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Abstract: On a daily basis, managers in risk management teams use a number of 
methods to manage various types of risk. One of the most popular methods of 
measuring market risk is Value at Risk. Estimation of Value at Risk gives a possibility 
to determine a loss, which can occur or can be exceeded with a given probability and 
tolerance level. Moreover, this measure of risk shows in just one number entire risk of 
the portfolio. In addition, various methods and probability distributions can be used to 
estimate Value at Risk. A goal of this  paper is the evaluation of Value at Risk  
estimation methods on the basis of backtesting results. In the empirical part, the data 
for 4 investment portfolios was used. The portfolios were diversified in terms of 
geographic location of firms that were taken into consideration. 

Keywords: Value at Risk, estimation, backtesting, investment portfolio. 

Streszczenie: Menedżerowie w pionie zarządzania ryzykiem używają wielu metod, by 
zarządzać różnego rodzaju ryzykiem. Jedną z najpopularniejszych metod zarządzania 
ryzykiem rynkowym jest szacowanie wartości zagrożonej (VaR). Obliczenie wartości 
zagrożonej daje możliwość oszacowania wartości straty, która może zostać osiągnięta lub 
przekroczona z danym prawdopodobieństwem. Co ważne, narzędzie, jakim jest VaR, 
daje możliwość oszacowania ryzyka całkowitego dla analizowanego portfela. Niemniej 
jednak wiele metod oraz rozkładów prawdopodobieństwa może zostać użytych do 
oszacowania wartości zagrożonej. Celem niniejszej pracy jest ocena metod szacowania 
VaR za pomocą modeli testów wstecznych oraz wyciągnięcie wniosków na ich 
podstawie. W części empirycznej zostały użyte dane dla czterech portfeli 
inwestycyjnych. Zostały one zdywersyfikowane wg kryterium położenia geograficznego 
firm, których akcje zostały wzięte do analizy. 

Słowa kluczowe: wartość zagrożona, estymacja, testy wsteczne, ryzyko całkowite, portfel 
inwestycyjny. 
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1. Introduction 

Every day, risk managers use various methods to estimate several types of risk. 
Value at Risk became one of the most popular methods of market risk estimation. 
According to Hull, VaR is a tool which gives a possibility to estimate the total risk 
of the portfolio [2011, p. 219].  

Total risk is a sum of specific risk and systematic risk. Specific risk is a type of 
risk that can be diversified. It depends on the business, and a particular equity. 
Systematic risk is the type of risk, which cannot be diversified and depends on the 
economic cycle, inflation, politics and the stock market.  

 

 
Fig. 1. Entire risk of portfolio 

Source: own study based on [Jajuga, Jajuga 2006, p. 246].  

In author's opinion, after the financial crisis in 2007-2009, the influence of 
systematic risk on total – risk is still increasing. This can be especially observed on 
the quotes of assets that are included in Dow Jones Industrial Average Index. 
Recently, bigger falls in value of assets have been caused by political issues rather 
than the worse performance of a company. Nevertheless, in the market risk 
management process usually total risk is taken into consideration and as Hull 
states, proper VaR estimation is very important in finance nowadays [2011,  
p. 219]. In consequence, the aim of the paper is the evaluation of VaR estimation 
methods, and conclusions resulting from the backtesting. 

Value at Risk can be estimated using various methods, but the most common 
are [Jajuga, in Jajuga 2007, p. 102; Piontek 2010, p. 468]: 
• historical simulation; 
• Monte Carlo simulation; 
• unconditional variance-covariance approach with normal and Student’s-t 

distributions; 
• AR-GARCH approach with normal and Student’s-t conditional distributions 

(specific variance-covariance approach); 
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• group of methods using the quantile of non-normal distribution; 
• extreme-value-theory approach. 

However, methods that are used to estimate VaR should be graded, as grading 
approaches give a possibility to ascertain whether the model should be rejected or 
not in the risk management process. Validation of models may be conducted by 
using several backtesting tests such as: 
• proportion of failures test [Kupiec 1995], 
• independence test [Christoffersen 1996], 
• loss functions [Lopez 1998; Sarma et al. 2003]. 

In the empirical part of that paper, the first four VaR estimation methods and 
all pointed out backtesting tests are analysed. 

2. Value at Risk 

Before a presentation of particular VaR estimation approaches, definition of Value 
at Risk should be mentioned. “Value at Risk is such a loss in market value of a 
portfolio that probability it will occur or even will be exceeded in a given period of 
time is equal to the predefined tolerance level” [Jajuga, in Jajuga 2007, p. 99]. 

Mathematically, it can be expressed as follows: 

 𝑃[𝑉 ≤ 𝑉0 − 𝑉𝑎𝑅] = 𝛼, (1) 

where: V – value of portfolio at the end of the considered period, V0 – value of a 
portfolio at the beginning of the considered period, VaR – estimated Value at 
Risk, 𝛼 – predefined tolerance level. 

Since the paper is focused on the research of Value at Risk based on the rates of 
return, the next definition better fits the study. In particular, VaR can be defined as 
the quantile of the unconditional or forecasted conditional distribution of the rates of 
return. 
 𝑃 �𝑟𝑡 ≤ 𝐹𝑟,𝑡

−1(𝛼)� = 𝛼, (2) 

 𝑉𝑎𝑅𝑟,𝑡(𝛼) = 𝐹𝑟,𝑡
−1(𝛼), (3) 

where: 𝑟𝑡 is the rate of return on the portfolio (in that paper only logarithmic rates 
of return are considered) and 𝐹𝑟,𝑡

−1(𝛼) is a quantile of loss distribution related 
to the probability of 1–𝛼. 

In the empirical part of the paper all methods are estimated with 1% and 5% 
tolerance level. Parameters for all methods are estimated using the rolling window 
procedure with 1,000 consecutive observations, apart from the Monte Carlo 
simulation method. In this particular case 255 observations are used. Step in rolling 
window (from one estimation of parameters to another and from one prognosis of 
VaR to another) is equal to one.  
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2.1. Value at Risk estimation methods – simulation methods 

Despite the fact that two methods which are considered in the empirical part of the 
paper contain the word simulation in their names, the former – historical simulation 
– is the simplest method among the considered and is not actually connected with 
simulation. This method is based on the determination of the quantile of 
distribution of historical rates of return on a portfolio [Jajuga, in Jajuga 2007,  
p. 103]. 

The second one – Monte Carlo simulation – is a more advanced method. It uses 
Geometric Brownian motion with drift to simulate the path of the analysed process. 
This particular method can be described as follows: 

1) evaluating the expected value (arithmetic mean) 𝜇 and variance 𝜎2 of 255 
historical rates of return of the portfolio; 

2) generating 10,000 semi-random variables from the N(0,1) distribution for 
each period that is considered; 

3) creating antithetic variables; 
4) changing all the variables (now there are 20,000 for each period analysed) 

into the simulated distribution of the rates of return with the following equation: 

 𝑟𝑡 = 𝑒𝑥𝑝 ��𝜇 − 𝜎2

2
� ∆𝑡 + �𝜎√Δ𝑡�𝜀�, (4) 

5) computing given quantiles of the simulated distribution of the rates of return. 

2.2. Value at Risk estimation methods – variance covariance approach 

The most popular and at the same time most basic Value at Risk estimation method 
among variance-covariance approaches, is the approach with multidimensional 
unconditional normal distribution with arithmetic means (expected values) and 
covariance matrix. Variance of the portfolio is computed from the formula [Xu, 
Chen 2012]: 
 𝜎𝑝 = 𝑤′ ∑𝑤, (5) 

where, ∑ is a symmetric, positive-definite matrix formulated as: 

 ∑ = �
𝑉𝐴𝑅(𝑅1) ⋯ 𝐶o𝑣(𝑅1𝑅𝑛)

⋮ ⋱ ⋮
𝐶o𝑣(𝑅1𝑅𝑛) ⋯ 𝑉𝐴𝑅(𝑅𝑛)

�, (6) 

where Rn – the rates of return from the nth component of the portfolio and w is a 
vector of shares of particular components in the portfolio: 

 𝑤 = (𝑤1, . . . ,𝑤𝑛) . (7) 

Value at Risk is computed according to the formula: 

 𝑉𝑎𝑅𝛼 = −𝜇 + �𝜎𝑝𝑁𝛼, (8) 
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where: 𝑁𝛼 – the quantile of normal distribution N(0,1) and  

 𝜇 = 𝑤�

𝑅1
1000
⋮
𝑅𝑛
1000

� . (9) 

Estimation of the covariance matrix can be also performed under the assumption 
that the rates of return follow Student’s t-distribution. Random variable under 
Student's t-distribution and 𝜐 degrees of freedom takes a form of [Mercik 2013]: 

 𝑡 = 𝑈
√𝑍 √𝜐 , (10) 

where: U is a random variable from N(0,1) distribution, Z is a variable from the 𝜒2 
distribution with 𝜐 degrees of freedom, U and Z are uncorrelated random variables.  

Using Student’s t-distribution to estimate Value at Risk may be a good approach, 
especially when 1% VaR is estimated. Models connected with normal distribution 
tend to underestimate VaR under 1% tolerance level. This is based on the fact that 
the distributions of the rates of return are leptokurtic (they have a higher value of 
kurtosis than the normal distribution), thus, the distributions of returns have fatter 
tails. In other words, there is a higher probability of outliers.  

The density function of Student’s t-distribution is as follows [Mercik 2013]: 

 𝐹(𝑡) =
Γ�𝜈+12 �

Γ�𝜈2�√𝜈𝜋
�1 + 𝑥2

𝑣
�
−�𝑣+12 �

, (11) 

where: Γ(z) – gamma function for parameter z, where Γ (z)= ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥∞
0 . 

For 𝑣 > 4 kurtosis exists. Then kurtosis is equal to:  

 𝐾 = 6
 𝑣−4

. (12) 

For 𝑣 > 2 variance exists. Then variance is equal to: 

 𝑉(𝑡) = 𝑣
𝑣−2

. (13) 

It should be highlighted that Student’s t-distribution with 𝑣 → ∞ follows N(0,1). 
Value at Risk estimated using the variance-covariance method with unconditional 
Student’s t distribution is evaluated using the formula: 

 𝑉𝑎𝑅𝑡𝛼 = −𝜇 + �𝜎𝑝
𝑣−2
𝑣
𝑡𝑣,𝛼, (14) 

𝑡𝑣,𝛼 – quantile of Student’s t-distribution with 𝑣 degrees of freedom (the number of 
degrees of freedom is estimated as the arithmetic mean of degrees of freedom of the 
fitted Student’s t-distribution for each portfolio component). 
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Another approach of estimating VaR is the variance-covariance method. In this 
approach the conditional expected value and the conditional variance are forecasted 
with AR-GARCH models. This type of an approach has an advantage in comparison 
to models with unconditional EV and VAR, because conditional models give a 
possibility to describe such features of time series as: 
• the occurrence of autocorrelation in the rates of return; 
• the heteroscedasticity of variance; 
• the leptokurtosis of the rates of return (similarly to unconditional approach, but 

there is no need to estimate such a high number of coefficients). 
AR models were limited to the 5th lag to describe the changing autocorrelation 

(from one trading week) of returns. GARCH order was limited to GARCH(1,1) as 
this is the most popular lag used in GARCH modelling – for a particular time series 
there is no possibility to sustain stationarity of the process with higher lags. Value 
at Risk according to AR-GARCH model in this particular case is as follows 
[Bollerslev 1986; Doman, Doman 2009; Piontek 2002]: 

 𝑃 �𝑟𝑡 ≤ 𝜇𝑡 + �ℎ𝑡𝐷𝑐−1(𝛼)� = 𝛼, (15) 

where: 

 𝜇𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 + 𝜙3𝑟𝑡−3 + 𝜙4𝑟𝑡−4 + 𝜙5𝑟𝑡−5, (16) 

 ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−12  + 𝛽ℎ𝑡−1 , (17) 

 𝜀2 = �ℎ𝑡𝑐𝑡 and 𝛼 +  𝛽 < 11  (18) 

𝑐𝑡~IID(0,1), 𝐷𝑐−1(𝛼) is a quantile of conditional distribution for a given tolerance 
level. 

In the paper two conditional distributions of variable 𝑐𝑡  are be considered: 

• Normal distribution N(0,1). 

 𝑓𝑛(𝜀𝑡 ,ℎ𝑡 ,𝜃𝑁) = 1
�2𝜋ℎ𝑡

𝑒𝑥𝑝 �− 𝜀2

ℎ𝑡
�. (19) 

• Student’s t distribution St’s t (0,1, 𝜈). 

 𝑓𝑆(𝜀𝑡 ,ℎ𝑡,𝜃𝑆) =  
Γ�𝜈+12 �ℎ𝑡

−1/2

Γ�𝜈2��(𝜈−2)𝜋
�1 + 𝜀𝑡2

(𝑣−2)ℎ𝑡
�
−𝑣+12  . (20) 

 

                      
1 The condition of stationarity of the process. 
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3. Empirical research 

3.1. Backtesting  

Backtesting, as it was mentioned before, is based on three tests where one of them has 
two variations. It should be highlighted that in the case of loss functions, only the VaR 
values that are not rejected by PoF and Ind tests are taken into consideration2. 
Proportion of Failures test and Independence test are strictly connected with failure 
process [𝐼𝑡(𝑞)]𝑡=1𝑡=𝑇, where T is the number of units, from which the back-tested period 
consists. The failure function is defined as follows [Lopez 1995]: 

𝐼𝑡(𝑞) = �
1;   𝑟𝑝,𝑡 ≤ 𝐹𝑟𝑝,𝑡

−1 (𝑞), 𝑖𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑠 
     0;   𝑟𝑝,𝑡 ≥ 𝐹𝑟𝑝,𝑡

−1 (𝑞), 𝑖𝑓 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑐𝑐𝑢𝑟𝑠
. 

PoF test proposed by Kupiec is the test, which examines whether the amount of 
failures of VaR model is significant. The null hypothesis for that test is that the 
empirically determined probability matches the given tolerance level of VaR 
[Lopez 1995]: 

𝐻0: 𝑞� = 𝑞. 

The test statistic is based on the likelihood ratio by the following formula and it 
is asymptotically chi-square distributed with one degree of freedom: 

 𝐿𝑅𝑃𝑂𝐹 = −2𝑙𝑛 �(1−𝑞)𝑇0𝑞𝑇1
(1−𝑞�)𝑇0𝑞�𝑇1

�~𝜒12, (21) 

where: 

𝑞� = 𝑇1
𝑇0+𝑇1

,             𝑇1 = ∑ 𝐼𝑡(𝑞)𝑇
𝑡=1 ,           𝑇0 = 𝑇 − 𝑇1 

The VaR estimation method is reliable if amount of failures is within the non-critical 
area.  

Independence test proposed by Christoffersen, considers the dependency of 
exceedances of VaR made by the rates of return. Test statistic is given by the formula 
[Christoffersen 1998]: 

 𝐿𝑅𝑖𝑛𝑑 = −2𝑙𝑛 � (1−𝑞�)𝑇00+𝑇10𝑞�𝑇01+𝑇11

(1−𝑞�01) 𝑇00𝑞�01(1−𝑞�11)𝑇10𝑞�11
𝑇11�, (22) 

where: 

𝑞�𝑖𝑗 = 𝑇𝑖𝑗
𝑇𝑖0+𝑇𝑖1

,  𝑞� = 𝑇01+𝑇11
𝑇00+𝑇01+𝑇10+𝑇11

, 

and Tij is a number of periods in which 𝐼𝑡 = 𝑗, if 𝐼𝑡−1 = 𝑖. 
                      

2 Mix tests were not used. When one of these two tests rejected the particular method, it was not 
considered in further study. 
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Lopez proposed another approach of validation of VaR estimation methods and 
modification of this method was proposed by Sarma, Thomas and Shah. For each 
period which is analysed, a loss function is computed on the basis of the rate of 
returns accordingly to the formula described below [Lopez 1995; Sarma et al. 2003; 
Piontek 2007]: 

 𝐿�𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1� = �
𝑓�𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1�         𝑟𝑡+1 ≤ 𝑉𝑎𝑅𝑟,𝑡(𝑞)
𝑔�𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1�         𝑟𝑡+1 ≥ 𝑉𝑎𝑅𝑟,𝑡(𝑞)

, (23) 

where: 

𝑓(𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1) = 1 + �𝑟𝑡+1 + 𝑉𝑎𝑅𝑟,𝑡(𝑞)�
2
– Lopez’s proposition, 

𝑓(𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1) = �𝑟𝑡+1 + 𝑉𝑎𝑅𝑟,𝑡(𝑞)�
2
– Sarma-Thomas-Shah’s proposition, 

𝑔�𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1� = 0 – Lopez’s proposition, 
𝑔�𝑉𝑎𝑅𝑟,𝑡(𝑞), 𝑟𝑡+1� =  𝜑𝑉𝑎𝑅𝑟,𝑡 – Sarma-Thomas-Shah’s proposition. 

In both propositions models are penalised by rates of return exceeding the VaR 
level, but in STS they are penalised for the overestimation of the VaR, too. To 
determine the best VaR estimation, one needs to consider the loss function which 
has the lowest value. In the empirical research 𝜑 coefficient is equal to 0.6.  

3.2. Research sample and empirical results 

The research sample consists of 4 portfolios, which contain 4 equities with the 
highest market capitalization in particular indices (2017-08-11). Portfolios are 
diversified geographically to increase the independence of the results and the 
influence of systematic risk3 on the final results. All the time series have a length 
of 1814 observations, but the first estimation is based on the first 1000 
observations. Then the rolling window procedure is followed.  

Components of the portfolios are as follows: 
• WIG20 (PKN Orlen, PKO BP, PEKAO SA, PZU); 
• Nikkei225 (Toyota Motor Corporation, Mitsubishi UFJ Financial Group, 

Docomo; Soft Bank Group); 
• DJIA (Microsoft, Exxon, Apple, Johnson and Johnson); 
• FTSE100 (HSBC, British American Tobacco, BP, Unilever). 

All the components have equal share in the portfolio. 
PoF test and IND test were conducted at the 5% significance level. 

                      
3 Level of systematic risk is followed by changing location. 
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Table 1. Results of the PoF test (WIG20) 

Model 
WIG20 

Historical 
simulation 

Student’s t 
varcov 

Norm. 
varcov 

AR-GARCH 
Student’s t Monte Carlo AR-GARCH 

Norm. 
% VaR 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 

rejection No No No Yes No Yes Yes Yes No No No No 

Source: own study. 

Table 2. Results of the Independence test (NIKKEI225) 

Model 
NIKKEI 225 

Historical 
simulation 

Student’s t 
varcov 

Norm. 
varcov 

AR-GARCH 
Student’s t 

Monte 
Carlo 

AR-GARCH 
Norm. 

% VaR 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 
rejection Yes Yes Yes Yes Yes Yes No No Yes Yes No No 

Source: own study.  

Table 3. Results of Lopez loss function test (DJIA) 

Model 
DJIA 

Historical 
simulation 

Student’s t 
varcov 

Norm.  
varcov 

AR-GARCH 
Student’s t Monte Carlo AR-GARCH 

Norm. 
%VaR 1 5 1 5 1 5 1 5 1 5 1 5 

Value of loss 
function 0.98% 5.41% – – 1.48% 4.18% 0.86% 3.08% 1.60% 4.80% – 4.31% 

Source: own study. 

Table 4. Results of STS loss function test (FTSE100) 

Model 
FTSE100 

Historical 
simulation 

Student’s t 
varcov 

Norm. 
varcov 

AR-GARCH 
Student’s t Monte Carlo AR-GARCH 

Norm. 
%VaR 1 5 1 5 1 5 1 5 1 5 1 5 

Value of 
loss 
function 

– 0.81% – 0.81% – 0.84% 1.56% 0.99% – 0.93% – 0,90% 

Source: own study. 

Results of all backtesting procedures are presented next. As far as the PoF and 
Ind Test results are concerned, WIG20 – 1%, 5% Historical simulation, 1% and 5% 
Student’s t varcov, 5% Normal varcov, 1% and 5% AR-GARCH Student’s t and 
5% Monte Carlo models were rejected. Similarly, DJIA – 1%, 5% AR-GARCH 
Student’s t and 1% AR-GARCH Normal models were also rejected. FTSE100 – 
1% Historical simulation, 1% Student’s t varcov, 1% Normal varcov and 1% 
Monte Carlo and 1% AR-GARCH Normal models were rejected as well. Only for 
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NIKKEI225, and only the AR-GARCH models were not rejected at any of the 
significance levels. 

In case of the Lopez loss function is concerned, the results are as follows: 
• WIG20 – 1% varcov Normal and 1% Monte Carlo were the best models among 

considered; the value of the loss function was equal (in both cases) 1.35%; 
• NIKKEI225 – 1% AR-GARCH Student’s t model outperformed rest of models 

with the value of the loss function equal to 0.98%; 
• DJIA – 1% Historical simulation outperformed rest of models with the value of 

loss function equal to 0,98%; 
• FTSE100 – 1% AR-GARCH Student’s t model outperformed rest of models 

with value of the loss function equal to 1.35%. 
Finally, for the STS loss function, WIG20 – 5% AR-GARCH Normal model 

outperformed the rest of models with the value of the loss function equal to 1.12%. 
For NIKKEI225 – 5%, the AR-GARCH Normal was the best model with the value 
of the loss function equal to 1.34%. For the DJIA – 5% Student’s t varcov model was 
the best with the value of the loss function equal to 0.82%. Whereas for FTSE100, 
the 5% Student’s t varcov model was also the best, with a similar value of the loss 
function equal to 0.80%. 

4. Conclusions 

The aim of the paper was to evaluate VaR estimation methods and draw conclusions 
based on results of backtesting. Due to the fact that obtained results are ambiguous, 
there is no possibility to make a very sound conclusion. In case of the Lopez Loss 
function, it can be concluded that methods based on conditional models with 
Student’s t distribution were the best for two portfolios. In case of STS Loss 
function, AR-GARCH models with conditional Normal distribution had the 
advantage in VaR estimation for two out of four portfolios. Almost in all cases, the 
methods based on AR-GARCH approach were not rejected based on the 
Independence test4. It can be concluded that for the considered samples GARCH 
approach was the most universal one. All in all, VaR estimation methods should be 
fitted for a particular portfolio. Financial institutions should choose their own 
methods for VaR estimation, due to the fact that various portfolios have different 
particular and numerous properties. 

 

                      
4 In a few cases there were no dependencies. 
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