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Propagation of subpicosecond soliton-like pulses 
in optical fibres
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We investigated the possibility of propagation under the influence of the Raman effect of certain 
subpicosecond soliton-like pulses which are solutions of a perturbed nonlinear Schrddinger 
equation describing the propagation of light waves in monomode optical fibres. We calculated the 
propagation distance limits of long-haul transmission systems caused by the intrapulse Raman 
scattering soliton timing jitter and the amplified spontaneous emission noise induced timing jitter.

In long-distance soliton transmission systems, subpicosecond pulses are required for 
bit rates higher than 100 Gbit/s. The major difficulty that impedes on stable 
subpicosecond pulse propagation in fibres is the presence of the soliton 
self-frequency shift caused by the intrapulse Raman scattering (IRS) effect [1], The 
IRS effect causes a downshift of the mean frequency of the pulse and thus moves it 
outside the minimum loss window. Although this deleterious effect can be partially 
overcome with the use of the adiabatic soliton trapping in an active transmission line 
with a finite optical-gain bandwidth, subpicosecond solitons were successfully 
transmitted only over a few tens of kilometers [2].

When soliton-like pulses are used as natural bits of information in ultralong 
communication systems, transmission distance limitations are imposed by the 
presence of random timing jitter caused by the Gordon—Haus effect [3] and the IRS 
effect [4]. Recently, by using sliding-guiding filters, a substantial reduction of the 
Gordon—Haus jitter, which is the main limitation of the information capacity of 
long-distance picosecond soliton transmission systems, was reported [5].

The model equation [6] for the complex pulse envelope amplitude of the light 
wave in monomode optical fibres in the subpicosecond-femtosecond domain is:

( 1)



198 D. M ihalache et al.

where:
z _ !/y? T _  t ~ zlva N2 _ n2(P0P0Tl

~ T l '  1 T0 ’  "  cAM\P2\ *

- P i  2 n' I t' 2 n' 4r' T*
£ _ 6iwr„' “ cu0T0+ n7i+ r7V a 2 _ o 0r0+ nr0+ rT0’ T* - T0 (2)

In Equation (2), P2 is the group-velocity dispersion coefficient, /?3 is the 
third-order dispersion coefficient, vg is the group velocity, T0 is the pulse width 
(TpwHM =  1-763 T0), n is the linear index of refraction, n2 is the Kerr nonlinearity 
coefficient, co0 is the carrier frequency, c is the velocity of light, Ae{[ is the effective 
core area, P0 is the peak power of the input pulse, r is the frequency-dependent 
radius of the fibre mode [7], and TR is related to the slope of the Raman gain (7^ ~  
6 fs). Primes denote the derivative with respect to frequency, and all parameters are 
evaluated at carrier frequency co0. Equation (1) does not take into account the fibre 
loss because it is assumed to be overall compensated by the technique of distributed 
amplification.

We notice that the soliton-like solutions [8] of Equation (1) are not true solitons 
for every ratio of the parameters e, aA and a2 but for e : cti : a2 =  1:6 :0 (Hirota 
equation [9]) and for e:cii :oL2 — 1:6:3 (Sasa-Satsuma equation [10], [11]).

We see from relations (2) that the coefficients of higher order nonlinear terms are 
approximately equal a t ~  a2. If the ratios of the parameters e, aA and a2 are 1:2:2, 
the soliton-like solution of Eq. (1) for soliton number N = 1 will not exhibit any 
frequency shift and it has the simple form

q(T,Z) = f/sech v 1Z -  T0)]exp(zxZ+i<p0) (3)

where: v 1 =  etj2, x  =  -r j2.

The ratio 1 :2:2 can be achieved, for example, for the following two sets of the 
fibre parameters: P2 =  —2.5 ps2/km, /J3 =  —0.012 ps3/km or p2 = —0.5 ps2/km, 
Pi =  —0.0025 ps3/km at X =  1.55 pm.

Following the same procedure as in [3], one can obtain for a 10“9 error rate the 
following upper limit on the system length—bit rate product due to the ASE noise 
random timing jitter: L?RS = 3.857 x 1022 km3 GHz5, where L is the overall length 
of the system, and R is the bit rate. The following set of parameter values: 
Ae{{ = 25 pm2, T = 0.0461 km "1, n2 = 3.18 x 10“ 16cm2/W, P2 = -  0.5 ps2/km, 
Pi =  —0.0025 ps3/km, X =  1.55 pm, \D\ =  0.4 ps (nm*km), TFmmR =  0.1, twR = 
1/3 (2tw is the window of detector acceptance for a soliton), yields the maximum 
distance L = 10810 km for a bit rate R = 125 Gbit/s. We notice that in the case of 
picosecond solitons, for the above fibre parameters, the Gordon —Haus formula for 
the transmission system length—bit rate product gives the following result: 
L3R3 = 9.86 x 1013 km3 GHz3. This formula holds to the maximum distance 
L =  4620 km for a bit rate R = 10 Gbit/s.

In order to study the IRS soliton timing jitter, one has to evaluate first the 
self-frequency shift for the solitary wave (3). Thus, for e: : a2 =  1:2:2, by
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propagating the input pulse q(T, 0) =  rjsechrjTin the presence of the Raman term 
over 1200 dimensionless units (corresponding to a distance L = 500 km for a fibre 
with |D| =  0.4 ps/(nm-km)) we obtained by numerical simulations the following 
self-frequency shift:

dvo
dz = 0.0051 ff2[ps2/km] 

T’fwhm [ p s 4]
(4)

where v0 is the mean soliton frequency and z is the distance along the fibre. It is easy 
to show that for a soliton with TFWHM = 800 fs and for relative energy fluctuation 
\AE\/E = 10“2, the pulse centre fluctuates by 0.8 x 10/3 ps after a distance of 85 km.
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