
Optica Applicata, Vol. XXXIII, No. 4, 2003

Just-enough-time signaling protocol:
formal description using
extended finite state machine (EFSM)

A . H a l i m Z a im

Istanbul University, Department of Computer Engineering,
Avcilar, 34850, Istanbul, Turkey, e-mail: ahzaim@istanbul.edu.tr

In this study, we use an extended finite state machine (EFSM) model to describe just-enough-time
(JET) signaling scheme running over a core DWDM (dense wavelength division multiplexing)
network which utilizes optical burst switches (OBS). We apply an eight-tuple EFSM model. The
state machines and transitions for a connection setup process between a source client node and a
destination client node through an ingress and one or multiple intermediate switches are defined.
We define some message channels for communication between the EFSMs.

Keywords: just-enough-time (JET), extended finite state machine (EFSM), formal protocol description,
optical burst switches OBS.

1. Introduction
We are witnessing a great change in the protocol design phase during recent
years in telecommunication industry. Formal design approaches (standardized or
non-standardized) gain more and more importance. Instead of traditional design cycle,
which includes a three step design cycle consisting of a high level design, low level
design and coding and testing, a formal design approach that uses methods that help
the designer verify the correctness of the design decisions as they are made, started
to be used more frequently. For more information on formal design approaches,
refer to [l]-[5].

Although there are different formal description techniques (FDT) for protocol
specifications, extended finite state machines based approaches are the most popular
FDTs, especially for communication protocols. Extended finite state machine (EFSM)
approaches are fully expressive and usable, in particular, as a means of describing
communication protocols. EFSM based techniques are used on the communication
fields, because they are easier than most of the other approaches, and suitable for
implementations. Therefore, in this study we used an EFSM based description model.

mailto:ahzaim@istanbul.edu.tr

678 A. Halim Zaim

Just-enough-time (JET) signaling protocol is introduced in [6], [7]. The signaling
architecture is based on wavelength routing and burst switching. Signaling is JET,
indicating that signaling messages travel enough time ahead of the data they describe.
Signaling is out of band, with signaling packets undergoing electro-optical conversion
at every hop.

JET signaling approaches to optical burst switching (OBS) have been previously
studied in the literature [8], [9].These approaches are characterized by the fact that the
signaling messages are sent ahead of the data to inform the intermediate switches. The
common thread is the elimination of the round-trip waiting time before the information
is transmitted (the so-called tell-and-go approach): the switching elements inside the
switches are configured for the incoming burst just before the burst arrives to the
switching elements. The variants on the signaling schemes mainly differ in how to
calculate the processing time at the switches for reservation purposes.

The organization of the paper is as follows. In Section 2, JET signaling protocol
is explained briefly. The EFSM model is given in great detail in Sec. 3. In Section 4,
we give the formal specification of JET protocol showing all state diagrams and
explaining the state machines. Section 5 concludes our paper.

2. Just-enough-time signaling protocol
In the JET network we use an estimated setup and estimated teardown signaling
scheme. Explanation of different signaling schemes can be found in [10].

The JET protocol is shown in Fig. 1, where the start and end of the burst are
predicted based on the extra information contained in the Setup message.

Regardless of the type of the connection, it is initiated with a Setup message sent
by the originator of the burst to its ingress switch. The ingress switch consults with
delay estimation mechanism based on the destination address and returns the updated
delay information to the originator by using a Setup_Ack message, at the same time
acknowledging the receipt of the Setup message by the network. The Setup_Ack
message also informs the originating node which channel/wavelength to use when
sending the data burst.

The originator waits an offset time T based on its knowledge of the round-trip
time to the destination client if it does not receive a Setup_Ack from the ingress
switch. Otherwise, it waits for the AT duration of time that is returned to the source
from the ingress switch based on the estimation of the round-trip delay. After waiting
enough time, the originator sends the burst on the indicated wavelength. The Setup
message at the same time is traveling across the network, informing the switches on
the path of the burst arrival. If no blocking occurs on the path, the Setup message
eventually reaches the destination node, which then receives the incoming burst
shortly thereafter.

Upon the receipt of the Setup message, the destination node may choose to send a
Connect message acknowledging the successful connection (indeed, the receipt of the
Setup by the destination only guarantees that the connection has been established; it

Just-enough-time signaling protocol... 679

Pr xressing delay

Source client Ingress switch Intermediate switch Destination client

Crosse nect configured

Crossconnect released

Fig. 1. JET signaling protocol.

does not guarantee its successful completion, since a connection may be preempted
somewhere along the path by a higher-priority connection). The actual use of
preemption is a subject of further study. The Connect message is also used to modify
the offset times.

3. Extended finite state model
Ordinary finite state machine (FSM) representation is not powerful enough to model
in a succint way the JET signaling protocol, because the protocol specifications include
variables, timers and operations based on these values. Therefore, we define an EFSM
model with the addition of some variables. In this model, each EFSM can be formally
represented as an eight-tuple (Z, S, s, V, E, T, A, <5), where: Z - set of messages that
can be sent or received, S - set of states, s - initial state, V - set of variables, E - set
of predicates that operate on variables, T - set of timers, A - set of actions that operate
on variables, S - set of state transition functions, where each state transition function
is formally represented as follows:

S xZ xE {V)xT —> ^ x A (t/)x 1S'.

There are two types of transitions: spontaneous and when transitions. A spon
taneous transition does not have an input event on its condition part. A when transition,
on the other hand, includes an input event satisfying the condition.

A transition is shown as Sj S2. This means there is a transition T at state Sj
and it goes to state S2(T is an outgoing transition, S | — the head state and S2 - the tail state).

680 A. Halim Zaim

Settimcr(T 1 .Constant) IChanDl.Stop

?ChanTl.Timeout(Tl)
T2:-------------------------------

IChanDl.Stop

Fig. 2. Example of EFSM model

A transition consists of two parts: a condition part and an action part. The condition
part has an input event and a predicate (Boolean expression). An action may be an
output event or a statement operating on variables. A transition is executed when an
input event is available, and a predicate is true. Once a transition is triggered, the action
part is executed. An example of EFSM is shown in Fig. 2.

In Figure 2, ?Chan .m shows an input message from the given channel carrying
the message m, and !Chan .m shows an output message to the indicated channel
carrying the message m. The Settimer(T,C) is an action defined to operate on timers.
It sets the timer T to a value specified by C. Timers create Timeout messages using
timer channels. As seen in Fig. 2, three transitions are defined in the EFSM. The
definitions for each transition are given below the figure. The first transition, T1 is a
spontaneous transition, and is executed without an input event. The T2 and T3, on the
other hand, are when transitions because they are triggered once the input messages
are received.

Protocols among different processes can often be modeled as a collection of
communicating finite state machines where interactions between the processes are
modeled by the exchange of messages [11]. EFSMs communicate with each other by
message passing through a number of first-in-first-out (FIFO) unidirectional queues
(channels), which associate with some buffers at the endpoints of the corresponding
EFSMs, respectively.

4. JET protocol specifications

JET protocol can be defined as a set of extended finite state machines communicating
with each other via message transfer. The protocol consists of unicast connections. In
this section, we define the state diagrams of a source client, destination client, ingress
switch and intermediate switch.

Just-enough-time signaling protocol... 681

4.1. Source client
The FSM is defined for the source client sending unicast messages. The state diagram
and the state transitions are given in Figs. 3 and 4, respectively.

The state transitions use four different channels: ChanUpper, ChanNSUp,
ChanNSDown, and ChanTl. ChanUpper is the channel between the client node
signaling protocol layer and the upper layer. ChanNSUp is the upstream channel
between the client node and the ingress switch. That is, the flow is from the ingress
switch to the client node. ChanNSDown is the downstream channel between the client
node and the ingress switch, and the direction of the flow is from the client to the
switch. ChanTl is the timer channel used to receive timeout messages from the
indicated timers.

The state diagram waits in the WAIT_FOR_OPEN state until an open message
comes from the upper layer. The open message triggers the transaction Tl, and the
machine goes to the state WAIT_FOR_SETUP_ACK. The action part of this transaction
requires generation of a Setup message and setting of the timer setup acknowledgment
timer (SA_Timer) to a predetermined value.

When the machine is in WAIT_FOR_SETUP_ACK, there are four possible
transactions. Three of them, namely T2, T3 and T4 take us back to WAlT_FOR_OPEN
state. T2 is the event of receiving a Failure notice from the ingress switch. In this case
we close the connection by telling the Upper Layer that a connection failure has
happened. T3 is a timer event. SA_Timer times out indicating that we did not receive

Fig. 3. State diagram for source client.

682 A. Halim Zaim

Tl:
TChanUpper.Open

!ChanNSDown.Setup(Conn,BurstL.Tinic,Buist_Delay)
Settimer(SA_Timer,SA_Coastant)

T2:
?ChanNSUp.Failure

! ChanUpper.Connection_Failure

T3:
TChanTl .Timeout(S A_Timer)

!ChanUpper.Connection_Failure

T4:
TChanUpper.Close

IChanNSDown.Release

T5:
?ChanNSUp.Setup_Ack(A T)

Scttiincr(Conn_TimertConiL.Tmie)
Settimer(Setup_Timer, A T)

T6:
7ChanUpper.Close

IChanNSDown.Release

T7:
TChanNSUp.Failure

!ChanUpper.Connection_Ftdlure

T8:
TChanT 1 .Tinicout(Sctup_Tiiner)

Updatc(Burst_Dclay)
Settimer(Burst_Tiiner,Burst_Tiine+Burst_Delay)

!ChanUpper.CIear_To_Send

T9:
?ChanNSUp.Connect(BurstL_Delay)

Conn_Rcvd=TRUE

T10:
?ChanNSUp.Connect(Burst_Delay)

Conn_Rcvd=TRUE

T il:
TChanUpper.Close

T12:
TChanTl .TimeoutfBurstJTimer)

if Conn=FALSE { !ChanUppcr.Transmission_Complcte }
else if Conn=TRUE AND Conn_Rc vd=TRUE

{ !ChanUpper.Transmission_Complete }

T13:
TChanNSUpJailure

!ChanUppcr.Connection_Failure

T14:
7ChanTl .Timeout(Bursl_Timer)

______ AND Cnnn=TRUF. AND Conn RcvtU A T AF.___

T15:
TChanUpper.Close

. AND. Conn=TRUE AND Cnnn_Rcvd=FALSE

T16:
TChanNSl Jp.Cnnnect(Burst_Delay)

!ChanUpper.Transmission_Complete

T17:
?ChanNSUp.Failure

!ChanUpper.Connection_Failure

T18:
TChanTl ,Timeout(Conn_Timer)
!ChanUpper.Connection_Failure

Fig. 4. State transitions for source client.

the setup acknowledgment within the expected time from the ingress switch. This event
again indicates a connection failure. T4 event is triggered by the upper layer. Upper
layer wants to close the connection. In this case, the connection is closed and the ingress
switch is notified by a Release message. On the other hand, if we receive a setup
acknowledgment from the ingress switch within the specified time, T5 is triggered by
changing the state to SETUP_PR0CEED1NG. During that transition, the setup timer
{SetupJTimef) and the connection timer (Conn_Timer) are set. Setup _Timer is used to
determine the starting time of data burst and is calculated by the ingress switch and
returned back to the source within Setup_Ack message. Connection timer, on the other
hand, is used as a backup mechanism in closing the connection in case we do not get
the Connect message although we are supposed to.

Once we are in SETUP_PR0CEED1NG state, a Close or a Failure message as
mentioned above can take us back to WAIT_FOR_OPEN state (T6, 77). T8 is a timer

Just-enough-time signaling protocol... 683

event and is triggered with the Setup_Timer indicating that the start time for burst
came. In this case we update the Burst JDelay by subtracting the processing time from
the burst delay variable received by the Setup message and set the BurstJTimer. Then
we notify the upper layer that data burst can be sent. The self-loop {T9) is used in case
we receive the Connect message and all it does is to change the status of the variable
Conn_Rcvd which is used as a flag variable showing the reception of the Connect
message.

In DATA_TRANSMISSION state, T10 is again a self-loop similar to T9, T il , T12
and T13 are Close, BurstJTimer timeout and Failure events, respectively, taking the
state machine back to the starting state. Close and Failure events are already explained.
T12 indicates that the estimated burst time ended and we close the connection. 774
and 775 are the BurstJTimer timeout and Close events but in these transitions the state
machine waits for a Connect message from the ingress switch and it has not been
received until that time. We then go to the WAIT_FOR_CONNECT state.

In WAITJFORjCONNECT state, we either receive the Connect message and close
the connection successfully, or get a Failure or connection timeout and close the
connection with a failure (776, T17 and 77S, respectively).

4.2. Destination client

The second state machine belongs to the destination side. The role of the destination
client is to complete the Setup process and start receiving data until closing the
connection with a timeout calculation based on the estimation of the burst time.

The state diagram and transitions are shown in Figs. 5 and 6.
The state diagram of the destination client is much simpler than the state diagram

of the source client. The state machine waits at the WAIT_FOR_SETUP state until
receiving a Setup message from the ingress switch (77). Once it receives the Setup

Fig. 5. State diagram for destination client.

684 A. Halim Zaim

Tl:
!ChanNSDown.Setup(Conn,Burst_Tixne3urst_Delay)

IChanUpper.Open

T2:
?ChanUpper.Close

!ChanNSUp.Failure

T3:
?ChanUpper.Setup_Complete

Updatc(Burst_Dclay)
Settimer(Burst_Timer,Burst_Time+Burst_Delay)
if Conn=TRUE !ChanNSUp.Connect(Burst_Delay)

Fig. 6. State transitions for destination client.

T4:
?ChanTl ,Timeout(Burst_Timer)

!ChanUpper.Transmission_Complete

T5:
?ChanUpper.aose

IChanNSUp.Failure

message, it sends an open request to the upper layer. If the upper layer replies with a
Close message, we go back to the WAIT_FOR_SETUP state generating a Failure
message backwards to the ingress switch (T2). On the other hand, as shown in T3, if
the upper layer replies with a Setup jComplete message notifying that the destination
client completed the setup process successfully, it updates the Burst_Delay, sets the
Burst_Timer and sends a Connect message if it is requested.

From DATA_RECEPTION state, we can go to the WAIT_FOR_SETUP state either
by receiving a Burst_Timer timeout or a Close message. If the upper layer closes the
connection earlier than the estimated time, this implies an error, so we generate a
Failure message. Otherwise we close the connection and notify the upper layer about
the end of the successful connection termination.

4.3. Ingress switch

This subsection gives the state diagram of an ingress switch receiving a Setup request
from the source client, and configuring itself, and sending back the configuration
information together with setup acknowledgment.

Setup message is sent by the source client. Once the Setup message is received, the
ingress switch goes to CHECKING_RESOURCES state setting setup timer
CSetup_Timer) and runs some checks (Tl), e.g., cyclic redundancy check (CRC),
buffer overflow, cross connect error, etc. A RunChecks function is defined in this
state machine. This function returns an error code specified with the variable
ErrorCode. If there is an error, this variable indicates the type of an error found
and return to WAlT_FOR_SETUP state. If it is null, the state machine stays at
CHECKING_RESOURCES state (T4). If there is an error, T2 is triggered and state
machine goes back to WAIT_FOR_SETUP state generating a Failure message and
notifying the upper layer to close the connection. If we receive a Setup JTimer timeout,
indicating that the burst will start coming, we go to DATA_TRANSFER state. At
DATAJTRANSFER state, we can get a Burst JTimer timeout (T5 or 77) or a Failure
(T6) from the intermediate switch forcing the state machine to go back to starting state.

Just-enough-time signaling protocol... 685

T l:
?ChanNSDown.Setup(Conn,Burst_Time,Burst_Delay)

T6:
?ChanSSUp.Failure

RunChecks(ErrorCode)
IChanUpper.Open

Settiiner(Setup_Timer, A T)

T2:
ErrorCode

IChanNSUp.Failure

T7:
?ChanTl.Timeout(Burst_Timer) AND
Conn—TR1IF. AND CnnnIJRcvd=FAINF.

IChanNSUp.Failure IChanUpper.aose
IChanUpper.Close

T3: T8:
?ChanTl .Timeout(Setup_Timer) ?ChanSSUp.Connect(Burst_Delay)

Update(B urst_Delay)
if Burst_Time!=Unspecified

{ Settimer(Burst_Timer,Burst_Time+Burst_Delay) }
Settimer(Conn_Timer,Conii_Tinie)

T4:
No ErrorCodc

Conn_Rcvd=TRUE

T9:
?ChanSSUp.Connect(Burst_Delay)

!ChanNSUp.Connect(Burst_Delay)

!ChanNSUp.Setup_Ack(A T)
!ChanSSDown.Setup(Conn,Burst_Tiine,Burst_Delay) T10:

?ChanTl .Timeout(Conn_Timer)

T5:
?ChanTl .Timeout(Bun>t_Timer)

if Conn=TRUE AND Conn_Rcvd=TRUE
{ !ChanNSUp.Connect(Burst_Delay))

T i l :
?ChanSSUp.Failure
IChanNSUp.Failure

Fig. 8. State transitions for ingress switch.

In case, we receive a BurstJTimer timeout, we check the status of the variables Conn
and Conn_Rcvd to decide whether we need to wait for a Connect message or not as
explained in earlier state machines. In T8 we stay at the same state changing only the

686 A. Halim Zaim

status of the variable Conn_Rcvd to TRUE. At WAIT_FOR_CONNECT state, we wait
for a Connect message. If we receive the Connect message we just pass it to the next
switch and go to starting point. If at that time, we get a Failure message or a connection
timer timeout, we again close the connection (T10 and T il). The state diagram and
the state transitions are given in Figs. 7 and 8.

The state transitions use five different channels: ChanSSUp, ChanSSDown,
ChanNSUp, ChanNSDown, and ChanTl. ChanNSUp, ChanNSDown and ChanTl have
already been defined. ChanSSUp is the channel between the ingress switch and the
intermediate switch with the flow from the intermediate switch to ingress switch.
ChanSSDown is the same channel with opposite flow direction.

4.4. Intermediate switch

The state diagram of an intermediate switch is similar to the state diagram of an ingress
switch shown in Fig. 7. There are some notification changes and a minor change in
the transition T4 that does not generate a Setup_Ack message back. The transitions for
an intermediate switch are given in Fig. 9 for completeness.

For intermediate switches some channels are defined as ChanXS because it is not
known whether there is a switch or a node connected to the switch the diagrams belong
to. Therefore these channels are defined anonymously.

T l: T6:
?ChanSSDown.Setup(Conn,Burst_Time,Burst_Delay) ?ChanXSUp.Failure

RimChecksfErrorCode)
IChanUpper.Open

Settimer(Setup_Timer, A T)

T2:
EirorCode

IChanSSUp-Failure

T7:
?ChanTl.Timeout(Burst_Timer) AND

Conn=TRUE AND Conn_Rcvd=FALSE
IChanSSUp.Failure
IChanUpper.Close

IChanUpper.Close

T3:
?ChanTl .Timeout(Setup Timer)

T8:
?ChanXSUp.Connect(Burst_Delay)

Update(Burst_Deiay) *
if Burst_Time!=Unspecified

{ Settimer(Burst_Timer,Burst_Time+Burst_DeIay) }
Settimer(Comi_Timer,Conn_Time)

Conn_Rcvd=TRUE

T9:
?ChanXSUp.Connect(Burst_Delay)

T4:
No ErrorCode

!ChanSSUp.Connect(Burst_Delay)

!ChanXSDown.Setup(ConiLBurst_TLme,Burst_Delay) T10:
?fTianT1 TimernitffYinn Timeri

T5:
?ChanT 1 .Timeout(Burst_Timer) T i l :

if Conn=TRUE AND Conn_Rcvd=TRUE
{ !ChanSSUp.Connect(Burst_Delay) }

?ChanXSUp.Failure
IChanSSUp.Failure

Fig. 9. State transitions for intermediate switch.

Just-enough-time signaling protocol... 687

5. Conclusions
In this paper, we present a formal description of the JET signaling protocol for unicast
traffic. The state diagrams and transitions for unicast traffic flows are given in this
paper. We focused on the connection setup phase using the signaling channel. The
reliability issue is left to the transport layer. The future work includes an addition of
preemptive features to the switching elements. We also want to define the EFSMs for
multicast traffic. These definitions will be used for protocol testing as an extension to
this study.

References
[1] Bowman H., B lair G.S., B lair L., Chetwynd A.G., Computer Commun. 18 (1995), 964.
[2] Holzmann G.J., IEEE Software 9 (1992), 17.
[3] King P.W., IEEE Trans. Comp. 40 (1991), 387.
[4] Turner K.J., The Use o f Formal Methods in Communications Standards, [In] IEE Colloquium on

'Formal Methods Protocols’, IEE, London 1991, pp. 1/1-3.
[5] Hansson H., Jonsson B., Orava F., Pehrson B., Formal Design o f Communication Protocols,

ISS’90.
[6] Nail K„ Sarikaya B., IEEE Software 9 (1992), 27.
[7] T urner J.S., J. High Speed Net. 8 (1 9 9 9), 3.
[8] Yoo M., Q iao C., Just-enough-time (JET): A High Speed Protocol for Bursty Traffic in Optical

Networks, IEEE/LEOS Tech. Global Info. Infra., August 1997, pp. 26-27.
[9] Q iao C., Yoo M„ J. High Speed Net. 8 (1999), 69.

[10] Yoo M„ Q iao C„ D ixit S„ JSAC 18 (2000), 2062.
[11] Baldine I., Rouskas G.N., Perros H.G., Stevenson D., IEEE Commun. Magazine 40 (2002), 82.

Received July 17, 2003

