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Measurement of refractive index profile 
in optical preforms using heterodyne interferometer 
of shearing type*
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A non-destructive method of refractive index measurement in optical preforms is presented. 
Application of heterodyne interferometer of shearing type with rotating half-wave plate as a 
modulator results in considerable simplicity and high accuracy of measurements. With the method 
suggested the birefringence of the tested preform has no effect on measurement results. Algorithms 
of numerical reconstruction of refractive index profile, in which measurement data are 
approximated by power polynomials, are also presented. Usability of exemplary algorithms is 
estimated in the case of reconstruction of step-index and graded-index profiles.

1. Introduction

Measurements of refractive index profiles in optical preforms, based on non
destructive methods and applied so far, are carried out in the following way. The 
preform to be tested is immersed in the liquid of refractive index matching that of the 
preform cladding and illuminated by a plane wave propagating perpendicularly to its 
symmetry axis. The wave initially plane suffers from deformation when passed 
through the preform (Fig. la). If W(x) represents the wave front shape in the space 
just behind the preform, then refractive index profile within the preform is calculated 
with the use of inverse Abel integral [1]

An{r) = n(r)-n0 =

r

(1)

where: n0 — refractive index of immersion, r0 — radius of the preform.
At an early stage of optical fibre technology interferometric methods were most 

commonly used for refractive index profile measurements [2]-[5]. Interpretation of 
interference fringe patterns enables to the determination of wavefront shape W(x) or 

dW(x)
its derivative —--------depending on the type of the interferometer applied — and

ax
then calculation of the refractive index profile An(r).
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However, in view of some shortcomings of classical fringe interferometry (such as 
troublesome automation of measurements, their low resolution and high cost of 
measuring instruments) new competitive solutions were being searched for. Chu [6] 
described the method of An(r) determination by analysing the intensity of light 
reflected and refracted by the preform in the backward direction. Watkins [7] 
proposed the preform scanning with extra narrowed laser beam. From the analysis 
of angular intensity distribution in the space behind the preform, the beam deflection

dW(x)
angle <p(x) can be determined (Fig. lb). Taking into account relation — —  = (p(x),

• illuminated deformated
wavefront wavefront

Fig. 1. Deformation of wavefront (a) and ray deflection (b) after passing through the preform tested

true for small deflection angles, one can easily calculate the refractive index 
distribution with the application of inverse Abel integral (1). Marcuse [8] calculated 
the deflection angle (p(x) from intensity distribution in defocused image of the 
preform. Sasaki et al. [9] arrived at q>(x) using spatial filtering technique. However, 
it was the dynamic spatial filtering technique [10], in which the diaphragm rotating 
in the back focal plane of objective imaging the preform transforms the deflection 
angle into easily measurable time delay, that proved to be the simplest and the most 
accurate method of (p(x) measurement. The technique of dynamic spatial filtering is 
applied to P101 and P102 Preform Analyser’s made by York Technology.

The authors of the paper go back to the original idea of interferometric 
measurement. However, all the shortcomings of interferometric method are 
eliminated owing to the application of heterodyne technique. Practical applicability 
of a few algorithms of numerical reconstruction of refractive index profile has been 
checked. A computation method which is sufficiently fast and acceptably accurate 
has been chosen on the basis of the analysis. Accuracy of reconstruction has been 
estimated for typical step-index and graded-index profiles.

2. Measurement method

Let us assume that the preform to be tested is an isotropic object. Measurement 
method for the preforms of that type is illustrated in Fig. 2. Vertically positioned 
preform is illuminated by a plane wave, the azimuth of its polarization state being
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preform

ellipticity at

Wollaston
prism analyser image plane

Fig. 2. Measurement method applied in the case of isotropic preforms

equal to 45° with regard to horizontal direction, and ellipticity modulated according 
to the formula V(t) = Qt, where Q -  frequency of modulation. This type of 
modulation introduces a linearly increasing with time phase shift between vertical 
and horizontal components of the light vector. There are two intensity detectors in 
the plane of the preform image: scanning detector and reference detector. Wollaston 
prism of horizontal bisection and analyser with transmission azimuth of —45° with 
regard to the horizontal direction are placed in front of the image plane. Different 
values of refractive index within the preform induce the deformation of plane 
illuminating wave. Let VF(x) describe the shape of wavefront in the space just behind 
the preform (Fig. 3). Wollaston prism brings about splitting of the light wave passing 
through it so that two orthogonally polarized wavefronts (horizontal and vertical 
polarization) appear as a result in the image plane. This two wavefronts are identical

a
illuminating

c---------------- -— ------------------------ /

object plane

W(x»y) W lx-y)

y f

image plane

Fig. 3. Wavefront deformation after passing through isotropic (a) and anisotropic (b) preforms
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in shape, however, they are shifted and inclined with regard to each other and total 
phase difference between them is given by the formula

<*>(*) = (2)

where: k — wavenumber, a — prism bisection angle, x — horizontal coordinate, p — 
shearing value. For small shearing — less than 5% of preform diameter — the above 
equation can be written in a simpler form

4>(x) = kp
dW(x)

dx
+ ax. (3 )

Analyser with transmission azimuth of —45° with regard to horizontal direction, 
placed behind Wollaston prism, makes orthogonally polarized wavefront interfere. 
Vertical fringe pattern formed in the image plane is related only to the resultant 
phase difference

4>(x) = kp
dW(x)

dx
+ ß t (4 )

where additional phase difference Qt linearly increasing with time is introduced by 
ellipticity modulation of illuminating beam. The addend ax has been removed from 
formula (4) since it is related to the position of detectors only and does not change 
during the measurements. Fringe pattern formed in the image plane moves in 
horizontal direction with constant velocity due to the modulation. The signal from 
scanning detector is thus modulated sinusoidally

I o(0 = l + cos[^ + Or], (5)

and its phase shift with regard to constant reference signal taken from the region 
outside the preform image

Ir(t) = l-t-cos(Qi) (6)

is proportional to wavefront derivative
dW(x)

dx
By moving the preform across the

dW(x)
illuminating beam the wavefront derivative —-—- can be measured point by point

dx
and then refractive index distribution An{r) can be calculated according to formula
( 1).

Unfortunately, the idea outlined above cannot be directly applied to the 
measurements of anisotropic preforms. Usually considerable anisotropy occurs in 
most of the preforms due to residual internal stresses, resulting from the difference in 
thermal expansion coefficient of the cladding and that of the core. Owing to 
piezooptic effect the stressed preform becomes an anisotropic object of cylindrical 
symmetry, i.e., with principal axes perpendicular and parallel to its symmetry axis. As
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a result it is already within the tested preform that the illuminating wave is split into 
two orthogonally polarized waves Wx{x) and Wy(x), see Fig. 3b. Let Wm(x) denote the 
shape of mean wavefront in the region just behind the preform

Wm(x) = \[Wx{x)+W,(x)]. (7)

and R(x) — the difference of the polarized wavefronts 

R(x) = Wy(x)-Wx(x).

It should be noticed that the function Wm(x) is related only to the distribution of 
mean refractive index within the preform (averaging being carried out along 
principal axes), while R{x) — only to its anisotropy. For anisotropic preforms the 
two split wavefronts generated in the image plane will no longer be identical

V ' V ' (8)

Wy(x) = ^ ( *  + f )  + « ( *  + f ) ’

which means that the measured phase shift will be 

dW ixl
<P(x) = kp— f ^ -  + kR(x). (9)

dx

dW (x)
Apart from the addend kp— f —- which is of interest to us, also the function kR{x)

dx
related to the anisotropy of the preform is included in Eq. (9). Unfortunately, for the 
majority of preforms the values of phase shift kR(x) are fairly high and it is virtually

dW (x)
impossible to eliminate the addend kp— j5—- from measurements results.

dx
The above difficulties arising in the case of anisotropic preforms can be overcome 

by introducing a small modification to the measurement system shown in Fig. 2. It 
proves sufficient to set an ellipticity modulator between the tested preform and the 
Wollaston prism and to illuminate the preform by polarized wave with azimuth 
parallel or perpendicular to its symmetry axis. Now, only one wavefront Wy(x) or 
Wx(x) will appear in the space behind the preform and will then be modulated and 
split by Wollaston prism. The measured phase shift will now be equal to

<Z>(x) = kp
dWy(x)

dx
(10)

and numerical computation will result in reconstruction of refractive index 
distribution. It is now worth noticing that the measurement of refractive index 
distribution in anisotropic preform is ambiguous. Illumination of such a preform 
perpendicularly to its symmetry axis results in refractive index distribution that
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depends on polarization direction of illuminating beam. Measured phase shift will be 
equal to

<P{x) = kp
dWx{x)

dx
or <P(x) = kp

dWy(x) 
dx ’ ( 11)

depending on the azimuth of polarization of illumination wave. Due to this fact 
difference in reconstructed refractive index profiles depending on the polarization 
azimuth can be observed. This kind of ambiguity occurs in all the non-destructive 
measurement methods and usually is not greater than 5 x 10 “4.

3. Measurement set-up and exemplary measurement results

A scheme of the measurement set-up is shown in Fig. 4. As the light source a 5 mW 
He-Ne laser is used. The preform to be tested is placed on the stage which can be 
shifted across the illuminating beam by a step motor with minimum step equal to

02 preform 03 A/Z A/i* WP A

Fig. 4. Scheme of measurement set-up

5 pm. Ellipticity modulator consists of half-wave plate A/2 rotating with 40 Hz 
frequency and stationary quarter wave plate A/4 of azimuth 45° with regard to 
horizontal direction. Photomultiplier PM is used as scanning detector and 
photodiode PD placed in the region outside the preform image — as reference 
detector. Phase shift between signals from the photodiode and photomultiplier is 
measured by sampling with 4 MHz frequency. This results in theoretical mea
surement resolution better than A/10000. Besides, it is possible to repeat the 
measurement several times and to average the results obtained for the same scanning 
point. Typically 16 measurements were averaged for one scanning point and that 
ensured measurement error to be of the order of A/1000. Necessary computations 
were performed by measurement-controlling computer and refractive index distri
bution was obtained on TV monitor or on the printer as the need be. Time required
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for the measurement and computation in the case of 250 scanning points was equal 
to about 7 min. Exemplary measurement results for single-mode and graded-index 
preforms are presented in Fig. 5.

Fig. 5. Measurement results and reconstructed refractive index profile for single-mode (a) and step-index 
(b) preforms

4. Algorithm of refractive index reconstruction

Time of measurement is the basic problem in routine preform testing, most of the 
time being lost while calculating the refractive index distribution with the use of 
inverse Abel transform (1). Besides the computer speed, computation method is very 
important as well. A few possible algorithms of refractive index profile reconstruction 
were tested to enable the selection of optimum calculation method.

The integral (1) was calculated with the help of the idea suggested by Bockasten 

in [ 1 1 ]  and applied later also in [12]—[14], in which the integrand was locally 

approximated by polynomials. Optimum degree of polynomial approximation was 

determined for typical refractive index profiles applied in lightguide technology. The 

algorithms used were based on the fact that if the integrand can be presented in the 

brm of p-degree polynomial

dx
( 1 2 )
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the inverse Abel integral can be expressed as

= (Z B r f y / x 2- r 2 + Bp\n \x+^/x2- r 2\
i = 0

(13)

Coefficients B0 . . .Bp_i and Bp are linear combination of A0. . .A p. They can be 
determined by differentiating both sides Eq. (13) and then equating the expressions at 
coreresponding powers. Explicit form of the right-hand side of Eq. (13), for a few 
low-degree polynomials is presented in the Table.

Forms of approximating polynomial

Degree of approximating 
polynomial

For of approximating 
polynomial Inverse Abel transform

0 A0|lnx +  x/x 2- r 2|

It would be unreasonable to approximate all the measurement data
dW(x)

dx
obtained for the whole diameter of the preform by a single polynomial; it would lead 
to inadmissibly long time of calculation in the case of polynomials of too high 
degree. Otherwise — in the case of low-degree polynomials — the information on 

dW(x)
actual behaviour of —-—- would be lost. However, the measurement range can be 

dx
divided into intervals and the integral (1) presented as the sum of integrals 

- dW(x)
1 N

M r)  =  —  L
dx

71 L =fc= 1

i N -
-dx = - -  Z  Ik(r).

n t =
(14)

k =  1

where xj[ and xg — lower and upper integration limits in the k-th interval, 

respectively. \  

the type (12)

dW(x)
respectively. Within the intervals the function —-—- is substituted by polynomials of

dx
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f I ¿¡.kx‘
(15)

where Aik is the coefficient with x‘ in fc-th interval (Fig. 6). Finally, from (13), (14) and 
(15) we get

n (r)=  ~zI  [ (£  Bi,kX‘)sJx'-^Bp.jlnlx + v'x + r * \ Y J l
k= 1 ¿ = 0

(16)

x3 x 2 X, X0 X

Fig. 6. Local approximation of the 
,  dW(x)
function —- —  by zero degree (a)

and first degree (b) polynomials. 
Points denote measurement data

To check the usability of formula (16) for reconstruction of refractive index 
distribution in preforms the computations were performed for two typical profiles

d\V(x)
An(r). The values of derivative of Abel transform —-—- were used as output data

dx
from measuring process. Two chosen functions and derivatives of their Abel 

dW(x)
transforms —-—- are presented in Fig. 7. The functions represent refractive index 

dx
profiles which are typical for optical preforms — step-index (Fig. 7a) and 
graded-index (Fig. 7b). Polynomials of the first, second and third degree and two 
values of N  (number of measurement points) — 20 and 100 — were used in 
computation. Interpolation was applied in determining the coefficients of 
polynomials. In the case of first polynomials, the points xk and xk_x were taken into 
account. For second degree polynomials the points xk, xk_l5 xk_2, and for third 
degree the points xk+1, xk, xk_l5 xk_lf were considered.

In the case of step-index profile reconstruction, the number of measurement 
points (especially in the vicinity of An(r) step edge) is more significant than the 

dW(x)
method of —-—- approximation. This can be seen in Fig. 8, in which maximum error 

dx
occurs always in the vicinity of An(r) step edge. In the presented calculation the most 
unfavourable case of the measurement point not coincide with the step edge is

dW(x)
assumed to occur, i.e., — -— - is assumed to be equal to zero for x = 1, although

dx
dW(x)

actually —- — oo. It should be expected that in actual process of refraction index
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functions

derivative of Abel transforms

f 1 for r <  1
Fig. 7. Selected functions and derivatives of their Abel transforms: (a) function A{r) =  < ,(u ior r ^  1

derivatives 

; i - r2

of Abel transform
dW(x)

dx -{i
for r <  1 . ,  . . .  f dw(x)

, derivatives of Abel transform --------
0 for r >  1 dx

— 2 x (l—x2)1/2 for x <  1 ^  ,  . . .
, (b) function An(r)

for x ^  1
—4 x (l—x2)3/2 for x <  1

0 for x >  1

Fig. 8. Results of step-index profile reconstruction

profile reconstruction the error of An(r) determination will be much smaller.
The error of graded-index profile reconstruction An(r) = dnactual(r)—Ancalc{r) is 

presented in Fig. 9. The application of higher order polynomials does not yield much 
higher accuracy of reconstruction. However, in the case of graded-index profiles the 
accuracy is better by the order of value than that for step-index profiles.

The following conclusions can be drawn from the numerical analysis:
i) The application of polynomial of the order higher than first to the 

approximation is of no avail.
ii) The accuracy of profile reconstruction is strongly affected by the number of 

scanning points, there should be no less than 200 of such points along perform 
diameter.
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Fig. 9. Results of graded-index profile reconstruction. Reconstruction error ôn(r) = dn(r)actual—dn(r)calc 
marked on vertical axis

is

iii) The error of smooth profile reconstruction is less than 0.2%, while for 
step-index profiles it is very large — up to 5%, and in the vicinity of step edge it may 
reach still higher values.

It should be stressed that in the analysis of reconstruction accuracy the formula 
(1) has been assumed to be always true. Actually, it is only an approximate relation 
since the rays refraction occurring within the preform is not taken into account. It 
can thus be supposed that the actual reconstruction error is larger than that resulting 
from the analysis performed, especially for preforms in which high gradients of 
refractive index occur. This error can be eliminated only by the application of 
reconstruction methods in which ray refraction within the preform is allowed for 
(see, e.g., [15], [16]).

5. Final remarks

The following features of the presented method of refractive index profile 
measurement in optical preforms are worth noticing:f , . dW(x)

i) direct measurement of wavefront deformation —-— ,
dx

ii) high accuracy of measurement (rms = A/1000),
iii) refractive index reconstruction accuracy higher than 0.2% for smooth profiles 

and higher than 5% for step-index profiles,
iv) low cost of measurement automation,
v) short time of measurement and treatment of results (a few minutes). 

Accuracy and comfort of the measurement method suggested are thus com
parable to the parameters achieved in — so far the best — dynamic spatial filtering 
method.
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Измерение профиля показателя преломления в световодовых 
заготовках при помощи гетеродинного интерферометра с поперечным 
сдвигом волнового фронта

Представлен интерференционный неразрушающий метод измерения распределения показателя 
преломления в световодовых заготовках. Простоты и большой точности измерения достигли, 
применяя гетеродинный интерферометр с поперечным сдвигом волнового фронта с вращающейся 
полволновой пластинкой в качестве модулятора. Предлагаемый метод способствует исключению 
влияния двойного лучепреломления исследуемой заготовки на результат измерения. Представлен 
также алгоритм численной реконструкции профиля показателя преломления при помощи 
локального приближения измерительных данных степенными многочленами. Сделана практи
ческая оценка примерных алгоритмов в случае реконструкции ступенчатого и градиентного 
профилей.


