
Optica Applicata, Vol. XLI, No. 3, 2011
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We present a scheme to realize the zero–n gap and the zero–φeff gap in a one dimensional photonic
band gap structure containing metamaterials. The electric permittivity and the magnetic
permeability of the layers of the structure are represented by the Drude model and the resonant
model. In a certain frequency range, the chosen structure behaves as a structure of alternate double
negative and double positive layers to exhibit a zero–n gap. In another frequency range, it
behaves as a structure of alternate permittivity negative and permeability negative layers to
exhibit a zero–φeff gap. Some properties and benefits of having the zero–n and the zero–φeff gap
in the same physical system are discussed.
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1. Introduction
Recently, the experimental realization [1–3] of single and double negative metamaterials
has opened up a new research area. Metamaterials are such artificial periodic structures
in which the dimensions of the periodically repeated elements are much smaller than
the wavelength of the incident light so that the structure appears to be a homogenous
medium for the working wavelength. The metamaterials in which both electric permit-
tivity and magnetic permeability are negative are known as double negative (DNG) or
left-handed (LH) materials and those in which only one of these quantities has
a negative value are known as single negative materials (SNG). The SNG metamaterials
having negative values of electric permittivity are known as ENG and those having
negative value of magnetic permeability are known as MNG. The inclusion of DNG
and SNG metamaterials in photonic band gap (PBG) structures has led to the emergence
of new mechanisms to produce photonic gaps. These unconventional photonic gaps
have certain advantages as compared to the conventional Bragg gaps. A zero–n gap
has been found in a one dimensional PBG structure containing alternate DNG and DPS
(double positive, i.e., regular material) layers in the frequency range in which
the average refractive index of the structure becomes zero [4, 5] whereas a zero–φeff
gap emerges due to a mismatch in the local phase shifts of the two layers around
the wave impedance matching frequency [6, 7].

The SNG or DNG metamaterials have been experimentally realized in the form
of three-dimensional array of very long, thin continuous wires in which cuts are
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periodically introduced and in the form of split ring resonators. The simplest theoretical
models which describe the effective electric permittivity and magnetic permeability
of these structures are the Drude model and the resonant model [8, 9] in which
the values of the plasma frequency and the resonant frequency depend upon the struc-
ture parameters and it is possible to shift them to a desirable value by changing
the structure parameters. These models are essentially dispersive so that these
behaviors are limited in a certain frequency range and in other frequency ranges their
permittivity and permeability have different signs. The PBG structures containing
alternate DNG and DPS materials exhibit a zero–n gap in a certain frequency range
and conventional Bragg gaps in other frequency ranges. The PBG structures containing
alternate ENG and MNG layers exhibit a zero–φeff gap in a certain frequency range
and conventional Bragg gaps in other frequency ranges. Here we theoretically suggest
a PBG structure that can support both a zero–n gap and a zero–φeff gap in different
frequency ranges. By suitably adjusting the values of the resonant frequency and
the plasma frequencies in this structure, there exists a frequency range in which
the structure behaves as having alternate left-handed and right-handed layers so that
the average refractive index becomes zero in a certain frequency range to produce
a zero–n gap. In the same structure there also exists a higher frequency range in which
the system behaves as having alternate ENG and MNG layers to produce a zero–φeff
gap. Although the zero–n gap and the zero–φeff gap result from different mechanisms,
they share many properties, which are quite distinct as compared to those of Bragg
gaps as shown in many recent studies. These gaps are relatively insensitive to scaling,
disorder, incident angle and polarization of the incident light [10–17]. The appearance
of the zero–n and zero–φeff gaps in the same physical system can be utilized in certain
applications as discussed later.

2. Theoretical model and calculations
Here we study a one-dimensional PBG structure of two alternate layers A and B.
The electric permittivity and the magnetic permeability of layer A are represented by
the Drude model. The electric permittivity of layer B is represented by the resonant
model and its magnetic permeability is assumed to have constant value equal to 1.

(1)

(2)

where ωmA and γA represent magnetic plasma frequency and the damping coefficient
of the layer A, respectively. For the layer B, ωeB, ω0B and γB represent the electric
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plasma frequency, the resonant frequency and the damping coefficient, respectively.
We have initially considered the effect of losses in Fig. 2b. It is obvious that
the inclusion of the damping term results in a reduced value of the transmission
coefficient but the position of the gap is not affected. In the remaining part of the paper,
losses are ignored, i.e., γA = γB = 0, as done in most of the theoretical studies [10–16].
It is further assumed that internal dimensions of the metamaterials A and B are such
that the assumptions of effective permittivity and effective permeability are valid
throughout the frequency range under consideration. The tangential components of
the electric and magnetic fields for a TE (transverse electric) wave across the j-th layer
are related by the following transfer matrix:

(3)

where 

(4a)

(4b)

The tangential components of the electric and magnetic fields at the incident side
x = 0 and at the transmitted side x = L are related by:

(5)

where: 

(6)

where N is the total number of layers in the structure. The transmission coefficient T
of the finite structure is calculated by applying the boundary conditions at the incident
and the transmitted ends and is given by the following expression:
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where , as there is air, i.e., ε0 = μ0 = 1 (in cgs
units) on the incident and the transmitted sides of the structure. Mlm is the element of
the matrix M.

In our computational work, we have used dimensionless units, i.e., frequency is
given by W = ωd /c and the widths are given by Di = di /d, i = A, B, where d = dA + dB
and c is the velocity of light. The advantage of using these dimensionless units is that
the widths belonging to any length scale and the corresponding values of frequencies
can fit these calculations, however since the double and single negative metamaterials
have been realized in GHz frequency range, the realistic values that can be used for
this scheme can be chosen as: ωeA = 2π×3.01 GHz, ωmA = ωeB = 2π×4.77 GHz,
ω0B = 2π×2.34 GHz, dA = 27 mm, dB = 23 mm. 

The frequency dispersions of electric permittivities and magnetic permeabilities
of the two layers are shown in Fig. 1. Here we consider two frequency ranges. For
frequencies which lie below the resonant frequency of the layer B, the electric
permittivity of layer B is positive, as its magnetic permittivity is chosen to be one, so
for ω < ω0B, the layer B behaves as DPS material. Here we have chosen the values of

the electric and magnetic plasma frequencies of layer A such that in this frequency
range the electric permittivity and magnetic permeability of layer A are negative so
that it behaves as DNG material. The structure is composed of alternate DPS and DNG
layers in this frequency range. Initially we have considered the normally incident wave,
i.e., θ = 0°. The average refractive index of the structure is defined by:

(8)
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Fig. 1. The curves show the frequency dispersion of the electric permittivities and the magnetic
permeabilities of the two layers. On the horizontal axis the frequency is in dimensionless units. The thin
lines correspond to layer A and the thick lines correspond to layer B. The solid lines show the behavior
of the electric permittivity and the dashed lines show the behavior of the magnetic permeability of
the two layers. The inset shows the blown up version of that part of the plot in which the structure behaves
as having alternate ENG and MNG layers. 
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where

(9a)

(9b)

This average refractive index is plotted in Fig. 2a. It becomes zero when
the frequency is nearly 2 (in dimensionless units), so a zero–n gap appears around this
frequency, as shown in Fig. 2b.

Next we consider the frequency range ωeA < ω < ωmA, in which layer A behaves
as MNG layer since its electric permittivity becomes positive but the magnetic
permeability remains negative. As ω0B < ωmA, layer B behaves as ENG layer since its
permittivity has negative value in this frequency range. So the structure behaves as
having alternate MNG and ENG layers in this frequency range. The impedance of
the i-th layer is defined by:

i = A, B (10)

This has been plotted in Fig. 3a. The impedances of the two layers match at
a frequency which is nearly equal to 4.1, as there is a mismatch in the effective phase
shift of the two layers, i.e.,  at this wave impedance matching
frequency, so a gap is opened up around this frequency, as shown in Fig. 3b. This gap
is known as the zero–φeff gap [6, 7]. 

The zero–n gap is surrounded by propagating modes whereas the zero–φeff gap is
surrounded by tunneling modes, but the remarkable thing is that both gaps emerge due
to some averaging effect produced by the structure in contrast to the conventional
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Fig. 2. The average refractive index of the structure becomes zero at a certain frequency (a) which gives
rise to the formation of a zero-n gap, as shown in the transmission spectrum of the structure (b).
The frequency on the horizontal axes is in dimensionless units and N = 30. The dashed, dotted and
the solid lines correspond to γA = γB = 2π×0.01, 2π×0.1 and 0 GHz. 
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gaps which result due to Bragg reflections. It has already been discussed in great detail
in many investigations [4–7, 10–17] that both the zero–n gap and the zero–φeff gap
are relatively insensitive to the scaling, disorder, incident angle and polarization of
the incident light when compared to Bragg gaps. Moreover, it has been shown that
the defect modes which reside within the zero–n and the zero–φeff gaps are found to
be insensitive to scaling, disorder, incident angle and polarization of the light when
compared to those which reside inside Bragg gaps [10, 14]. There is no point in
re-investigating all these properties here, however to show that these properties are
exhibited in this scheme as well, we have considered the case of the angular
dependence of these gaps for linear as well as nonlinear wave propagation. Figure 4
shows that the position of the zero–n gap on the frequency axis is very slightly
affected when the angle of incidence varies appreciably, i.e., from 10° to 30°.
The same effect can be shown for the zero–φeff gap, however we have shown
the insensitiveness of the zero–φeff gap to the incident angle by considering nonlinear
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Fig. 3. The impedance of the two layers – solid line corresponds to layer A and dotted line corresponds
to layer B (a). At a certain frequency, the impedances of the two layers match which gives rise to
the opening up of the zero–φ eff gap as the effective phase shift in the two layers is not same at this
wave impedance matching frequency (b). The frequency on the horizontal axis is in dimensionless units
and N = 30.
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Fig. 4. Angular dependence of the zero–n gap. The continuous, dotted and dashed curves correspond to
the incident angles θ = 10°, 20°, 30°, respectively. All other parameters are same as in Fig. 2.
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wave propagation. The electric permittivity of layer A is now taken to have Kerr type
nonlinearity, i.e., it can be represented by:

(11)

As the layers are assumed to be thin, the transmission coefficient for the nonlinear
wave propagation can be calculated by using the nonlinear characteristic matrix
approach [18]. The electric field in the nonlinear layer can be written as:

(12)

where the values of  and  are given as: 

(13a)

(13b)

The values of  and  are determined as functions of  and  by applying
the boundary conditions at the interface of the nonlinear layer and are substituted in
the above equations to get two coupled nonlinear equations in  and . These
coupled nonlinear equations are solved numerically to determine the values of 
and . The electric and magnetic field components across the nonlinear layer are
related by the following transfer matrix
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(15c)

(15d)

So, the transmitted electric field can be determined by working layer as described
above and the transmission coefficient is calculated in the usual manner.

Figure 5 shows the phenomenon of optical bistability for a frequency which lies
inside the zero–φeff near its low frequency edge. The vertical axis shows the trans-
mission coefficient T whereas the dimensionless control parameter I = λ |Ein |2, which

measures the incident intensity, is plotted on the horizontal axis. When the angle of
incidence varies from 10° to 30°, the characteristics of the bistability curve are affected
very slightly, whereas in the case of Bragg gap these characteristics are affected
drastically, as discussed in detail in Ref. [16].

3. Results and discussion
The properties associated with the zero–n and zero–φeff gap are important for
application purposes. The devices based on such gaps can be more compact, operate
for wider angular incidences and can be relatively insensitive to the polarization of
light. The presence of these two gaps in the same physical system can be more useful
for application purposes as compared to a situation where one of them is present and
the other gaps are conventional Bragg gaps. One way in which the presence of these
two gaps can be beneficial is to use the same structure to work in two different
frequency ranges to realize the useful properties of insensitivity to the incident angle
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Fig. 5. Angular dependence of the bistability curve at W = 3.7 inside the zero–φ eff gap. The continuous,
dotted and dashed curves correspond to the incident angles θ = 10°, 20°, 30°, respectively. The sign
of Kerr coefficient is negative; all other parameters are same as in Fig. 3.
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and the polarization of light. The availability of a zero–n gap and a zero–φeff gap in
the same physical system can lead to some improvements in those applications in which
dual modes in different frequency ranges are required, i.e., dual channel filters for
a wider angle filtering process and dual optical switches can also be designed based
on the structure presented here. Recently, a giant enhancement of second harmonic
generation has been suggested [19] by using a dual localization in the same defect
where the frequency of the fundamental wave (FW) lies in one Bragg gap and that of
the second harmonic (SH) lies in the higher Bragg gap. An improvement to this model
was suggested [20] by using a 1D PBG structure containing alternate DNG and DPS
layers because such a structure can possess a zero–n gap and many Bragg gaps. So,
by suitably adjusting the parameters it was shown that dual localization inside the single
defect can take place where FW resides inside zero–n gap and the SH resides inside
a Bragg gap. The structure which we have suggested can possess a zero–n gap and
a zero–φeff gap in different frequency ranges. So, by suitably adjusting the parameters,
a single defect can produce dual localized modes, one belonging to the zero–n gap and
the other lying inside the zero–φeff gap. Such a structure will have certain advantages
due to the special characteristics associated with the zero–n and zero–φeff gaps.
However, we want to mention here that the formation of dual defect modes in
a disordered system is very complicated and requires careful consideration of
the structure parameters which may fall out of scope of the present study but may lead
to some further investigations.

In summary, the appearance of a zero–n gap and a zero–φeff gap is shown
theoretically in a PBG structure containing two alternate metamaterials. These two
gaps have certain advantages over Bragg gaps, e.g., these are found to be insensitive
to scaling, disorder, incident angle and polarization. The possibility of utilizing
the presence of these two gaps in the same physical system for the improvement of
certain applications is also discussed.
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