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A double exposure interferometry method has been applied to investigate the mechanical 
properties of human tibia under oblique bending. The bone rigidity G and Young’s modulus 
E have been calculated from the obtained interferograms. The results are compared with Young’s 
modulus values E =  7—18 GPa obtained by other authors.

1. Introduction
The orthopaedist deals with many solid structures. They may be composed of 
biological materials such as bone and cartilage. The most important is a precise 
knowledge of the properties of these materials under loading conditions encountered 
in the human body. They may be characterized by mechanical parameters such as 
Young’s modulus (elasticity modulus) E, rigidity G and the area moment of inertia.

There have been a number of studies over the last decade devoted to the 
determination of the elastic properties of the bone. Some of them used holographic 
interferometry [1], [2]. However, they applied holographic interferometry to 
qualitative analysis of deformations of bones [3] or skulls [4].

The purpose of this work is to present the holographic interferometry method 
applied to determine elastic modulus of the human tibia. The results are compared 
with the elastic modulus values obtained by other authors [5],

2. Experiment

The object of our interest and measurement is a human tibia obtained from a white 
male a few hours post mortem and immersed in formalin for 48 hours. After that time 
it was carefully cleaned of all soft tissuue and bone marrow. The clean and dry tibia 
was placed on cylindrical holders mounted on an antivibrational table.
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According to EVANS [6] the difference in Young’s modulus between dead and 
living bone is negligible, so the dead bone has been chosen for this experiment 
(assuming this does not affect results).

Using holographic interferometry (double exposure technique) the bone deflec­
tion has been recorded. In double exposure technique, two holograms are recorded 
on the same holographic plate, for two different values of the bending moment 
When reconstructed, the two holographic images interfere with one another and 
the resulting interferogram image shows fringes representing the deflection. The bone 
undergoes a bending process by applying force in the middle of i t  For different 
interferograms the differential load between two exposures was in the range of 
4—5 N, which allowed obtaining sufficient fringe density. Increase of the loading 
force was applied within about half a second and the time interval between two 
exposures was 5 s. The value of the preload was equal to 50 N. The measured bone 
length was limited by the cylindrical holders and was equal to 126 mm (Fig. 1). 
Figure 2 presents a holographic system used in this experiment The argon laser at 
a wavelength of 514 nm and output power of 500 mW was used as a light source. The 
bone was illuminated from the top by the fiber bundle and the light scattered by the 
bone surface was directed to the recording plane by a big mirror placed above the 
bone. The bending force acted in the same direction as the illuminating beam. 
Holograms were recorded using the Rottenkolber photothermoplastic camera.

BS Sh

Fig. 1  Optical arrangement Sh -  shutter, BS -  beam splitter, FB -  fibre bundle, GF -  gray filter, Lx, 
L2 — lenses, M x, M2 -  mirrors, TH — thermoplastic plate, F  — bending force, Tb — human tibia

Because of the asymmetry of the bone’s cross-section, the interferograms were 
recorded for three different force orientations in respect of the cross-section of the
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bone, as shown in Fig. 3. It means that, after a series of recording the interferograms, 
the bone was turned around its longitudinal axis and the next series of interfero­
grams were recorded. In all the cases the force acted in the cross-section plane, 
placed in the middle of the bone and perpendicular to the longitudinal bone axis. 
Figure 4 shows the examples of two interferograms recorded for two different 
orientations of the bending force. The interference fringes correspond to the bone 
deflection.

i

Fig. 3. Three different directions of loading force in the middle plane of the bone cross-section

Fig. 4. Example of holographic interferograms for two different orientations of bending force in respect of 
the bone cross-section

After recording all of the interferograms, the bone was cut through the middle in 
direction perpendicular to the longitudinal bone axis. Then, the cut and polished 
cross-section of the bone was photographed. The photographs obtained were used to 
calculate the geometrical parameters of the bone’s cross-section.
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3. Analysis

Knowing the value of displacement d between neighbouring fringes, equal to 
2/2 =  257 nm, and the fringe number at the fixation points N  =  0, the diagrams of 
the bone deflection p(x) as a function of the bone length have been obtained. The 
deflection p, measured directly from the holographic interferograms, presents the 
projection of the total displacement w on the loading direction.

The last-square method was used for numerical approximation of the experimen­
tal deflection data obtained from holographic interferograms by means of a polyno­
mial. The interferograms were scanned by HP ScanJet Plus scanner and the position 
of the fringe centres along the longitudinal axis of the bone were taken into account

An example of the polynomial least-square approximation used to analyze the 
experimental data is presented in Appenxix L In all cases of the analyzed 
interferograms, the 4th order polynomial showed a very good approximation of the 
experimental data and was taken for further calculations.

Since the deformation between all inner points of the bone can be neglected, the 
rigidity can be described as for a beam loaded in the middle. In the general case, 
the differential deflection equation of the bending beam is

^vv(x)=  M M
dx2 EI(x)

where: w(x) — beam deflection, M(x) — bending moment, J(x) — area moment of 
inertia of the beam cross-section, E — Young’s modulus, x — coordinate along the 
beam longitudinal axis.

Because of the bone asymmetry, mentioned previously, the load direction and the 
principal axes are different In that case, the oblique bending must be considered and 
the Eq. (1) must be changed into a set of two equations, where the components of the 
bone deflection (projection of the deflection vector on the principal axes) were used:

d2v M t(x) 
dx2 ~  EIy(x)' (2a)

dzu _  M y(x) 
H x2 ~  E IJ p c )9

(2b)

where: u, v — components of the total displacement vector on the principal axes, 
Iz(x), Iy(x) — principal moments of inertia of the cross-section area, M y(x), M z(x) 
— components of the bending moment on the principal axes.

The area and the principal moments of inertia of the bone’s middle cross-section 
were calculated numerically from its scanned photography.

The area of cross-section was divided into 1000 elementary subareas, and the 
computer program determined the total area, position of its centre and the respective 
principal moments of inertia. Knowing the values of those moments and the position 
of the cross-section in a chosen coordinate system, the following equation may be 
used to find the orientation of the neutral axes:
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tani/r
I,(x)

ctan cp (3)

where: tp — angle between load direction and the principal axis, ij/ — angle between 
the principal axis and the neutral axis.

Fig. 5. Tibia cross-section coordinate system and the definition of the parameters

The tibia cross-section in the bone middle point is presented in Fig. 5, the 
orientation and definition of the geometric parameters are indicated. After in­
troducing the parameter k

k =  /,//,■  (4)
and the polar moment of inertia

h  =  K + h >  (5)
the principal moments of inertia can be expressed as

h

k + 1

(6)

and

Ir =
I ok
k + l (7)

For all interferograms the fourth order polynomial describes the measured deflec­
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tion diagram with a very good accuracy. The use of the higher order polynomial 
(fifth and sixth) as shown in Appendix I does not increase the accuracy of 
approximation. The polynomial has the following form:

p = a + bx + cx2+dx2 + ex*. (8)

From the geometry presented in Fig. 5 one gets

p = wcos 0 =  u2+v2 cos 9 (9)

where 0 — angle between load axis and the direction of the total displacement 
The components of bending moment caused by the loading increase between two 

exposures may be expressed as:

Afz =  AFxcoscp, (10a)
M y = AFxsuup (10b)

where AF — bending force.
Applying Equations (10), (6), (7) to Equations (2a) and (2b) gives:

d2v AFcosq>-x(k + 1) 
dx1 E I0(x)
d2u AFsm(p-x{k+l) 
dx2 E I0(x)k

(Ha)

(lib)

From Figure 5 one can deduce the following relations between the variables w, u, v, 
P, <P> 0:

wcos d =  p,

u =  wcos (q> — 0) =  —̂ -rCOS ((p — 0), cost/

v =  wsin(<p — 6) = sin(<p — 6). 
cos 0

( 12)

Using them, the following equations can be written:

d 2V * ( cos ((p — O)^
dx2 ~ dx2\ P cos0 )

d 2U * ( sin ((p — 6)\
dx2 ~ dx2\ P cos0 )

(13a)

(13b)

For the next transformation the assumption that the angles q> and 0 do not change 
significantly along the x-axis has been made. This allows us to rewrite (13) as:

d21 _
dx2 ~

C° - (P (2c + 6 dx +  12ex2), (14a)

d2u _
dx2 ~

sm(q> — 6) 
cos 0 (2c+6dx+12ex2). (14b)
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Combining Equations (11) and (14), one obtains:

E I0(x)
M z(x)(k+1) (k + i)xAF&unpcosQ

(15a)d2v/dx2 “  (2c+6 dx + 12cx2)cos(<p -  0)’

E I0(x)
M„(x)(fc+1) (fc + l)x JFsinip cosfl

(15a)'  (d2u/dx2)k (2c -1- 6 dx -1- 12ex2) sin(<p — G) k’

From these equations the rigidity G(EI0) and Young’s modulus in the middle point 
of the cross-section of the human tibia have been calculated.

4. Results

The calculation of Young’s modulus from Equations (15a) and (15b) gives two values 
(E' and E") of the averaged elastic modulus in the bending test, for each force 
orientation. The Table presents the calculated averaged Young’s modulus for three 
different force orientation, as well as the respective averaged rigidity G.

T a b l e

A  [cm2] 1,  [cm4] /, [cm4] E  [GPa] E  [GPa] G' [Nm2] G" [Nm2]

206 1.11 0.78 7.7 9.1 145.5 171.7
11.8 11.8 223.5 223.8
126 142 2382 269.1

5. Discussion

Van Buskirk and Ashman [5] reported simular data for the human tibia. 
Comparison between their data and results presented in this paper shows that 
Young’s modulus values are in agreement with their values. Kasprzak and 
PODBIELSKA [3] investigated the human tibia rigidity and the results presented in 
their paper are in full agreement with our results. P iziali et al [7] and M iller and 
PURKEY [8] measured the tibia cross-sectional area and the tibia principal moment 
of inertia. Our results correspond with the latter paper, and they are a little bit 
smaller when compared with the former one.

The most important result presented in this paper is the possibility of using the 
holographic interferometry method for nondestructive measurement of the human 
tibia Young’s modulus and the rigidity. One should mention that, according to the 
bone anisotropy and unhomogeneity, the measured modulus presents some average 
value along the bone axis. The values obtained were calculated for one cross-section 
— in the middle of the bone, but the similar elastic modulus in the bending test for 
the whole bone can easily be predicted knowing the change of the area moment of 
inertia along the bones’s longitudinal axis, the function describing the bone 
deflection along that axis, and the direction of loading. Also this paper shows the 
dependence between the cross-section principal moments of inertia values (related to
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the shape of the bone) and the angle 0 introduced in Eq. (9). It turned out that if the 
ratio of the principal moments of inertia k =  1.4, the cos 0 = 0.986, so the deflection 
p, which is used to determine value E, introduces less than a 2% error into the 
calculation. Because of that the right side derivative in Eqs. (14a) and (14b) can be 
calculated assuming independence of 9 and q> on x. Our calculations are presented in 
Appendix II.

Even with that assumption our results are in agreement with the values obtained 
in different techniques and the differences are mostly due to:

1. Differences of bones from different individuals, which may depend on several 
variables (weight, height, sex, etc.).

2. Small changes in bone elasticity connected with drying (the time interval 
between bone preparation and the measurement).

3. Different load values — in our method the stresses are low, in traditional 
stress-strain experiment, loads are much bigger.

No attempt has been made to account for changes in bone density. The bone was 
considered to be uniform and homogeneous for these calculations in a similar way as 
did L e v is  [9], P i o t r o w s k i  and W i l c o x  [10], R y b i c k i  et al. [11].

Summing up, one can conclude that the application of holographic methods can 
support and complement other biomechanical techniques.

Appendix I

This Appendix presents an example of the polynomial least-square approximation 
applied to determine the deflection of the bone, recorded on the holographic 
interferogram shown in Fig. 5a. Figure II shows the experimental data points 
representing the centres of the fringes and third order polynomial approximation in 
the form

E3(x) = a3 + b3x + c3x2 + d3x 3 (II)

with the coefficients:

a3 =  -0.18020203, b3 =  0.13249724,
c3 = -0.00106867, d3 = 3.42773278.

Fig. 11. Deflection diagram as a function of the bone length. +  +  +  experimental points, 
analytical fit (third order polynomial)
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Fig. I I  Deflection diagram as a function of the bone length. +  +  +  experimental p o in ts,------analytical
fit (fourth order polynomial)

Figure 12 shows the same experimental data points and fourth order polynomial:

F4(x) =  a4+fc4x + c4x2+ J 4x3 + e4x4 (12)

with the coefficients:

a4 = 0.03087475, 
b4 =  0.09082546, 
c4 = 0.00057086, 
d4 =  -0.00002031, 
e4 = 8.13228017* 10“8.

The polynomial coefficients calculated for fifth and sixth order polynomials are
respectively equal to:

a5 =  0.02035045 and a6 =  -0.00697457
bs =  0.09394257 b6 =  0.10657675
c5 = 0.00038317 c6 =  -0.00076093
ds =  -0.00001621 d6 = 0.00002269
e5 = 4.4430421* 10" 8 e6 = -5.52033894-10
f s =  1.16695288* 10—10 / 6 =  4.31696817-10"9 

g6 = -1.10694618-10

The integral along the bone length in the form 
126

c (» )=  s CF.+l(x)-F .(x)]2dx  (13)
0

where n =  3, 4, 5 was chosen to determine the goodness of the polynomial fitting. 
The integrals calculated for higher order polynomial approximation give 

126

f [F4(x ) -F 3(x)]2dx =  1.77168774,
0

126

1 [F5(x ) -F 4(x)]2<ix =  0.0302215,
0
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i  lF6(x ) -F 5(x)¥dx  =  0.0378981.
0

It can be seen that the difference between values of the integral (13) for fourth and 
fifth polynomial orders is more than two orders of magnitude smaller than the 
difference between the respective third and fourth orders, and almost the same as 
between fifth and sixth.

Therefore, the fourth order polynomial was used to approximate the experimen­
tal deflection points. Higher order polynomials do not increase the accuracy of the 
approximation.

126

Appendix II

In double-exposure holographic interferometry, the interference fringes represent the 
displacement of the tested object in the direction perpendicular to the holographic 
plate. Because of the asymmetry of the bone cross-section and its variable geometry 
along the longitudinal bone axis, the direction of the bone’s total displacement w and 
the displacement p recorded on the interferogram may not lie on one line. Both 
directions form the angle 0, as shown in Fig. 5 where the angle dependence is as 
follows:

0 = <p +  ̂ -9O °. a n )
The ratio p/w can be rewritten as follows:

~ =  cos 0 = cos(<p — 90°) =  cosJ^> + arctan^ctan<p^ — 90° J  

=  sin + a rctan ̂  ctan (arctan (>/^))^ J  · ai2)

It shows the correlation between the shape of the bone cross-section (Iz/Iy), total 
displacement w and the displacement p, recorded in the holographic method. From 
the condition on extremes of the function (II2), the maximum difference between the 
total and measured displacements as a function of angle 0 can be determined

d(cos0) /  fc(l + ctan2<p)\
~TT = C0S(<P + arctaD(toan̂ Y  "ITfcWyj j = °- (113)

In order to satisfy the above equation, the following conditions should be fulfilled:

cos(<p +  arctan(fcctan<p)) =  0,

fc(l + c ta n »  
l +  /c2ctan2<p

014) 

(II5)

1. For k = 1, any angle q> gives cos0 =  1, it means that for the circular 
cross-section (IJIy =  1) the direction of the total displacement coincides with the 
direction of measured displacement.
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2. For fc/1, Equation (115) leads to the condition

Pmin = arctaniv^) (H6)
where <pmia denotes the angle between the force and the principal axis direction, for 
which the values of the total displacement component p of the given total 
displacement vector w reaches its minimum.

So, the minimum ratio p/w is equal to

cos 0mia =  cos(2arctan (y/k) — n/2). (II7)

Fig. III. Dependence between parameter k and cos0

Figure III shows the graph of the function (II7). The values of k in the central 
cross-section of the examined bone amounted to 1.42. It corresponds to the angle 
(pmia =  49.79° and the minimum value of cos0min =  0.986.

The results show that the accuracy in determination of the bone displacement 
during the experiment is about 2% in the middle of the bone (where k = 1.42).
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