, it will enter and remain in the cladding region travelling straight
along and away from the boundary. Such rays are considered leaky. They contribute
to the radiation loss of the fiber. In order for rays to remain bound to the core over
the entire length of the tapper, the condition |r | < (a + αz ), z ≤ L must be satisfied.
This condition is met if L ≤ z0 where the z0 is the smallest positive solution of |r (z0) | =
= a + αz0.

Figure 3 shows trajectories of meridian rays with the slope of 0.0004, a = 4 μm,
A = 8 μm, n1 = 1.50, n2 = 1.48, Δ = 0.27 and L = 10 mm for ϕ = 0. It should be noted
that the ray in Fig. 3 is fully bound to the core region throughout the entire length of
the taper.

Figure 4 shows trajectories of a meridian ray with the slope of 0.0004, a = 4 μm,
A = 15 μm, n1 = 1.492, n2 = 1.48, Δ = 0.00804 and L = 10 mm for the ϕ = 0. For rays
to be bound to the core throughout the taper, it is required that Eq. (19) satisfy
the condition |r | < a + αz. This condition is met if L ≤ z0, where z0 is the smallest
positive solution of |r (z0) | = a + αz0. Figure 4 shows also that the ray is bound for
a portion of the taper. It leaves the core and enters into the cladding region at
z0 ≈ 500 μm, it is thus considered to be a leaky ray.
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Fig. 3. Trajectory of meridian rays in graded-index TEC fibers (slope 0.0004, a = 4 μm, A = 8 μm,
n1 = 1.50, Δ = 0.27 and taper length L = 10 mm).

Fig. 4. Trajectory of meridian rays in graded-index TEC fibers (slope 0.0004, a = 4 μm, A = 15 μm,
n1 = 1.492, Δ = 0.00804 and taper length of L = 10 mm).

Fig. 5. Trajectory of meridian rays after heat treatment of 10 h (TEC fiber with D = 3.9×10–16 m2/s,
n2 = 1.46 and Δ = 1.25%).
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Following the formalism used in the study [8, 9], we studied the ray trajectory in
the TEC fiber as a function of heating time. After the heat treatment of 10 h for
D = 3.9×10–16 m2/s, for the fiber with a = 2 μm, n2 = 1.46 and Δ = 1.25%, the ray
trajectory of meridian rays is shown in Fig. 5. After the heat treatment of 10 h,
the maximum value of A is around 7.494 μm. It can be observed in Fig. 5 that the rays
are fully bound to the core region throughout the entire length of the taper.

For a TEC fiber with D = 3.9×10–16 m2/s, a = 2 μm, n2 = 1.46 and Δ = 1.25%,
Fig. 6 shows the calculated trajectory of meridian rays after a 6 h heat treatment. It is
obvious that the ray in Fig. 6 is not fully bound to the core region throughout the entire
length of the taper. These results indicate that, for specific initial conditions, the taper
length depends on the duration of the heat treatment. As the duration is increased,
larger length of the taper becomes possible. It should be mentioned that rays analyzed
entered the taper region at small angle with respect to the axis as the approximation
of weakly guiding fiber was used.

4. Conclusions

A graded-index thermally expanded core (TEC) fiber is analyzed. Ray optics is used
as the transverse taper dimensions are large relative to the wavelength of propagating
light. A linear taper model for analysis of TEC fiber is proposed. This model describes
the behavior of meridian rays in tapered region of TEC fibers. For small angles
consistent with the approximation that the fiber is weakly guiding, an analytical
solution for the trajectory of meridian rays is obtained. The solution describes the ray
trajectory by a sinusoidal function whose amplitude and period rise with the taper-core
radius. Both bound and leaky rays have been examined. Ray trajectories of meridian
rays have been calculated for two sample cases of TEC fibers. The proposed model
may be used to determine conditions for rays to remain bound to the core region
throughout the taper length. The function of TEC fiber suggests a possible application
of the taper as a power mixer.

Fig. 6. Trajectory of meridian rays after heat treatment of 6 h for a TEC fiber with D = 3.9×10–16 m2/s,
n2 = 1.46 and Δ = 1.25%.



276 M.S. KOVAČEVIĆ, A. DJORDJEVICH, D. NIKEZIĆ

Acknowledgements – The work described in this paper was supported in part by a grant from City
University of Hong Kong (Project No. 7002313) and in part by Serbian Ministry of Science, through
Project No. 141023.

References
[1] ANKIEWICZ A., PASK C., Geometric optics approach to light acceptance and propagation in graded

index fibres, Optical and Quantum Electronics 9 (2), 1977, pp. 87–109.
[2] ANKIEWICZ A., Comparison of wave and ray techniques for solution of graded index optical

waveguide problems, Optica Acta 25 (5), 1978, pp. 361–373.
[3] ZUBIA J., ALDABALDETREKU A., DURANA G., ARRUE A., BUNGE C.-A., POISEL H., Geometric optics

analysis of multi-step index optical fibers, Fiber and Integrated Optics 23 (2), 2004, pp. 121–156.
[4] HANAFUSA H., HORIGUCHI M., NODA J., Thermally-diffused expanded core fibres for low-loss and

inexpensive photonic components, Electronics Letters 27 (21), 1991, pp. 1968–1969.
[5] HAIBARA T., NAKASHIMA T., MATSUMOTO M., HANAFUSA H., Connection loss reduction by thermally-

-diffused expanded core fiber, IEEE Photonics Technology Letters 3 (4), 1991, pp. 348–350.
[6] STONE J., STULZ L.W., MARCUSE D., BURRUS C.A., CENTANNI J.C., Narrow-band FiEnd etalon filters

using expanded-core fibers, Journal of Lightwave Technology 10 (12), 1992, pp. 1841–1854.
[7] KIHARA M., MATSUMOTO M., HAIBARA T., TOMITA S., Characteristics of thermally expanded core

fiber, Journal of Lightwave Technology 14 (10), 1996, pp. 2209–2214.
[8] KLIROS G. S., TSIRONIKOS N., Variational analysis of propagation characteristics in thermally

diffused expanded core fibers, Optik: International Journal for Light and Electron Optics 116(8),
2005, pp. 365–374.

[9] DIVARI P.C., KLIROS G.S., Modal and coupling characteristics of low-order modes in thermally
diffused expanded core fibers, Optik: International Journal for Light and Electron Optics 120(5),
2009, pp. 222–230.

[10] BORN M., WOLF E., Principles of Optics, 4th Edition, Pergamon Press, London 1970.
[11] KRUEGER D.A., Spatial varying index of refraction: an open ended undergraduate topic, American

Journal of Physics 48 (3), 1980, pp. 183–188.

Received August 7, 2008
in revised form September 25, 2008


