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Analysis of power density distribution at the vicinity of 
focus for aberration-free focusing systems of the high 
speed*

J an  J a b c zy ń sk i, Zd zisł a w  J a n k ie w ic z

Institute of Optoelectronics, Military Technical Academ y, Warszawa, Poland.

Two integral transformations describing the optical field in the vicinity of the focus 
of aplanatic optical systems of high speed are presented. The results of both the trans
formations for the field on the axis have beem compared. Focusing of the laser radiation 
after its passage through an axicon have been calculated for the cases of the rectangular 
and Gaussian entrance beams and the obtained results discussed.

1. Introduction

The knowledge of the field distribution at the vicinity of focus point of the opti
cal system is of a great practical importance, for instance, for designers of the de
vices employing very high power densities, such as laser micro-processors, laser 
coagulator, and so on. The field distribution at the vicinity of the focus depends 
on the optical quality of the focusing system and on the entrance beam para
meters. For the uncut Gaussian beams and optical systems of long focal length 
the Gaussian beam formalism [1] is usually used. Based on the scalar diffraction 
theory the field distribution at the vicinity of the focus is described by the 
Fresnel transformation [2] of the entrance field. The Wolf integral transfor
mation [3-5], which takes account of the vector character of entrance field, is 
used for the optical system of high speed. The influence of the Gaussian beam 
apodization on the field distribution in the focus vicinity has been analysed in 
[5] for various numerical apertures of the lens.

In the present work the Wolf transformation has been employed to calculate 
the focusing of the laser beam after its passage through the axicon. The results 
of the Wolf transformations have been, moreover, compared with those obtained 
from the exact relations derived by the authors for the field on the optical axis 
at the focus vicinity.

2. W olf integral transformation

Taking account of the vector character of the entrance field, Wolf gave in paper 
[3] the integral transformation describing the relationship (illustrated in Fig. 1)
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between the field E(RP) in the vicinity of the focus and the field UB(S), given 
on the segment of sphere Q, the centre of which is in the focus F  and the radius 
equal to the focal length / ,  this relation may be written in the following form

E(RV) =  -  t/8(S)exp SRp) dQ (1)

where: X -  wavelength,
Q -  region of integration,
/  -  focal length of the optical system,
S -  unit vector normal to the sphere

SRP = i ? pcose =  -Rp(cos<9cos0p +  sin0sin0pcos(9P — <pp)).

Fig. 1. W o lf transformation of the field 
U B, given on the sphere Q  into the 
field E

In order to determine the dependence of UB upon the entrance field we assume 
that the entrance beam is collimated and linearly polarized, of axially symmetric 
power density distribution. We assume, moreover, that sine condition is satis
fied by the optical system. Then the dependence between the amplitude of the 
entrance field p(p) and that of the field |17S|, illustrated in Fig. 2, is given by 
the expression

a{0) =  \Ua(0, <p) | = p (/s in 0 )co s1/20 . (2)

The above assumptions allow us to perform integration of the expression 
(1) with respect to the angle cp in order to obtain (similarly as was the case in 
papers [4-5]) formulae convenient for numerical calculations of Cartesian 
components of field E(Rp)

Ex =  — iA0(I0 + 12 cos 9?p) 

Ev =  — L40i 2sin29?p,

E. =  - 2 A 0I1coS(pv

(3 )
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where:
©2

I0(u,v) — J p (/s in 0 )cos1/20sin0Jo(psin0)exp(iw cos0)(l+  cos<9)d0
©i

©2
I 1(u,v)  =  j  p (/sin0)cos1/20sin0Jx(vsin0 ) exp(iucos0)dO 

©1
©2

I 2(u,v) =  J p{f sin 0)cos1/20sin0 J2(v sin 0) exp (iu cos 0)d0  
©1

2 it ,—z--------- =·-
A0 =  7i//A, m =  —  zp , «  =  — V*p +  2/p»

J0, J j, J 2 -  Bessel functions of first kind.

(4)

Fig. 2. W olf transformation of the power 
density in the entrance beam  by an 
ideal optical system

Next, by employing (3) we can obtain the following formulae for the time- 
averaged electric energy density

G(u,v,  cpp) =  j^r - (EE*)= r“ (l-Zol2 +  4|I1|2cos<pp

+  |I2|2 +  2R e(I0Z2)cos2?>p). (5)

The formula (1) is essentially the Fourier transformation of the field UB given 
on the space S into the field E  given on the space Rv. For small 0  it is reduced, as 
shown in [3], to the commonly used Fresnel transformation for scalar field. 
The Wolf transformation is valid also for high numerical apertures, then how
ever, the restrictions and approximations of the method discussed in [3] should 
be taken into account. Having this in mind, an attempt has been made to deter
mine the range of its applicability by deriving rigorous expression for the field 
on the optical axis.

3. Field on the optical axis

Starting directly from the Kirchhoff formula the authors obtained a rigorous 
expression for the field on the optical axis, presented in detail in paper [6].
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Using the denotations introduced in Fig. 1 the expression may be put in the 
form

+
1 — <5cos(9\ 
~B(0

5cos0\ / 2n , A
— )e x p ( ,T / ( B ( S .a ) - l ) )

XSinOdOdy (6)

where Iiv -  distance from the focus measured along the optical axis, 

<5 =  Rplf, B{0 ,  6) =  y/l +  <52 —2<5cos6>.

Fig. 3. Transformation of the 
power density in the entrance 
beam by an ideal optical system  
according to formula (7)

When accepting the assumptions concerning the entrance beam and quality 
of the optical focusing system, similar to those in the case of Wolf transforma
tion, a different relationship between the entrance field p(g) and the field on 
the sphere illustrated in Fig. 3 has been proposed

a(0) =  \Ua(0,(p) \ =  p (/tan0)cos~3/20 . (7)

This relationship seems to be more advantageous for high speed optical system. 
Taking account of (7), the expression (6) after having beam integrated with res
pect to cp has been transformed into the final formula of the following form

E(RP) =
1 — <5cos0 \
B ( 0 , ô )  J

x

]<L ? v U i ^ e ) K m 9 )  ( ,
1 J  ‘  1 B (0 ,  Ô) \®1

exp |i ^ - f [ B { 0 ,  ô) — l ) j tan0cos1/20d0 (8)

where
n/2

dcp
j  Vl — /32cos2ç5

-  complete elliptic integral of second kind.

For small numerical apertures the expression (8) gives the results identical 
with those of Wolf transformation. It seems to be true for a wider interval of 
variability of Rp.
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4. Results of calculations

By taking advantage of the above methods we have calculated the focusing 
of the laser beam after its passage through the axicon. We assume for it the field 
transformation by axicon, illustrated in Fig. 4

P2(Q)
R — g

Q
(9)

where: g2(g) -  power density distribution in front of axicon, 
R -  radius of axicon,
P2(q) -  power density distribution behind the axicon.

Pig. 4. Transformation of the power 
density in a Gaussian beam b y  an 
axicon (w -  beam radius, q -  distance 
from the optical axis, _R -  radius of 
the axicon)

The calculations have been carried out for the rectangular and the Gaussian 
beams (Fig. 4). It has been assumed, moreover, that lens speed is//3, wavelength 
A =  0.6328 [i.m and the focal length f  — 50 mm.

The calculation results of the field on the optical axis illustrated in Figs. 
5a,b show a high similarity. It seems that for the case of optical systems hav
ing not too high speed the differences between various ways of energy transfor
mation by the optical system (formulae (2), (7)) are insignificant.

Figure 6 illustrates the results of calculations of field distribution in the cross- 
sections distant from each other by 50 p.m, starting from the focus point. The 
left and right hand side columns are referred to the rectangular and Gaussian 
beams, respectively. The relative maximum power density at the given cross- 1
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section with respect to the maximum power density at the focus is denoted by 
g. It may be seen that in both cases the prevailing part of the beam power is 
led to the focus by the region restricted by the broken lines and corresponding to 
the geometrical projection of the entrance field onto the focus point. The diffe
rences between the rectangular beam and the Gaussian beam are manifested in 
the position of the local maxima of the power density. For the rectangular beam

very narrow maxima are positioned on the optical axis, they however, take 
a negligible part in the transmission of energy to the focus. For the Gaussian 
beam the maxima are located in the region limited by the broken lines, and the 
power level observed on the optical axis is relatively low. The only exception is 
the cross-section at 200 ¡¿m distance from the focus, where there appears a broad 
maximum at the vicinity of the optical axis, which is in contrast to the corres
ponding situation for the rectangular beam.
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Fig. 6. Distributions of the relative power density Q in the cross-sections distant by 50 [im 
from one another, starting from the focus vs. the distance from the optical axis: left hand 
column -  rectangular beam, right hand column -  Gaussian beam (g -  ratio of the maximal 
power density at given cross-section to the maximal power density at the focus)
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5. Final remarks

The calculations of the focusing of the laser beam after its passage through 
the axicon were performed in order to evaluate the effects occuring in the 
optical system of a laser device designed for perforation of the iris [7, 8].

The experimental evaluation of the field distribution for a rectangular beam 
confirmed quantitatively the correctness of the calculations, while the quanti
tative comparisons with experiment provided no positive result due to aberra
tions of axicon. The observed asymmetry of the field distribution behind the 
axicon and the diffraction occuring on the aperture diaphragm have caused 
the spread of the focus and the asymmetry of the distribution in particular 
cross-sections. It should be also remembered that when such transformation 
are applied, the aberrations of the optical system and the influence of the edges 
of the integration are neglected.
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Анализ распределения плотности мощности поблизости фокуса безаберрационных 
фокусирующих систем с большой яркостью

Представлены две интегральные трансформации, описующие поле поблизости фокуса очень ярких 
апланатных оптических систем. Сравнены результаты обеих трансформаций для поля на оптичес
кой оси. Проведены расчеты фокусировки лазерного излучения после перехода через аксикон (ах1- 
соп) для прямоугольного или гауссового входного пучка а также обсуждены полученные результаты.


