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Example of spatial frequency shifting effect 
in Leith—Upatnieks holography

I. Wilk

Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50—370 Wrocław, 
Poland.

An example of spatial frequency shifting in the real image of Leith—Upatnieks holography is 
shown. The due analysis points out that the shifting effect is responsible for the deformation of the 
real image. This is shown in the case of discrete angular spectrum and continuous angular 
spectrum of the object, but reduced to the situation when the reference and reconstructing waves 
are identical, both being plane.

1. Introduction

The textbooks on holography [1] —[8] give various explanations of the deformation 
suffered by the so-called real image obtained in the Leith—Upatnieks geometry. 
Below, you will find a “natural” explanation of the deforming effect based on spatial 
frequency treatment of the problem involving the concept of angular spectrum. For 
the sake of simplicity, the considerations will be reduced to the case when the 
reconstructing and the reference waves are identical to each other. Then, the 
structure of the optical field (wave) emerging from the hologram is described by the 
well known formula

U(x,y) = rt(x,y) =  k(r|r|2+ r|u |2 +  |r|2u +  r V  (1)

where k is a constant, r denotes the reference (and equivalently reconstructing) wave, 
u is the virtual image wave (identical with the object wave incident on the hologram), 
and u* represents the so-called real image wave* being the subject of our 
considerations.

One can readily notice that the information about the object, i.e., the object 
wave u, is encoded here in two terms |r|2u and r2u*, neither of which being strictly 
identical with u. However, it is equally easy to realize that the deformation suffered 
by the object wave u because of being represented by the term |r|2u is relatively small 
and concerns only its amplitude structure (as a result of |r|2-factor operation), while 
its phase structure remains unchanged.

In contrast to this, the corresponding deformation of the real image u* 
represented by the term r2u* is of both amplitude and phase nature. In order to

* Called also secondary image wave.
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distinguish the perfect virtual u and real u* images from their respective represen
tative waves |r|2u and r2u* emerging in reality from the hologram during reconstruc
tion, we shall call the first two waves the pure virtual and pure real image waves, while 
the other two — the deformed virtual and deformed real image waves, respectively. 
Our goal is to find the relation between the pure and deformed real images in 
holography of Leith — Upatnieks geometry (Figure).

Reconstruction of the real image in the simple Leith—Upatnieks geometry when the reference and 
reconstructing waves are identical and reduced to plane waves. H — hologram in the z =  0 position, 
r — reconstructing (=  reference) plane wave, r^it — deformed real image wave

For this purpose let us note that if

r = r 0(x, y, z) exp [i <Pr(x, y, z)], (2)

and
u =  u0(x, y, z)exp[itfu(x, y, z)]. (3)

Then the pure real image wave is

u* =  u o (x, y, z) exp [ -  i 4>u(x, y, z)], (4)

and the deformed real image takes the form

m' = rl(x, y, z)u0(x, y, z)exp[ -  i(<Pu(x, y, z) -  2<Pr(x, y, z)] (5)

where r0(x,y,z) and u0(x,y,z) are the real amplitudes of the respective waves.

2. Case of discrete angular spectrum
In order to simplify the considerations, assume that at the hologram plane z = 0, the 
reconstructing wave r is a plane wave of the form

r =  r0exp27ii(/'xrx + /)Ty) = roexpy(zcosar+ycos0r). (6)



Teaching optics 221

2.1. Regular discrete angular spectrum

Let the pure real image plane be representable in the form of Fourier series

“*=  Z  Z  amn expL2ni(fxmx  + /yfly)]
m = — oo #1= -  oo

00 00 Yin  "I
=  Z  Z  — (xc°sa„+ycos/J„) (7)

w=-oo /i= —n L A J

where amB are the real amplitudes of the respective component plane waves (spatial 
harmonics), characterized either by the spatial frequencies

fxm =  mfxi and f ym =  nfy2 (8)

wheref xl, f yl are the fundamental spatial frequencies and n, m =  0, ±1 , ±2, ... , or 
equivalently by the directional cosines: cosaOT, cos/?B of the same component plane 
waves fulfilling the relations:

cosaOT =  mcosot!, cos/?B =  ncos/^ (9)

where: coso^ =  Xfxl, cosPl =  Xfyl.
Note that in accordance with (7a, b), the pure real image wave is assumed to be of 

discrete angular spectrum of regularity defined by (8) and (9), respectively.

22. Irregular discrete angular spectrum

In contrast to (6 a), the deformed real image wave u' takes, in the face of (5) and (6), 
the form

00 00 f In  i )
= \rI2 E  E  amnexp<— [x(cosam+2cosar) +  y(cos^m+2cos^r)]>

m = — oo « =  — oo (. ^ J

= \r\2 E  Z  amn exp^r[kcosa^+ ycos#,]
m =  -  oo n -  — 1 ^

=  M2 Z  Z  amnexp{27ti[(/xw, +  2 /'Jr+ /yM+ /yr)r]}
m = — oo n s  ”  oo

=  k |2 Z  Z  a»U.exP[27CI‘(/xm^+/y,,y)]-
m =  — oo n = —oo

(10a)

(10b)

(10c)

(lOd)

Here, the following relations are valid:

j  x m ~  fx m  " h  2 . /x r »  T ya  ~  j y  +  ^-fyr>

cosam +  2cosar cosa^ cospm+2cosPr _  cosfl'm
J xm * — i i J ym  <1 1

A A A A

(11a)

(lib)

cos a.'n = cosa„ + 2cosar, cos fi'n =  cos/?B +  2cos Pr, (11c)
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where
r cos a. r cos#

J X T  1 7 */yr n (cf. (5)).

The set of formulae (11) indicates that the spatial frequencies of'the deformed real 
image wave are each shifted by the same constant component {Jxr’fyr) value with 
respect to the spatial frequencies of the pure real image wave. This means that the 
directions of propagation of the component plane waves constituting the deformed 
real image wave (10) are different from those of the pure real image wave (7), as 
indicated by relation (lib). Obviously, the same is true for the spatial frequency 
spectra in both cases as can be clearly seen when comparing formulae (11a) and (8). 
This constitutes the irregularity of the spatial frequency spectrum. This problem will 
be discussed later in a more complete way. Now, we intend to specify some other 
aspect of the pure real image—deformed real image relation.

23. Further discussion of the mutual relation of the pure and deformed real image waves

Relations (11a) and (11c) compared to the relation (8) indicate that the whole angular 
spectrum of the pure real image wave is changed, provided f xr and are both 
different from zero. Now, we want to show that the angular spectrum of the 
deformed real image wave is essentially irregular, which means that it is impossible to 
present it in the regular form analogical to (8) or (9). For this purpose, note that

f'xm = fxm + 2fxr = mfxl + 2f„ = m(fxl — 2fxr) 4- 2fxr = m f,x l- 2 ( m - l ) f xr ^  m f’xl
(12a)

and
f ’y n ^ n f ' n .  (12b)

Here, we have taken advantage of the relations: 

following from (11a).
Obviously, the same can be proved for the directional cosines which means that

coso£, ^  mcosai and cos#, ^  ncosai. (12c)

This shows that the reconstruction of the real holographic image with a plane 
reconstruction wave r of the form (6) must result in deformation due to loss of the 
angular spectrum regularity (8) or (9). The regularity is preserved only i f = /^  = 0 
(or equivalently if cosar =  cos# = 0).*

2.4. Concluding remarks

1. Due to the interaction of the reconstruction wave r of type (6) with each 
component plane wave amnexpl2ni(xfxm + yfyJ] of the pure real image wave, the

* This means that the reconstructing (=  reference) wave falls perpendicularly on the hologram 
plane.
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latter is transformed into another plane wave \r\2amnexp[2ni(xfxn+yf'yn)'] of other 
spatial frequency defined in (11a) and consequently propagating in another direction 
determined by new directional cosines defined in (11c).

2. Thus, the whole discrete angular spectrum of the pure real image wave is 
changed loosing its regularity (see (12b)) which is equivalent to essential changes in 
mutual directional structure of the original component plane waves of the pure real 
image wave; the direction of each component wave being changed to different degree.

3. This makes the application of the conventional transfer function to describe 
the real image deformation impossible and the latter should be replaced by 
a frequency shifting function.

3. Case of continuous angular spectrum

In a more general case when the object wave u is of continuous angular spectrum its 
pure real image wave u* at the hologram plane z = 0 may be put in the form of 
Fourier integral

«* = i i  a(fxJ y)exp2ni{fxx + f  y)dfxdf

cosx cos B\ 2ni.
exp—— (xcosa +y cos p)d

AX ’ X

In this case, the deformed real image wave u' takes the form 

u' = ru* = \r\2 j j  a(fx,fy)cxp2ni[_x(fx + 2 /J  + y(fy + 2fyrJ]dfxdfy
— oo 

ao

rcosa cos fi\ 2ni- JKX 9 X
exp —  [x(cosa+ 2cosar)+ y(cos /? + 2cos /fr)]

A

xd (cosa^ jfcosfi

(13a)

(13b)

(14a)

(14b)

When comparing (13) and (14), it is visible that the shifting effect of the angular 
spectrum occurs also in the case of continuous angular spectrum. Keeping in mind 
the interpretation of the shifting consequences for the discrete case considered in 
Sect. 2, it is easy to imagine that also in continuous case the directional structure of 
the object angular spectrum is damaged in an analogous way. This means also that 
the original spectrum of the object (or pure real image) expressed in terms of spatial 
frequencies (f^Jy«)»(or equivalently by directional cosines (cosam,cos/y) is replaced 
by that expressed in frequencies {f ̂  = fnm + 2fxr,f'ym =/ym + 2/yr) or equivalently by 
directional cosines (cosct'm = cosam + 2cosar, cos$, = cos/?„ + 2cos/?r).

A new feature of the case of continuous angular spectrum compared to that of the 
discrete angular spectrum is that now the shifting effect does not exclude, in
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principle, the application of the conventional optical transfer function, though the 
results of its application should be interpreted with greater care taking account of the 
shifting effect.

4. Final conclusions
1. Above, it has been shown that frequency shifting effect appears both in the 
discrete angular spectrum and continuous angular spectrum cases.

2. The shifting effect can be totally removed either by assuming both the 
reference and reconstructing waves incident perpendicularly to the hologram plane, 
i.e., when cosar =  cos/?r =  0, or when one of them is complex conjugate of the other.

3. The application of the concept of the optical transfer function is impossible in 
the discrete angular spectrum case due to irregularity of this spectrum introduced by 
the reconstruction process (shifting effect), while the application of this function to 
the continuous angular spectrum case provides some interpretative difficulties.

4. The considerations carried out in this paper are idealized also due to the fact 
that some important perturbing effects like that of the diffraction at the hologram 
rim are still neglected.
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