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Nonlinear magneto-light-induced phenomena 
in a resonant medium
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A general theory of magneto-light-induced rotation of the plane of polarization of the probe signal 
in resonant medium is developed. The propagation of an intensive elliptically polarized 
electromagnetic wave through a resonant medium with arbitrary angular momenta of the levels is 
investigated in the adiabatic following approximation. Then the propagation of counter- 
propagating polarized waves: an intensive pump wave and a probe light signal, through the 
resonant medium in the presence of the longitudinal magnetic field is studied. It is shown that the 
induced anisotropy of the medium is determined both by magneto-optical and polarization light 
effects and by their interference. This allowed us to determine the local value of the external 
spatially-inhomogeneous magnetic field.

1. Introduction
An intensive elliptically polarized wave induces optical anisotropy in a resonant 
medium, which leads to rotation of the plane of polarization of the probe signal 
[1] — [3], as well as to formation of an atom magnetic momentum [4]. The effect of 
the induced rotation of the plane of polarization has attracted attention of 
investigators in connection with its application to spectroscopy, plasma diagnostics, 
rotation of the wave front, etc. Optical anisotropy in the medium can also be induced 
by the external magnetic field (Faraday effect, Cotton—Mouton effect).

The method of quasi-energetic states applied to investigation of polarization 
plane rotation was used to study resonant Raman scattering in the magnetic field of 
radiation, when the mix of atomic sublevels becomes significant.

It is necessary to consider theoretically the effect of degeneracy of the energy 
levels of atoms, which significantly complicates the problem and makes it difficult to 
find exact solutions. The adiabatic following approximation is quite promising in 
finding exact analytic solutions on condition that the pulse duration is shorter than 
the longitudinal relaxation time and that detuning of the resonance exceeds the 
spectral widths of the lines.

2. General formalism
Let us consider the propagation of two plane monochromatic waves Ex (strong) and 
E2 (probe) in opposite directions through the medium. We represent the electric
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vector of the field in the form
1E = -{E 1(r)exp[i(k1r - a ) 1t)]+ E 2(r)exp[-i(k2r+co2t)]}+c.c. ( 1)

where |k{| =  cojc is the wave vector in vacuum. The electric-field vector given by (1) 
obeys the following Maxwell equation:

(
1 d2\ _  4tt S2V

St2) E ~  c1 (2)

where P is the induced macroscopic polarization vector and c is the velocity of light 
in vacuum. We assume the complex amplitude Et to be slowly varying function of 
r in the following sense:

«  |EJ.
c dE

Ctfi dt

The resonant medium consists of identical two-level atoms with energy and 
momentum j i on the ground level 1, and energy S 2 and momentum j 2 on the excited 
level 2. The Hamiltonian operator i f  of the two-level atomic system in the presence 
of the electric field (1) and external magnetic field H is

i f  =  j f 0- d E - / iH  (3)

where denotes the Hamiltonian operator of the atom in the absence of applied 
field, 3 is the electric-dipole-moment operator, /< is the magnetic-field operator. We 
find the solution of the Schrodinger equation

dW ~ 
dt

in the form

(4)

xexp[ - @ * 2‘ " G ) A," , v ]
(5)

where <piJ mi denotes the spectrum of the wave function of the atom, =  coL — co0l is 
the resonance detuning between intensive wave frequency cul and atomic frequency

g  _g
2 X is the Stark shift of atomic levels in the field of the intensive^oi — h

monochromatic wave.

3. One strong elliptically polarized wave (H = 0)
In the general case of the elliptically polarized wave in the absence of magnetic 
field (H =  0) we can obtain the following system of recurrence equations
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for a.

4X(X+foh) - - \Et - \2-DlJ i"i \E .A 2- - \ D lJimi+ 2J2m l - l \  l^l + l ą \U - 2j 2m l  + i

2|E ,J 2 la . = \ ( D lh " i

x E j+E1_ a _ 2+Z)1V ,i D ^imi +2* E t- E 1+oim +2 Ji + l  2 -2j2m1+l +272m1 + l 1 1+ " l+ 2 /

D1Jimi
z2j 2m1

(6)

where we introduce the circular components E ± =  and d± =  dx±idy of the
vectors E and d, respectively, and matrix elements are:

| l /2
D^i-1+2J‘2"2 2'4L A0'i + 1)(2Ji + 1) J Jl' .+

- 2 j 2m2

L A(2y2-l)(2y2+l) J J2J‘+1
r c / i+ mi - i ) c / i + mi)T ;\  i .
L A(2A-1)(2A + 1) J 

M L  AC/i +DW i +1) J  JlJ2_

Du iMir2.i2m2

_ TC/2+ml + l)(/2+ml)~|1/2 c
L AG/,-D < %  +  1) J  J2'Jl+1

L A(2A-i)(2y1+i) J J‘-j2+ir ’>-"2“‘’

= ^ 2{ [ a (A + 1)(2A + 1)] ijlJ2+
— nl/2

72(272-l)(2 /2  + l)J ^  + 1 +

+ L (2;'i -1)(27i + 1)] a^ 2  + 1} 5- i . - i

(6a)

(6b)

(6c)

where djjj is the reduced matrix element of the dipole transition.
In the general case of the elliptically polarized wave the solution of system (6) and 

determination of the characteristic roots is a very complicated mathematical
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problem. Physically it is clear. The different components of the wave polarization 
E±t Ez interact with different magnetic sublevels of the ground and excited states and 
mix them. For pure circular or linear polarizations the chain of equation (6) has 
broken and we really have n = mm{2j1 + l r2j2-\-l} isolated two-level atoms in the 
field of strong wave.

4. Circular polarization of the strong wave (Ex_ ^ 0, E1+ =  E lz = 0) 
and external magnetic field (H #  0)

Let us consider the propagation of a probe elliptically polarized signal in the 
presence of the strong polarized wave and constant magnetic field. In the case when 
the strong wave is circularly polarized it is possible to construct exact wave functions 
of the two-level atom taking into account both Stark and Zeeman shifts and to solve 
the problem of the wave propagation. The nonlinear indices nT for the circular 
components of the probe wave are:

„ _ 1.e.^ f '- f l- .+ i r ( i+ G „ .+ V (i+ G .,)2+ ^ , ) z
4 "I (1 +  Gm1)2 +  ̂ 1Lo>l-0>2-£l \ / ( 1 +  G»l)2 + f".l

( l + G ^ - V a + G . ^ + ^ n
-  COj +£, V(! + Gm,)2 +

1
_  ^  F + iz-i-i

4 f t v /(l +  G«1)2 +  «-1V (l +  G»1-2)2 + «-1- 2

(1 +  Gm, +-y/(l + G„,)2 +  £m|) (1 +  Gmi _2 + V l  + G„, - 2)2 +  £m| - 2) 

' “ l-< " 2 - y (V ( l  +  G«1)2 +  ̂ 1+ V (H -G«1-2)2 +  ̂ l -2)

r(t + G ..,-V (l +  G„,)2 +  ̂ , ) ( l  +  Gm, . 2- V l  + G„,_2)2+ ^ , _ 2)~

L c o ^ t o j + l c v a + G ^ + ^ + v a + G ^ . ^ + ^ - j )  -I

where:
n N ^ j W 1 Jd&ftĘ i-P  

V1 “  (2/  ̂+  1 )h ’ mi 4h2el - V i  + 1’

(7a)

(7b)

Fhm 1 
~ h m i  + 1

Ui —ywi)C/i +  mi +1) «. C/2 + mi)(/2 +  mi + l) g .
;.(2A + i)(7 i+ i) °h h  h Q h - W h + l  h ’h ' ^

, O1-M 1K/1 -* » ! - ! )  g
r h & h - l)PA + l)
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irVi _  (A + mi)(A~mi + 1) j . (A-wJC/z-Mi + l) .
A(2A + 1)0i + 1) i,Jl A(2A-1)(2A + 1) j2j ‘ + 1

. (A+'»i)(A+mi - l )  t 
T ,(2j -1)(2 j +1)

G„, = -W i/f isJ + W V K ), 97= - W g f l .
Formulae (7a), (7b) are exact expressions for the nonlinear refractive indices of 

the medium, which allows us to consider the perturbation regime of small 
nonlinearities (f «  1) as well as saturation regime (£mi ~  1). The refractive indices 

have a complicated structure: they contain the Zeeman and Stark shifted poles 
of the atomic absorption (the first term) and the three-photon scattering process (the 
second term).

The difference in the nonlinear refractive indices n_ and n+ leads to an induced 
rotation of the polarization ellipse (plane) of the probe signal by an angle 
(p = co2(n+ —n_)/2c. Let us note that in the first nonlinear approximation in terms of 
the pump field one can successfully sum up the series in equations (7a) and (7b) an 
obtain the expression for the angle q> dependent only on the angular momenta j x 
and j 2

<P =  y  + ^2

where:

e2 =  co2 — co0l, £ -  =
i£ i - i 2 

40 h2Ą  ’

(8)

1 c , 4y? + 14/1 + 14;1 + 3
A(A + 1)(2/1 +1) Uĵ U t  + 1)(2;1 + 1)(2./1 + 3)2 h-h +1

, 4 / i-2 ;? -2 ;1 + l
_rA(2;i + i)(2 A -i)2 hJ2+l_7 

= j(A  +9ij(>j1j 2 + C(A + 2)02-A31]<5i2.j1 + i +

+ [(/i +  l)g! -  0*i “  1)£2] <5;2 ,jt - 1 j ,

^  “  £  { in T T + i^ A  + D [ 1+ ^ W f + 4A+ 2 )+ 1  (8ii + 8A -  i) ]} ^ t.

(/1 + 1)(2A + 3)(2A + 1 ) CA + 2>{2j' + 5)§1 ~ 1)9' l ]“+  -

+

—2 ( l + | + | )  [4A + W l + 2)(2A +1)9'2 ~ (2A + 3)(4A + 3)/i a |  h 2.h * 1+
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Expression (8) contains the term proportional to the magnetic field and 
describing a purely Faraday rotation in the magnetic field; the term proportional 
only to the nonlinearity parameter and describing induced rotation in the field of 
intensive circularly polarized wave, as well as the term proportional to both the 
magnetic field and the nonlinearity parameter and describing the interference 
between the magnetic and light induced rotation. The latter may be used to define 
the local value of the spatially-inhomogeneous magnetic field in systems with 
arbitrary angular momenta. It is necessary to pass intensive and probe signals 
through the medium, so that they could cross at a certain point in space. By 
measuring the difference between the purely Faraday rotation angle (with no 
intensive wave) and the rotation angle in the presence of an intensive wave we can 
define the local value of the magnetic field.

5. Laser-induced magnetic momentum of atoms 
(in the absence of external magnetic field H = 0)

Let us consider the formation of induced magnetic momentum of atoms in the field 
of an intensive resonant wave. For free atom the ground and excited states are 
degenerated with respect to the projection of the angular momentum. As these states 
are incoherent, having the same statistical weight, their contribution in the average 
value of a magnetic momentum of atom is equal. So the total momentum of atom 
equals zero. The intensive polarized field, introducing a certain symmetry in the 
space, takes off the degeneracy of levels. It leads to formation of a total atom 
magnetic momentum. For simplicity, we consider the transition j x =  1/2 -+ 
j 2 = 3/2. In this case, Eqs. (6) and (4) can be solved exactly. Averaging the magnetic 
momentum fi by wave functions (5) we have:

- _ l + \ / l  + £-i/2 r j + 3£+1/2—7^—i/2
2 + L 3(l + v/l + ̂ _1/2)2J

l + > /l + £+i/2 [~j + 7 i + i f 2  — l £ + i i 2  ~j
2 2VT+£ + 1/2 L 3(l + V l  +  £+1/2)2!

As is obvious from (9), in the case of linearly polarized monochromatic wave, 
which means for f_ 1/2 = f+i/2> the magnetic momentum is zero. It is explained by
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the fact that a linearly polarized wave does not take off the degeneracy completely, 
the sublevels that are distinguished merely by the sign of mi remain still degenerated 
among each other. The maximum magnetic momentum is realized in the case of 
circularly polarized wave.

Let us give the expression for averaging magnetic momentum of atom in the case 
of circularly polarized wave (Et + = Elz =  0, Et _ ^  0) for a system with arbitrary 
angular momenta j t and j 2

+
(10)

For small nonlinearities f ±1/2 «  1, in the case of circularly polarized wave, from (9) 
we have

7
fi, = - ^ o Ć  (11)

where

. I^il2l£.-l2
ę “  2 4 •

So the magnetic momentum is proportional to the intensity parameter £ and is 
absent in the linear theory.
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