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Single cemented doublets without primary aberrations

J. K l e b e , G. Schulze , E. Z em lin

Sektion Mathematik-Physik, Pädagogische Hochsule, “ Karl Liebknecht” , 1500 Potsdam- 
Sanssouci, DDK.

An optical system in air having 3 refracting surfaces is considered. Conditions are given 
in order to make all five monochromatic primary aberrations zero. The corrections are 
obtained by using surfaces of revolution of the second order of which one may be sphe
rical and the two others aspehrical. A method for solving this problem and some 
examples are given.

1. Introduction

Within the last years some methods have been developed to improve the image 
quality of optical systems by using aspheric surfaces. Such methods make it 
possible to reduce the aberrations for a given number of surfaces, or to reduce 
the number of refracting surfaces by keeping the aberrations constant.

An ideal image can be obtained within the range of third order aberrations, 
if a small area of a plane around optical axis and perpendicular to it is imaged 
by using rays, the inclination angles of which with respect to the optical axis 
are small, i.e., when all five coefficients of Seidel’s aberrations vanish at once. 
For that problem examples are given in [1], [2], [3] and [4]; the most recent 
papers are quoted here. Schulz [4] has proved that it suffices to calculate 
a system of 3 refracting (two aspheric and one spherical) surfaces in air to abolish 
5 Seidel’s aberrations for a real image of any magnification. A  method is intro
duced by means of which those systems can be calculated. Only surfaces of 
revolution of the second order are used.

2. Seidel’s aberrations o f rotational-symmetric surfaces 
o f  second order

The vertex of the considered rotational-symmetric surfaces coincides with 
the origin of the system of Cartesian coordinates. We assume that «-axis is 
rotative optical axis of the system. Then the rotational-symmetric surfaces 
of second order are described by

qx2 +  p(y2 +  02) — 2x =  0 (1)
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where g is the vertex curvature and g -  a parameter of the asphere. With the 
choice of g the following surfaces are described:

— sphere : any q — q ^  0,
— ellipsoid: gg >  0,
— hyperboloid: gg <  0 ,
— paraboloid : g =  0, any g =£ 0 .

A  general structure of the 5 aberration coefficients of one surface follows 
from [5] due to specialization

with: C1, Cu , C$lt C$lf C1V -  aberration coefficients of one surface for spherical 
aberration, coma, astigmatism, field curvature and distortion, respectively; 
n, n' -  refractive indices, h , h -  heights from the axis of an aperture ray and 
a field ray in the vertex, respectively, s , p -  respective positions of the object 
plane and the stopplane with respect to the vertex.

The aberration terms written in detail are :

— plane : any q ; g =  0,

(2)

where

t — c, b,

j  = 1 ( 1 ) ,  11(2), 111(3), I V (4)

(3)

with

(Abbe’s invariants)

1 1
-n' = : —— »n s  ns

T  =  (»' —»)g 2(g — g) (aspheric term).

—  »s ns
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Sum of the respective aberration coefficients for each surface is equal to Seidel’s 
aberration coefficients of a system composed of d if fe r e n t  surfaces.

3. Conditions o f  correction for a cemented lens

Using Equations (3), we may separate tip and ftp from the expressions of the 
sum of the optical system. In order to correct the system the 5 aberration terms 
resulting from the separation given above should be reduced to zero:

3

4  =  = 0 ,
./*-1

j  = 1 ( 1 ) ,  11(2), 111(3), I V (4),

with:

ri — rn — — 0,

riv

c,<

yn ~  Kppl KSflf

<*1 ~ S l l S21  a 2 —  1  > «3  —  S 3 İ S2 1

=p'ilP2, ¿2 = 1 ,  <53 = p 3lp'2,

■K-SH ~  a n -K-8H 5 K p p  =  dp K p p  , U p  —  Ctp B p  .

n>+1

^81* K  )

(4a, 4b, 4c, 4d) 

(4e)

The 5 Equations (4) guarantee an image free of Seidel’s aberrations.
An optical system in air, containing 3 aspheric surfaces is determined uni

quely by 12 quantities: 3 vertex curvatures 3 parameters of the aspheres 
¿p, 2 lens thicknesses e1} e2, 2 refractive indices n2, n3 and the positions of the 
object sx and the stop p1.

As all Seidel’s aberrations should be corrected at once, the position of the 
stop cannot be used for correction [6]. For technological reasons as the second 
surface an aspherical one is chosen. Now there remain 10 parameters. The follow
ing ones are given (see [4]): 2 refractive indices n2 and n3, thickness of the first 
lens ex and -  for reasons of symmetry -  s1 and (instead of and /3'), the thick
ness of the second lens e2 (with restriction e2 >  0); the parameters Tx and T3 
of the aspheres and 2 terms X  and Y  are left for correction. X  and Y  are intro
duced to simplify the description. Finally, we obtain a set of conditions of correc-
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tion, depending of 5 mentioned above terms:

3
¿ ^ 1c, +  < - y , r 1T/i) +  r; =  0 , (j =  1 , 2 , 3 ,  4), (5a, 5b, 5c, 5d)

(5e)

/i-1
s

J M v , —
|i=l

with

M-1

o
r* =  r* =  r* =  0, rj =  2  v A v» i

* l 1 1 \rrv> — I------------------h
\% M»+11

t?2
Vi , *?» =  0 , i?3 =  -»

^2 ^3

ax =  l + j j ^ Y —Z ) ,  a2 = 1 ,  a3 =  l  +  i?3F, 

1 “I- *?/i
a/i -“-S/J

_  1 If «2
«2 -1  1k  '

i f«3
« 3 — l L h

=  —  ( X - X )  /
«2 \

«.,
« 3 —« 2■Xf

£ 3 =  —  r ( —  + 4 )  - 4 ,
« 3  \ « 3  *3 /  S3

1 / r ~ x  M  1 y  1 ( X  1\
Pl « 2 - 1  \ ax S i / ’ 02 « s—»2 ’ e* « 3 - 1  \a3 h !

4. Solution o f the system o f equations

First, one determines e2 by solving the system of Eqs. (5) so that Petzval’s 
sum (5e) becomes zero

es =  n. (r  Q+l/*;) (6)
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where

Q =  №3(rlvi + / 1V2)·

The parameters Tx and T3 of the asphere are determined so that astigmatism 
and coma vanish:

m a3B - r ] aK
■*1 -  T~Q ’

m a1R  — r]1K  
x  3 — Y~a >

«3 ha
with

(7a)

(7b)

3 3

K  =  X K f,R„ 1 E £  el CK> P =  Vi-Va +  ViVa^·
i»=l n=\

In consequence, e2, Tx and Ta are expressed by two variables X  and Y  ((6), 
(7a), (7b)). Two equations are left for determining X  and Y:

3
2 X = 0  (spherical aberration), (8a)
/i-l

3
= 0  (distortion), (8b)

with

cii EH ~  Vi-Ii) I Ksf, +  ̂ IV#.» H =  1 >3 ,

<J2(a3«3 - » ? 3 ) ( a i e 2 - » ? i ) + » ' i v 2 J  A* =  2 ·

In general, Equations (7a) and (7b) cannot be solved by algebraic methods, 
but numerical methods must be applied to get pairs of solutions (X , Y). Then, 
all the data can be determined for a cemented lens with three surfaces free of 
Seidel’s aberrations. While performing the calculations the condition e2 >  0 
should be taken into account.

5. Numerical analysis

In order to compare the above system of equations with that calculated by 
S ch ulz [4] the following data are assumed:

n2 — 1.7, n3 =  1.5, ex = 1 ,  s1 =  —2, s3 =  2.511. (9)

The pairs {X , Y) can be separated by elementary methods under the prerequisite
e2 <  0 .
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Figure 1 shows the result. To prevent a too large vertex curvature, especially 
of the surface in the middle of the cemented lens X  should vary from —0.2 to 
+0.2 , Y  being arbitrary. This situation is shown in Fig. 2, which is a part 
of Fig. 1, for this range of the values of X.  Equations (8a) and (8b) have no

solution. Without this restriction a vertex curvature can be determined by setting 
the spherical aberration and distortion zero within Seidel’s range. A  computer 
was used for both a systematic searching, root tracing for one equation and sim
plex method for the root finding of the system of equations. For the given 
parameters (9) 3 systems of solutions are obtained. One system is very similar 
to that given by S ch u lz  [4] (see Table).
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Fig. 3. Illustration of system 1 (a), system 2 (b), system 3 (c), and Schulz system [4] (d)

Figures 3a-d show those systems. It should be not iced that in case of hyper 
bolic or parabolic surfaces aspheric ones with small vertex curvatures may be 
of large free diameter. In all 3 systems radii of the refracting surface in the

1/01 1/02 1/03 ei Qi ®2 ß'

System 1 -1.0312 0.1814 -0.4045 9.8009 -1.2609 0.9545 -0.3478
System 2 0.5685 0.2196 0.9083 0.5459 -6.0964 2.5410 -5.6180
System 3 
Schulz

-2.2779 0.1766 -0.5333 98.3363 -0.3312 1.8880 -0.3312

system [4] -1.182 0.184 -0 .430 14.321 -1 .009 1.106 -0 .333

middle are very small. Here, the limited applications of a system with only 
3 surfaces are obvious, because all the possible parameters are already used for 
correction and none are left for shaping the system.
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Одиночный клеевой дублет без аберрации первого порядка

Обсуждена оптическая система в воздухе с тремя преломляющими поверхностями. Представлены 
условия для зануления всех пяти монохроматических аберраций. Коррекция была получена путем 
применения вращательных поверхностей второй степени. Одна из них может быть сферической, 
но две остальные должны быть асферическими. Представлен метод решения этого вопроса и он 
иллюстрирован примером.


