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The subject of this paper is to discuss the influence of absorption of the measured medium on 
the refractometric measurements based on the so-called critical (limiting) angle and realized by 
using photoelectric detector. The errors of most commonly used compensation refractometric 
method consisting in observing the light-shadow border of the light beam reflected from the 
surface of the continuous media at the vicinity of the limiting angle are analysed in detail. The 
limiting accuracy of this method has been determined for the case of most common 
measurements, used in industry. For the region of the most common applications the way of the 
optimum use of the method has been determined by distributing the systematic errors for the 
change of absorption amounting up to 2 x 10~3. The formulae allowing an optimal design of the 
signal processing and balancing the autocompensative system are given.

1. Introduction

For many years the method of light refractive index based on the total internal 
reflection at the border of two continuous media has been applied in design of 
compensation analysers. The way of measurement is coming to determining the 
limiting angle and in consequence the quantity of one of the substances of the 
two-component mixture. This method and the way of measurements are mainly 
used for the opaque and turbid (due to suspension of colloids, for instance) fluids, 
since to the transparent fluids spectrometric and interferometric methods may be 
applied, as they assure high accuracy and good repeativity of the measurements.

The method based on the measurement of the limiting angle is practically the 
only one accessible so far for the opaque fluids, however, it appeared to be not 
univocal in the case of absorbing media. Since for the absorbing media (even 
slightly) the effect should not be described by Fresnel formulae, in spite of what 
was commonly done for many years in the past. The deviations from the Fresnel 
formulae appear distinctly, which should be taken into account in design and 
construction of analysers based on the total internal reflection, independently of 
whether the integrating, compensating, pulsed or polarization methods are used. In 
practice, the objects of measurements are fluids (pastes, pomaces, food dyers, petrol 
products and some pharmaceutical fluids). To this end several types of 
refractometric analysers have been built, some of which being designed to



122 J. SZUKALSKI

minimize the influence of absorption. The main point of interest, however, was to 
eliminate (or to compensate suitably) the external factors influencing essentially the 
measurement, i.e., the changes in sensitivity of photoelectric sensors, changes in 
emission of light source (information carrier) or to eliminate the influence of 
temperature on the changes in the refractive index [1-3].

The only known solutions taking account of the influence of medium 
absorption are the following: the polarization method [4], in which the influence 
of absorption is partly neglected by performing the measurement “before” the 
limiting angle and by the application of a conventional (changeable with the 
measurement range) reference to the limiting angle, and the method of a 
simultaneous measurement of the refractive index and the absorption coefficient 
[5], [6]. None of these methods, however, guarantee the construction of a simple 
measuring set-up giving univocal results of measurements.

2. Influence of the absorption of measured media

In the up-to-date elaborations and considerations, the deviations from the Fresnel 
formulae due to absorption have been usually neglected giving size to a number of 
errors, in particular in compensating system in which, among others, a false 
tracing point appears. The consequences of deviations from the Fresnel formulae 
largely concern also the classical Abbe refractometers if applied to measurements 
ot refractive index in absorbing media. The formulae for the intensity of light 
reflected from an absorbing medium were derived by Littmann [7] as applicable 
to the classical refractometry. The abbreviated procedure and the formulae 
obtained by Littmann are shortly presented below.

While considering reflection at the border of nonabsorbing and absorbing 
media, as it is in the case of refractometric analysis, we shall use the following 
notations:
i) nonabsorbing media

— (real) reflection angle — i,
— absorption index — x,
— (real) refractive index — nl =  m;

ii) absorbing media
— (complex) refractive angle — it ,
— (complex) refractive index -  n2 = n2( l - j x 2),

— absorption coefficient — x2 = x =  — —  ̂-----— (where D — transmission in
4nn2 d

the layer of the thickness d, A0 — wavelength of the light in vacuum),
— amplitude of the incident light -  E,
— amplitude of the reflected light — R,
— intensity of the incident light — e,
— intensity of the reflected light — r.
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The component vibrating in the parallel direction is denoted by index p, while 
that vibrating in the perpendicular direction — by index s.

The reflection law and the Fresnel formulae are the starting point, assuming 
that E = const =  1, e =  const = 1:

sin i n2
sin it nx

where n -  — (1 - j x 2) =  n(l - j x 2),
ni

( 1 )

6 n cos,— cos it

R , =

n cos i + cos it 

cosi — ncosi,
cos i + n cos it 

From Eq. (1) it follows that

cos
J n 2 -  sin2 i

h = ~ ----- -̂------·

By inserting (1) and (4) to (2) we obtain

6 n2(1 - j x ) 2cos i -  y/n2( 1 - j x ) 2 - s i n 2 i
Rp = -------------------------.— _ ... , ■■■■ .

n2 (1 —jx)2 cos i + J n 2 (1 — jx)2 — sin2 i

(2)

(3)

(4)

(5)

Multiplying the Eq. (5) by its complex conjugate we get the intensity 

For the sake of simplification the substitutions

(a - jb ) - ( c + jd )  (a - c ) + j { b - d )
p (a+jb) +  (c+jd) (a +  c)+j(b +  d)

may be used to obtain finally

_  ( a - c ) 2+ ( b - d ) 2
'''· ~  (a + c)2+(fc + i/)2

An analogical procedure gives the evaluation of

_  (cos i — c)2 + d2 
(cos i + c)2 +  d2

If the light is unpolarized (natural)

(6)

(7)

( 8 )

r„ -rc
r =

3 -  Optica Applicata XV (2) 86
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hence the final formula for reflection is

_  1 (a - c )2 + (a — b)2 1 (cos / — c)2 +  d2
2(a + c)2 + (a + b)2 + 2(cosi +  c)2 +  d2

where:
a =  n2 (1 — x2) cos i, 
b =  2n2 x cos /,

d =  n2 xjc.
p =  n2( 1 — x 2) —sin 2i, 
q = ( p 2 + 4n2x 2)112

The formula (9) is accurate and valid for arbitrary /„ and x.
When considering the formula (9) for decaying absorption, i.e., for:

x = 0, 
a — n2 cos /, 
b =  d =  0, 
p =  n2 — sin2i =  c2,

the Fresnel formulae for a nonabsorbing medium are obtained. Considering the 
same formulae for the case of weak absorption at the limiting reflection angle we 
get similarly, like in the case above:

a =  n2 cos /, 
b =  p =  0, 

but
q =  2 n2 x, 
c =  d = n J x ,

thus, the formula (9) for sin2i =  n2 takes the following form:

2r =
h4 cos2 1 — 2n3cos i s/ x  + 2n2 x cos2 i — 2cos i n s/ x  + 2n2 x 
n4 cos2 i + 2 n3 cos i vfx  +  2n2 cos2 i +  2 cos i n J x  + 2n2x

Taking into account the fact that cos2/ = 1 —sin2/, and restricting our 
considerations to the limiting angle, assuming further that x <€ 1, we obtain

r | (10) 
n^/ l  — n2 +  2y /x   ̂J X - n 2 +  2n J x '

which means that the deviation from the Fresnel formula occurs also for a weak 
absorption even when sin n =  1/n (otherwise r should be equal to unity).

The derivation of the formula (9) was given after Littman. This formula 
confirmed by experiment is convenient for calculations. The procedure used by 
Littman in order to derive this formula was not precise, the absorption coefficient
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was not exactly defined, and for calculations the concept of complex angle is used. 
Although the latter concept has no influence on the final form of the derived 
relation, it is of no physical meaning, and hence it may evoke some misconfidence. 
The Littman formulae may be derived rigorously, starting with fundamental 
relation concerning the electromagnetic wave propagation in continuous media 
[2].

Based on these formulae numerical calculations were performed and the 
reflection coefficient r vs the incidence angle at the vicinity of the limiting total 
reflection angle ig was plotted for x = 2 x l ( T 3 (Fig. 1). This value is practically 
extreme with respect to the industrial fluids being the objects of measurement. The 
plot for x = 0 (according to the Fresnel formulae) is shown in the same figure.

Fig. 1. Reflection coefficient vs the angle of nonpolarized light beam incidence on the border line of 
media r = f  (i). The beam falls on the border from the optically denser medium of n = n fn 2 = 0.9

Comparing the curves, it occurs that the problem of absorption cannot be 
neglected and should be taken into account in application of any measuring 
method.

3. Analysis of photoelectric accuracy of tracing refractometers

The refractometers based on the total internal reflection are most popular and 
often called the refractometers of critical angle. The angle is recorded geometrically 
as a border line between light and shadow, the position of which being the 
function of the refractive index of the fluid under test. The position of the border 
line is traced by a classical positioning servomechanism.

There also exists a convinction that this method allows to construct the most 
accurate refractometers. It is characteristic that according to many firms the
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sensitivity is a basic parameter, since it is really excellent, whereas the accuracy is 
often not defined. Many producers carelessly recommend these devices for the 
measurements of absorbing fluids, assuring that the absorption does not influence 
the measurement accuracy. The accuracy of such a refractometer, with respect to 
the measurement range, was analysed because of the change in the shape of curve 
r = /  (i) within the assumed interval observed both in the absorbing and 
nonabsorbing media.

From the discussion carried out earlier, it follows that, even in the case of the 
nonabsorbing fluids, such a device exactly measures the limiting angle in one point 
only (of the measurement range), while in all the remaining sites the tracing point 
is false because of the error due to the method itself. The knowledge of both the 
value and behaviour of this error is indispensable for optimal design of 
refractometric analysers.

In the analysis it has been assumed that the energy of both the incident and 
reflected beams (for i > ig) is uniform, i.e., the change in beam energy in the region 
i < ig is a simple mapping of r = / ( n). It has been also assumed that the 
photoelectric sensors are equal and uniform, i.e., their surface sensitivity is the 
same at each point, and that photoelectric characteristics are linear. This may be 
exemplified, for example, by an ideal two-track photoresistor (of negligibly small 
interspace between the tracks) working in a classic system of Wheatstone bridge. 
Such a situation is shown in Fig. 2.

In this respect, the evaluation of maximal error and dispersion of errors due to 
the false tracking are essential. For this reason, the changes in the ratio of the 
areas covered by both the detectors (including the angular change of the “window

Fig. 2. Principle of signal processing If  
-  f  (n). a -  geometric image of the so-called 
critical angle refractometers, being the pro
cessing (tracking) basis, b -  energy distribu
tion in the image due to r = /(/), c — pho
toelectric sensors (double photoresistor) in 
the Wheatstone bridge
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capacity” of the detector) with changing angle ig within the assumed measurement 
range have been examined. Such a procedure is possible due to the assumptions of 
linearities and uniformities. The ratio of areas is responsible for relative detuning 
of the Wheatstone bridge, directly proportional function (in the surroundings of 
equilibrium state) of which is the current (voltage) in the bridge diagonal deciding 
about further processing. It is also essential to know, how should the 
photoresistors “look” at the light-shadow border line, i.e., which of the manners 
shown in Fig. 3 is optimal and whether there also exists the optimum in other 
configurations.

\  p h o to e le c tric  s e n so rs ( I  a nd II)
(double p h o to r e s is to r )

Fig. 3. Three most frequently encountered variations of the mutual position of sensors (double 
photoresistors) and the curve of energy distribution r = f  (i) at the surrounding of the angle ig: light- 
shadow border line lies in the middle of the first (I) sensor (a), is covering the border of sensors (b), 
and lies in the middle of the second (II) sensor (c)

The formula (9) has been used for calculations assuming that: the measurement 
range is contained within np = 1.333 (H20 ) and nk = 1.3860, since it is the one 
most frequently used in the food and sugar industry, for which the change from np 
to nk corresponds to the shift of light-shadow border line by 35 mm in the image 
(detector) plane. The detector aperture (width of the photodetectors) is equal to 
1 mm (the value most frequently used in practice). The calculations have been 
carried out for the relative refractive index n = 0.89834 corresponding (angularly) 
to one half of the measurement range. The shape of error curve in the vicinity of 
the angle ig for the nonabsorbing fluids is shown in Fig. 4. The maximal error

Fig. 4. Run of the ratio of the areas covered 
by the detectors depending on their position 
with respect to the limiting angle: light bor
der in the middle of the first (a), between (b), 
and on the second sensor (c)
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caused by the change in shape of the curve r = / (ig) within the measurement range 
amounts to 1 . 2x l 0 -5, while the relative error, referred to the accepted 
measurement range, is equal to 0.028°/o· From the presented dependence it may 
be concluded that the relative error is by an order magnitude less than the 
inaccuracies of the most perfect photographic refractometers (of class 0.2), while 
the variant a in Fig. 3 is optimal due to position of the sensors with respect to the 
light-shadow border line. In this variant the sensitivity is highest when 25-50%  of 
the first sensor area is illuminated with the reflected beam (the highest slope of the 
ratio of areas — Fig. 3). In variant c (Fig. 3) the sensitivity is lowest when one of 
the sensors operates exclusively in the reflected beam and the other — in the 
region i <  ig at the light-shadow border line.

The systematic error for the beginning and the end of the measurement range 
in the case of a perfect balance is shown in Fig. 5 for the midpoint of the (angular) 
range as a function of the distance of the first detector centre from the position 
corresponding to the limiting angle. The dispersion of errors corresponds to the 
so-called false tracking at the range margins.

Fig. 5. 4, -distances of the first detector centre from the 
position corresponding to ig (dnk -  error at the end of 
measuring range, Anp — at the beginning of measuring 
range)

The error decreases monotonically when the detector is shifted toward the 
angle ig. This procedure, however, may be used in a limited way, since in the 
extreme case the detector is positioned within the reflected beam which ends the 
measurement possibilities. As it follows from Fig. 5, the optimal position is when 
the first detector (inserted in the reflected beam, i >  ig) is illuminated in 25-50%; 
this corresponds to the 0-25 mm distance of its centre from the position ig (Fig. 5). 
Assuming for the sake of simplicity that the midpoint of the first detector covers 
the light-shadow border line (ig) we can estimate the maximal dispersion of errors 
evaluated as being equal to 2 . 4 x l 0 ~ 5. By assuming that the system is not 
balanced for ig corresponding to the angular centre of the range, but for i and the
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corresponding symmetric dispersion of the errors at its border lines, it may be 
estimated that for the nonabsorbing fluids the error should not exceed 1.2 x 10~5 
in the absolute values. In Figure 6 the families of curves P —f  (ig) for different 
detector widths are shown. If for the nonabsorbing fluids the reduction of the 
width of the photodetectors seems to be advantageous, this procedure being 
confirmed, in particular, by the relation dP/di = / (i) (Fig. 7), then in the case of the 
absorbing fluids (Fig. 9) this procedure should take an opposite direction. At the 
width smaller than 1 mm (corresponding to the angle of about 0.0015°) the ratio of 
areas is too small, but it increases distinctly with the increasing width of the slit 
(this affects the dynamics of the device). Another very important conclusion follows 
from the shape of the curves, namely the same value of P occurs on both the sides 
of ig (Fig. 6). Therefore, the construction of servomechamism system must 
guarantee the first readjustment at the same value of P for another value of / will

Fig. 6. Widths of detectors, in mm (for x = 0) vs 
the ratio of areas (of the light fluxes accepted by 
the detectors)

dP/di

- 0.1 Fig. 7. Derivatives of the ratio of areas as a 
function of incidence angle
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not cause the balance on the other side of ig. This situation is shown in Fig. 4, 
where to the angle ip within the optimal measurement region 0.3 < d < 0.5, and 
corresponding to the limiting angle ig and enlarged by the angle of false tracking 
(systematic error) corresponds to the angle ip in the opposite side of ig for which 
the ratio of area is the same. First readjustment at a rapid change of the refractive 
index in the measured medium cannot provoke the system to exceed the balancing 
element position corresponding to ip. If it is the case, then the system will be 
balanced for ip and the random error will be several times higher. This effect is 
especially dangerous for nonabsorbing fluids when a double detector is used. The 
double detector is often used because of its structural convenience, but we shall 
show below that by applying the method we obtain the solution which is not 
optimal for metrological reasons either.

4. Influence of the detector width

Figure 6 shows a family of curves representing dependence of the ratio of areas P 
on i for different widths of the photodetector tracks, while Fig. 7 represents the 
course of the derivative dP/di. It has been assumed that the detectors are in 
contact (two-track detector) and that the midpoint of the first detector lies on ig 
(di =  0). The reduction of photodetector width increases the maximal slope of the 
curve P, which should be advantageous for metrological reasons, but it is not since 
then, as already mentioned above, the value of P decreases and the danger of 
measurement uncertainty increases. The results of the errors of the refractive index 
measurements for different widths S of the detectors under the assumed working 
conditions are shown in Fig. 8* The theoretical error An decreases to zero with the 
detector width diminishing to zero. This, however, has no practical meaning since 
then the ratio of area P decreases to 1 and the measurement becomes impossible. 
From the course of the curve P for different width of the detectors under the same

Fig. 8. Absolute error An for the beginning Anp and the end 
Ank of the measurement range vs the change in detectors width 
S
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working conditions and the assumed limiting coefficient of absorption x — 2 
x l 0 ~ 3 (Fig. 9) it may be concluded that in contrast to the measurement of 

nonabsorbing fluids (for x = 0, Fig. 6) the decreasing width of photodetectors
results in very disadvantageous flattening of the curve P.

Fig. 9. Influence of the widths of detectors in 
mm (at x = 2 x l 0 ~ 3) vs the ratio of areas 
(ratio of the fluxes accepted by the detectors)

5. The effect of detectors spacing (distance between 
their centres-axes)

The calculations were made for a constant detector width (1 mm) and constant 
position of the first detector centre on the limiting angle. From the family of 
curves (Fig. 10) it follows that the greater spacing of the detectors the better is the 
course of the curve P. Analogical calculations have been carried out for the 
assumed extreme value of absorption x =  2 x l 0 -3 (Fig. 11). Also in this case a 
greatest distance between the detectors is advantageous. Figure 12 shows the 
course of the curve P for widths of detectors 0.5 and 0.3 mm, at constant 3 mm

Fig. 10. Influence of the distances of de
tectors on the ratio of areas P, for x = 0
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Fig. 11. Influence of the distances of detectors 
on the ratio of areas P, for x = 2x10“ 3

Fig. 12. Run of the dependence of the ratio of 
areas P at the constant spacing of detectors and 
the extreme widths

spacing, and absorption 2 x l 0 -3. Under these conditions the width of detectors 
very slightly influences the run of the curve P. The lowest effect occurs at the 
vicinity of the limiting angle at the site of measurement.

6. Determination of the optimal positions of detectors

For this purpose the calculations have been performed for five different (from 1 to 
3 mm) spacings of detectors at constant 1 mm detector width and constant 
position of the first detector centre on the limiting angle. Results are shown in 
Figs. 13-15. In all the plots the curves P corresponding to different coefficients of 
absorption are intersecting, forming a distinct narrowing. To the latter there 
corresponds the optimal position of detectors which means that the change in 
absorption coefficient has smallest effect on the error of limiting angle measure
ment. The optimal position of the first detector with respect to the limiting angle is
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Fig. 13. Dependence of the ratio of area P for 
different absorptions at the 1 mm spacing of 
detectors

Fig. 14. As in Fig. 13, but at 2 mm spacing 
of detectors

ig-0.5'
Fig. 15. As in Fig. 13, but at 3 mm 
spacing of detectors
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shown in Fig. 16. By comparing the plots in Figs. 13, 14 and 15 it may be stated 
that the increase of the distance between the detectors is advantageous since then 
the ratio of area P as well as the slope of the curves at the vicinity of ig increase.

In order to determine both the optimal positions of detectors and their 
influence on the error, the calculations have been performed for three values of 
the coefficient of absorption 10“3, 2 x l 0 -3, and 0, and for different spacings of 
detectors. The calculations are illustrated in Figs. 17-19. The relative errors of the 
refractive index measurement are plotted for the assumed minimal and maximal 
values of this coefficient (i.e., for the extreme values of the measurement range) and

Fig. 16. Optimal distance of the first detector from the 
position corresponding to limiting angle (from the light- 
shadow border) depending on the spacing of detectors, 
for the detector width — 1 mm

tf-HO'3

x-0

Fig. 17. Magnitudes of the errors depend
ing on the position d{ of the first detec
tor at 1 mm spacing (width 1 mm), dlop, 
= -0.03
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for the mean value. With the increasing distance between the detectors the errors 
and the effects of the absorption coefficient and position of detectors decrease, 
while that of the refractive index increases, espacially at higher values of absorp
tion.

Fig. 18. Magnitudes of the errors depend
ing on the position dx of the first detec
tor (width 2 mm), dlopt = -0.25

x-2‘10’3

X-1-10'3

}x-0

Fig. 19. Magnitudes of the errors depend
ing on the position dx of the first detec
tor at 3 mm spacing (width 3 mm), diopt 
= -0.37
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Figures 20-22 represent the measurement errors (i.e., the systematic error, in 
other words, the error of the method) calculated for 1, 2 and 3 mm spacings of 
detectors, at the optimal position of the first detector determined previously for 
each case and for different values of absorption ranging within 0-2 xlO-3. With 
the increasing distance between the detectors the values of the errors increase from 
about 0.45% (for 1 mm) to about 0.24% (for 3 mm). The error depends more to a 
greater degree on the coefficient of absorption than on the change in the reference 
index of the measured medium. The absolute value of the relative errors vs the 
distance of the detectors (at a constant width -  1 mm) is presented in Fig. 23.

Fig. 20. Magnitudes of errors at 
optimal position of the first detector 
(width 1 mm), d)op, = 0.03

An[%J

0 .4 -
X-MO'3
x-5'Xr4
X  -1 .5 ·  10'3

x-0
n

- 0.2 - x«M0'3

- 0 .4 -
Fig. 21. Magnitudes of errors at opti
mal position of the first detector 
(width 2 mm), dlopt — 0.25
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Fig. 22. Magnitudes of errors at opti
mal position of the first detector 
(width 3 mm), diopt-  0.37

J _______ L
1 2

, d[mm] 
3

Fig. 23. Absolute value of the relative error as a function of 
spacing of detectors (at a constant 1 mm width)

7. Final remarks

In the work presented the examinations have been restricted to the measurement 
method itself in a given most commonly used, in the author’s opinion, range of 
industrial measurements. With the increasing range of measurement the formulae 
will be changed and relative errors (due to the measurement method) will decrease.

The achievement of a suitable class* of device precision is a secondary task. 
The class of precision is determined by conditions defining this precision as well as 
by the changes in surrounding conditions and the perturbing factors. Determina
tion of the errors of the method and of their optimal dispersion is of particular 
significance for the designers since it gives information how much may be gained 
from the given measurement method, and which precision class is achievable. In

* According to the class of precision defined for the analogue branch URS (system of automatic 
regulation of COMECON countries).
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the discussed case at the maximal, about 0.24'%, error of the method (under 
optimal conditions), by taking into account the errors appearing due to insufficient 
precision of the servomechanism (zone of insensitivity) as well as due to further 
signal processing of the signal, it may be estimated that the class of precision 1 is 
achievable, the class 0.6 is still possible, provided that the mechanical parts are 
produced with a particularly high precision and the potentiometers of highest (0.1) 
class are applied. The accuracy higher than 0.6% within the whole range is hardly 
realizable, and all the information assuring that such an accuracy is possible for 
the measurement range absorbing up to j< = 2 x 1 0 - 3  are simply false.

Some authors [8] propose to classify the analysers by defining the measure
ment range up to x = 2 x 1 0 " 3 as the one of nonabsorbing fluids. This is risky 
since within this range the effect of the absorption on the measurement of n (or 
any related quantity) is significant and changes the inaccuracy due to the method 
itself, from 0.02 to 0.45% in optimal dispersion of errors. If a refractometer is 
scaled for a nonabsorbing fluid, and in particular at the end of the measurement 
range (which is most often the case, while scaling for H20 ) the error for x =  2 
x 1CT4 amounts to about 0.9%· This error is very great, hence it may be seen 

how important is its proper dispersion by optimal spacing and locating the 
detectors and by suitable scaling. The measurement accuracy achievable by the 
method discussed may increase by the factor of 4.

The presented plots (as well as the results of calculations according to the 
respective programs) allows us to design with respect to the measurements an 
optimal double detector of the optimal width and spacing of light sensitive tracks, 
and — moreover — to optimize the location and arrangement of the commercially 
avialable detectors.

8. Conclusion

The analysis has been performed assuming many simplifications. They, however, 
according to the author’s opinion, do not influence essentially the character of 
errors and their optimal dispersion, as well as their (relative) values when the 
measurement range of n or any related quantity is widened or narrowed.

The error due to absorption could be diminished by applying the incident 
beam polarized in the plane perpendicular to the plane of incidence on the 
interface of the media (then the relation r =f (n)  runs more abruptly) and by 
applying the two-fold * reflection to multiply the relation r = / (n) by itself.
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I lp e ^ e j ib H u e  b o im o a h o c t h  aBTOKOMneHcaiiHOHHbix petfipaKTOMeTpHMecKHX 
H3MepeHHH, OCHOBaHHblX Ha HCIK>JIb30BaHHH HBJKHHH nOJlHOrO BHyTpeHHCFO 
OTpaaceHHH
IlpeaMeTOM craTbH «BJiaeTC» o5cyac^eHHe h OTCKyccHH Haa BJiHRHHeM a6cop6uHH H3MepaeMOH cpezibi 
Ha pecJipaKTOMeTpHHecKHe H3MepeHH«, ocHOBaHHbie Ha Tax Ha3bmaeMOM kphthhcckom yrjiy, peajiH30- 
BaHHbie (|)0T03JieKTpHHecKHM cnoco6oM. npoBeaeH noapo6HbiH aHajiH3 ouihGok HanOonee pacnpocT- 
paHeHHoro aBTOKOMneHcaitHOHHoro pe^paKTOMeTpHMecKoro Merom , samuonaiomerocH b H3MepeHHH- 
-npocjie*HBaHHH rpaHHUbi CBeTa h tchh nyHKa, OTpaaceHHoro ot ciuiouihoh cpe^bi b o6jiacTH 
KpHTHHecKoro yrjia. OnpeaejieHbi TeopeTHnecKHe rpaHHUbi bo3mo* hocth (tohhocth) MeTOita b 
o6jiacTH HaH6ojiee nacTO npHMeHHeMbix b npoMbimjieHHocTH H3MepeHHH. Flo othouichhio k o6jiacTH 
wacToro npHMeHeHHH 6bui onpeaeneH cnoco6 onTHMaabHoro Hcnojib30BaHH» MeTo/ia nocpeztcTBOM 
pa3ao*eHHH CHCTeMaTHHecKHx oiiih6ok c H3MeHeHHRMH a6cop6uHH k BejiHHHHe 2*10~ 3. FIpeacTa- 
BJieHbi 3aBHCHMocTH, no3BOJunomHe onTHMajibHO 3anpoeKTHpoBaTb-CKOHCTpyHpoBaTb nepepa6oTKy 
CHrHajia h ypaBHOBeuiHBaHH» aBTokomneHcauHOHHOH cHCTeMbi.
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