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Application of imaging visibility 
to measurement of correlation coefficient 
of scattering potential
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It is shown that the imaging visibility of intensity correlated scattered field may be utilized to
determine the normalized correlation coefficient of the scattering potential (CCSP) of the quasi-
-homogeneous (QH) media illuminated by a scalar plane wave. The relationship between
the imaging visibility and the CCSP is constructed by analytical forms. As long as the visibility
of the intensity correlated scattered field is known, the scaled width of the CCSP can be expressed
by solutions of the inverse scattering problem.

Keywords: scattering theory, scattering measurements.

1. Introduction

The issue of scattering by random media was firstly introduced by WOLF et al. about
two decades ago. They demonstrated that the spectrum of light may change when it
scatters from an object [1–3]. Since then, many achievements related to the scattering
theory have been reported, most of which focused on investigations of characteristics
of light when it scatters from random media under various conditions [4–7]. Recently,
the problem of inverse scattering has attracted much interest because of its potential
applications in laser probing, remote sensing and detecting structural information
about a scatterer [8]. FISCHER and WOLF derived the law for the inverse scattering
problem under the condition that the light is scattered from quasi-homogeneous (QH)
media [9]. GBUR and WOLF determined the density correlation functions of many-
-particle system with a high degree of symmetry, by measuring changes of the spectrum
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of polychromatic scattered wave [10]. Very recently, ZHAO et al. proposed a theoretical
method for solving the inverse scattering problem, namely that of determining the cor-
relation functions of homogeneous random media illuminated by a polychromatic
plane wave with Gaussian spectral density, based on the knowledge of its spectrum in
the scattered field [11]. Subsequently, LAHIRI et al. determined correlation functions
of scattering potentials of stochastic media from scattering experiments [12]. WANG
and ZHAO further extended the work for the determination of a pair-structure factor of
scattering potential of a collection of particles [13]. 

In this paper, we present a novel method which might be viewed as an extension
of the previous problem of inverse scattering [9–13], namely that of determining
the normalized correlation coefficient of the scattering potential of QH media, as long
as the imaging visibility of the intensity correlated scattered field is known.

2. Theory analysis

Assuming that a polychromatic scalar plane wave whose propagating direction is
specified by a unit vector  is incident on QH media occupying a finite domain D
(see Fig. 1). The polychromatic plane wave is represented in the analytical form

(1)

with k = ω /c being the wave number, ω denoting the angular frequency, c representing
the speed of light in vacuum. In Equation (1), a (ω ) is a complex random variable which
may depend on the frequency. The cross-spectral density function of the incident wave
at points specified by position vectors r1 and r2 can be expressed by

(2)

with

(3)

is the spectral density of the incident polychromatic plane wave. The bracket denotes
taking the ensemble average over the incident field and the asterisk represents
the complex conjugation. Recalling the formula for the far-zone spectral density of
light induced by the plane wave scattered from QH media [9, 14]

(4)

where  denotes the unit vectors along the direction of the scattered light, r is
the distance from the original region of the scatterer (see Fig. 1). In Equation (4), 
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and  represent the three-dimensional spatial Fourier transformations of SF and ηF ,
respectively,

(5a)

(5b)

with SF and ηF  being the strength and the normalized correlation coefficient of
the scattering potential of QH media, respectively. Both of them constitute the corre-
lation function of the scattering potential as follows [9, 14]

(6)

Reference [11] has demonstrated the feasibility of determining the correlation
function of the scattering potential of random media, by the measurement of
correlation-induced spectral changes of scattered light. Comparably, in the present
paper, the method for measuring the normalized correlation coefficient of scattering
potential of QH media is shown, as long as the imaging visibility of the scattered light
is determined in experiments.

Accordingly, the far-zone intensity distribution of light induced by a plane wave
scattered from QH media is of the following form

(7)

Recalling the formula for the far-zone spectrum of a plane wave scattered from
random media [1, 11]

(8)

where V  denotes the volume of the scatterer D (see Fig. 1), and

η F

Fig. 1. Illustration of the notation for the scattering theory.
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S̃F k ŝ ω,( ) SF Rs
+ ω,( ) i k Rs
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(9)

is the three-dimensional Fourier transformation of the correlation function of the scat-
tering potential. One can see from Eq. (8) that

(10)

Substituting Eq. (10) into Eq. (7), the far-zone intensity distribution of scattered
field yields

(11)

Equation (11) indicates that the far-zone intensity distribution of light scattered
from QH media is proportional to the Fourier transformation of the normalized
CCSP  and the spectrum  (specified at the scattering angle θ = 0) is
anti-proportional to the scatterer volume V and the original spectrum 

3. The imaging visibility of intensity correlated scattered field
To analyze the imaging quality of the intensity correlated field induced by plane wave
scattered from QH media, the arbitrary N-th-order intensity correlation function of
light is introduced [15]

(12)

where I(r1) (i = 1, ..., N ) is the instantaneous intensity distribution specified at
points ri. Therefore, the imaging visibility of the N-th-order intensity correlated field
can be defined as

(13)

where  and  are the maximum and minimum values of , respectively.
Furthermore, Eq. (12) can be expanded in terms of the normalized first-order
field correlation functions by utilizing the moment theorem for a Gaussian random
process [15, 16]
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where ΣN ! denotes taking summations over N ! permutations of underlined indices
(1, ..., N ). μ (ri, rj) is the normalized first-order field correlation function

(i, j = 1, …, N ) (15)

In general, |μ(ri, rj) | ≤ 1 is always satisfied according to the Schwarz inequality [17].
Therefore, the minimum value  can be reached when N = 1, namely, 

(16)

Similarly, the maximum value  can be reached when all the terms |μ(ri, rj) | ≡ 1,
namely, 

(17)

Due to the fact that  is a slow function of its internal arguments, hence the fol-
lowing approximation can be made [14]

(18)

Substituting Eq. (18) into Eq. (17), yields

(19)

Substituting Eqs. (16) and (19) into Eq. (13), the imaging visibility of the N-th-
-order intensity correlated scattered field yields

(20)

Equation (20) indicates that, for the case where a scalar plane wave scatters from
QH media, the imaging visibility of the N-th-order intensity correlated scattered
field depends on the intensity correlated order N and the Fourier transformation of
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the normalized CCSP . This is because, in experiments related to scattering, both
the scatterer volume V and the spectrum of incident wave  are known.
Besides,  can be obtained by the measurement of the far-zone spectrum
of light around the region where the scattering angle θ = 0. Therefore, one can define
the following factor

(21)

It can be observed from Eq. (20) that, when N = 1 is substituted,  This
result indicates a well-known fact that the visibility of the first-order intensity
correlated scattered field is equal to zero, and this is because interference fringes of
scattered field cannot be formed. Therefore, in general, the imaging visibility must be
measured in the second-order or even higher-order correlated scattered field, such as
classical ghost images and optical coherence tomography by using scattered light
[18, 19]. Let us now consider the inverse scattering problem when the intensity
correlated order N ≥ 2. It follows from Eqs. (20) and (21) that

N ≥ 2

(22)

By performing the inverse Fourier transformation of Eq. (22), the normalized
CCSP of QH media yields

(23)

where  is the momentum transferred vector. In practical experiments
such as classical ghost images or optical coherence tomography by using scattered
light [18, 19], the intensity correlated order N = 2. In this case, Eq. (23) can be
simplified to

(24)

4. Discussion
Equations (23) and (24) are the main results of this paper, which may provide a novel
approach for determining the normalized correlation coefficient of scattering poten-
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C0 ω( )
S ∞( ) r ŝ0 ω,( )
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tial (CCSP) of QH media, as long as the visibility Vs  of the intensity correlated scattered
field is measured by the interference fringes formed. Firstly, the factor C0(ω ) can be
known from experimental measurements according to Eq. (21). In this step, a spectro-
graph should be required to have knowledge of S (i )(ω ) and S (∞)( , ω ), respectively.
Secondly, values of the visibility Vs  of intensity correlated field can be determined
by calculating the interference fringes of images obtained. In fact, there also exist
many other algorithmic methods to obtain the imaging visibility Vs. Finally, by
performing the FFT algorithm [20] which integrals over the variable , the normalized
CCSP ηF (r', ω ) can be reconstructed from the experimental data. Let us now consider
a more detailed numerical example. At first, it is assumed that the distribution of
normalized CCSP is of the Gaussian profile, i.e.,

(25)

The factor C0(ω ) can be approximated to the simple form

C0(ω ) = C0 (26)

It is also assumed that the interference fringes of intensity correlated images are of
the Airy disk [17]

(27)

where J1 denotes the first kind Bessel functions with the first order. Substituting
Eqs. (25)–(27) into Eq. (24), the solution to the inverse scattering problem of
determining the scaled width kδF of the CCSP yields

(28)

with the kernel part

(29)

Comparing Eqs. (28) and (29) with Eqs. (12) and (13) of Ref. [11], one can observe
that our method for reconstructing ηF (r', ω ) is somewhat similar to that for CF (r', ω )

r ŝ0

K̂

ηF r' ω,( ) A

2πδF
2( )3 2⁄

-------------------------------- r'2

2δF
2

----------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

V s
2( ) θ ω,( )

J1 2kθ( )
kθ

--------------------------
2

=

kδF
1

2 θ
2

--------⎝ ⎠
⎛ ⎞sin

------------------------------------ f θ ω,( )ln–=

f θ ω,( )
1

J1 2kθ( )
kθ

--------------------------
2

+

2 C0 k4 1
J1 2kθ( )

kθ
--------------------------

2

–
⎩ ⎭
⎨ ⎬
⎧ ⎫

---------------------------------------------------------------------------=



564 H. LIU et al.

determining in Ref. [11]. However, for above two methods, their kernel parts f (θ, ω)
appear to be totally different in analytical forms.

Theoretical results such as Eqs. (22)–(24) and Eqs. (28), (29) may find potential
applications in optical coherence tomography or classical ghost images, the aim of
which is to determine internal structures of unknown scatterer by utilizing the intensity
correlated scattered images.
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