Exact N-envelope-soliton solutions of the Hirota equation

Jian-Jun Shu

School of Mechanical and Production Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.

Abstract

We discuss some properties of the soliton equations of the type $\partial u / \partial t=S[u, \bar{u}]$, where S is a nonlinear operator differential in x, and present the additivity theorems of the class of the soliton equations. On using the theorems, we can construct a new soliton equation through two soliton equations with similar properties. Meanwhile, exact N-envelope-soliton solutions of the Hirota equation are derived through the trace method.

Keywords: exact solutions, Hirota equation, solitons.

The trace method, which has been applied to the Korteweg-de Vries equation [1], modified Korteweg-de Vries equation [2], Kadomtsev-Petviashvili equation [3], sine-Gordon equation [4], [5] and Gz Tu equation [6], is useful for understanding these equations. The N-soliton solutions and some other results of these equations [7] have been derived through the trace method.

The present paper deals with an application of the trace method to the nonlinear partial differential equation as follows:

$$
\begin{equation*}
\frac{\partial}{\partial t} u+L_{x} u=N_{x}(u, \bar{u}) \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& L_{x} u=\sum_{k=0}^{N_{1}} \alpha_{k} \frac{\partial^{k}}{\partial x^{k}} u, \\
& N_{x}(u, \bar{u})=\sum_{k=1}^{N_{2}} \beta_{k} \prod_{m=0}^{N_{k}}\left(\frac{\partial^{m}}{\partial x^{m}} u\right)^{r_{m, k}}\left(\frac{\partial^{m}}{\partial x^{m}} \bar{u}\right)^{s_{m, k}}
\end{aligned}
$$

where α_{k}, β_{k} are complex constants, $r_{m, k}, s_{m, k}$ are nonnegative integers, $r_{k}=\sum_{m=0}^{N_{k}} r_{m, k} ; s_{k}=\sum_{m=0}^{N_{k}} s_{m, k} ; r_{1}=r_{2}=\ldots=r_{N_{2}}=r ; s_{1}=s_{2}=\ldots=s_{N_{2}}=s$ and $d=r+s \geq 2 ; r, s$ satisfy one of the relations:

$$
\begin{array}{ll}
s \geq 1 & \text { for } \\
s=0 & \text { for } \tag{ii}\\
r \geq 2
\end{array}
$$

Substituting the formal series

$$
\begin{equation*}
u=u^{(1)}+u^{(d)}+\ldots+u^{((d-1) n+1)}+\ldots \tag{2}
\end{equation*}
$$

into Eq. (1), we obtain a set of equations for $u^{((d-1) n+1)}(n=0,1,2, \ldots)$:

$$
\begin{align*}
\left(\frac{\partial}{\partial t}+L_{x}\right) u^{((d-1) n+1)} & =\sum_{l_{1}=1}^{N} \ldots \sum_{l_{(d-1) n+1}=1}^{N} C^{(n)}\left(P_{l_{1}}, \bar{P}_{l_{2}}, \ldots, \bar{P}_{l_{(d-1) n}}, P_{l_{(d-1) n+1}}\right) \\
& \times \phi_{l_{1}}^{2} \bar{\phi}_{l_{2}}^{2} \ldots \bar{\phi}_{l_{(d-1) n}}^{2} \phi_{l_{(d-1) n+1}}^{2} \tag{3}\\
\left(\frac{\partial}{\partial t}+L_{x}\right) u^{((r-1) n+1)}= & \sum_{l_{1}=1}^{N} \ldots \sum_{l_{(r-1) n+1}=1}^{N} C^{(n)}\left(P_{l_{1}}, P_{l_{2}}, \ldots, P_{l_{(r-1) n},}, P_{l_{(r-1) n+1}}\right) \\
& \times \phi_{l_{1}}^{2} \dot{\phi}_{l_{2}}^{2} \ldots \dot{\varphi}_{i_{(r-1) n}^{2}}^{2} \dot{\phi}_{i_{(r-1) n+1}}^{2} \tag{4}
\end{align*}
$$

where Eqs. (3) and (4) correspond to relations (i) and (ii), respectively,

$$
\begin{aligned}
& \phi_{k}(x, t)=A_{k}(0) \exp \left(P_{k} x-\Omega_{k} t\right), \quad \Omega_{k}=\frac{1}{2} L_{p}\left(2 P_{k}\right) \\
& L_{p}(x)=\sum_{k=0}^{N_{1}} \alpha_{k} x^{k}
\end{aligned}
$$

$A_{k}(0)$ and P_{k} are complex constants $(k=1,2, \ldots, N)$, and $C^{(0)}=0$.
We can obtain the solutions for Eqs. (3) and (4) in the following form:

$$
\begin{equation*}
u^{((d-1) n+1)}=\sum_{l_{1}=1}^{N} \ldots \sum_{l_{(d-1) n+1}=1}^{N} \pi^{(n)} \phi_{l_{1}}^{2} \bar{\phi}_{l_{2}}^{2} \ldots \bar{\phi}_{l_{(d-1) n}}^{2} \phi_{l_{(d-1) n+1}}^{2} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
u^{((r-1) n+1)}=\sum_{l_{1}=1}^{N} \ldots \sum_{l_{(r-1) n+1}=1}^{N} \pi^{(n)} \phi_{l_{1}}^{2} \phi_{l_{2}}^{2} \ldots \phi_{l_{(r-1) n}}^{2} \phi_{i_{(r-1) n+1}}^{2} \tag{6}
\end{equation*}
$$

where $\pi^{(0)}=1$ and

$$
\begin{align*}
\pi^{(n)} & =C^{(n)} /\left[L_{p}\left(2 P_{l_{1}}+2 \bar{P}_{l_{2}}+\ldots+2 \bar{P}_{l_{(d-1) n}}+2 P_{l_{(d-1) n+1}}\right)\right. \\
& \left.-L_{p}\left(2 P_{l_{1}}\right)-\bar{L}_{p}\left(2 \bar{P}_{l_{2}}\right)-\ldots-\bar{L}_{p}\left(2 \bar{P}_{(d-1) n}\right)-L_{p}\left(2 P_{l_{(d-1) n+1}}\right)\right] \tag{7}
\end{align*}
$$

or

$$
\begin{align*}
\pi^{(n)} & =C^{(n)} /\left[L_{p}\left(2 P_{l_{1}}+2 P_{l_{2}}+\ldots+2 P_{l_{(r-1) n}}+2 P_{l_{(r-1) n+1}}\right)\right. \\
& \left.-L_{p}\left(2 P_{l_{1}}\right)-L_{p}\left(2 P_{l_{2}}\right)-\ldots-L_{p}\left(2 P_{l_{(r-1) n}}\right)-L_{p}\left(2 P_{l_{(r-1) n+1}}\right)\right] \tag{8}
\end{align*}
$$

Theorem 1. Let

$$
\frac{\partial u}{\partial t}+L_{x}^{\prime} u=N_{x}^{\prime}(u, \bar{u}), \quad \frac{\partial u}{\partial t}+L_{x}^{\prime \prime} u=N_{x}^{\prime \prime}(u, \bar{u})
$$

be two arbitrary equations that are defined by Eq. (1). If $r^{\prime}=r^{\prime \prime}, s^{\prime}=s^{\prime \prime}, \pi^{\prime(n)}=\pi^{\prime \prime(n)}$ ($n=0,1,2, \ldots$), then, for equation

$$
\frac{\partial u}{\partial t}+L_{x}^{*} u=N_{x}^{*}(u, \bar{u})
$$

(where $L_{x}^{*}=a L_{x}^{\prime}+b L_{x}^{\prime \prime}, \quad N_{x}^{*}(u, \bar{u})=a N_{x}^{\prime}(u, \bar{u})+b N_{x}^{\prime \prime}(u, \bar{u})$, and a, b are two arbitrary real numbers), we have $\pi^{*(n)}=\pi^{\prime(n)}=\pi^{\prime \prime(n)}(n=0,1,2, \ldots)$.

Proof. We consider the case (ii) by mathematical induction. Obviously $\pi^{*(0)}=\pi^{(0)}$ $=\pi^{\prime \prime(0)}=1$. Assume $\pi^{*(n)}=\pi^{(n)}=\pi^{\prime \prime(n)}(n=0,1,2, \ldots, k)$. When $n=k+1$, from Eq. (4), $C^{*(k+1)}=a C^{\prime(k+1)}+b C^{\prime \prime(k+1)}$, and from Eq. (8)

$$
\begin{aligned}
& \pi^{*(k+1)}=C^{*(k+1)} /\left[L _ { p } ^ { * } \left(\begin{array}{c}
(r-1) n+1 \\
\left.\left.2 \sum_{m=1} P_{l_{m}}\right)-\sum_{m=1}^{(r-1) n+1} L_{p}^{*}\left(2 P_{l_{m}}\right)\right] \\
=\left[a C^{\prime(k+1)}+b C^{\prime \prime(k+1)}\right] /\left[a L_{p}^{\prime}\left(\sum_{m=1}^{(r-1) n+1} P_{l_{m}}\right)+b L_{p}^{\prime \prime}\left(2 \sum_{m=1}^{(r-1) n+1} P_{l_{m}}\right)\right. \\
\left.-a \sum_{m=1}^{(r-1) n+1} L_{p}^{\prime}\left(2 P_{l_{m}}\right)-b \sum_{m=1}^{(r-1) n+1} L_{p}^{\prime \prime}\left(2 P_{l_{m}}\right)\right]=\pi^{\prime(k+1)}=\pi^{\prime \prime(k+1)}
\end{array} .\right.\right.
\end{aligned}
$$

For the case (i), we can prove it in the same manner.

We introduce two $N \times N$ matrices B and D whose elements are given respectively by $B_{m n}=\left[1 /\left(P_{m}+P_{n}\right)\right] \phi_{m}(x, t) \phi_{n}(x, t), D_{m n}=\left[1 /\left(P_{m}+\bar{P}_{n}\right)\right] \phi_{m 1}(x, t) \bar{\phi}_{n}(x, t)$.

Theorem 2. Let

$$
\frac{\partial u}{\partial t}+L_{x}^{\prime} u=N_{x}^{\prime}(u, \bar{u}), \frac{\partial u}{\partial t}+L_{x}^{\prime \prime} u=N_{x}^{\prime \prime}(u, \bar{u})
$$

be two arbitrary equations that are defined by Eq. (1). If they have respective solutions

$$
\begin{aligned}
& u^{\prime}=\operatorname{Tr}\left[B_{x}^{\prime} f\left(D^{\prime} \bar{D}^{\prime}\right)\right]\left(\text { or } \operatorname{Tr}\left[B_{x}^{\prime} g\left(B^{\prime}\right)\right]\right) \\
& u^{\prime \prime}=\operatorname{Tr}\left[B_{x}^{\prime \prime} f\left(D^{\prime \prime} \bar{D}^{\prime \prime}\right)\right]\left(\text { or } \operatorname{Tr}\left[B_{x}^{\prime \prime} g\left(B^{\prime \prime}\right)\right]\right)
\end{aligned}
$$

where f, g are arbitrarily derivable functions in the neighbourhood of zero, then, for equation

$$
\frac{\partial u}{\partial t}+L_{x}^{*} u=N_{x}^{*}(u, \bar{u})
$$

(where $L_{x}^{*}=a L_{x}^{\prime}+b L_{x}^{\prime \prime}, \quad N_{x}^{*}(u, \bar{u})=a N_{x}^{\prime}(u, \bar{u})+b N_{x}^{\prime \prime}(u, \bar{u})$, and a, b are two arbitrary real numbers), we have solution

$$
u^{*}=\operatorname{Tr}\left[B_{x}^{*} f\left(D^{*} \bar{D}^{*}\right)\right]\left(\text { or } \operatorname{Tr}\left[B_{x}^{*} g\left(B^{*}\right)\right]\right)
$$

Proof. Since f, g are arbitrarily derivable functions in the neighbourhood of zero, f, g can be expanded into power series in convergence region. Correspondingly, $u^{\prime}, u^{\prime \prime}$ can be expanded into power series. Comparing the coefficients, we have $r^{\prime}=r^{\prime \prime}$, $s^{\prime}=s^{\prime \prime}, \pi^{(n)}=\pi^{\prime \prime(n)}(n=0,1,2, \ldots)$. From Theorem 1, we obtain

$$
u^{*}=\operatorname{Tr}\left[B_{x}^{*} f\left(D^{*} \bar{D}^{*}\right)\right]\left(\text { or } \operatorname{Tr}\left[B_{x}^{*} g\left(B^{*}\right)\right]\right)
$$

On using Theorems 1 and 2 , we can construct a new soliton equation through two soliton equations with similar properties. As an example, we use the trace method to solve the Hirota equation [8] as follows:

$$
\begin{equation*}
i \psi_{t}+i 3 \alpha|\psi|^{2} \psi_{x}+\rho \psi_{x x}+i \sigma \psi_{x x x}+\delta|\psi|^{2} \psi=0 \tag{9}
\end{equation*}
$$

where α, ρ, σ and δ are positive real constants with the relation $\alpha / \sigma=\delta / \rho=\lambda$. In one limit of $\alpha=\sigma=0$, the equation becomes the nonlinear Schrödinger equation [9] that describes a plane self-focusing and one-dimensional self-modulation of waves in nonlinear dispersive media

$$
\begin{equation*}
i \psi_{t}+\rho \psi_{x x}+\delta|\psi|^{2} \psi=0 \tag{10}
\end{equation*}
$$

In another limit of $\rho=\delta=0$ the equation for real ψ, becomes the modified Korteweg-de Vries equation [10], [11]

$$
\begin{equation*}
\psi_{t}+3 \alpha \psi^{2} \psi_{x}+\sigma \psi_{x x x}=0 \tag{11}
\end{equation*}
$$

Hence, the present solutions reveal the close relation between classical solitons and envelope solitons. Substituting the formal series

$$
\begin{equation*}
\psi=\psi^{(1)}+\psi^{(3)}+\ldots+\psi^{(2 n+1)}+\ldots \tag{12}
\end{equation*}
$$

into Eq. (9), we obtain a set of equations for $\psi^{(2 k+1)}(k=0,1,2, \ldots)$:

$$
\begin{align*}
& i \psi_{t}^{(1)}+\rho \psi_{x x}^{(1)}+i \sigma \psi_{x x x}^{(1)}=0 \tag{13}\\
& i \psi_{t}^{(3)}+\rho \psi_{x x}^{(3)}+i \sigma \psi_{x x x}^{(3)}=-i 3 \alpha \psi^{(1)} \bar{\psi}^{(1)} \psi_{x}^{(1)}-\delta \psi^{(1)} \bar{\psi}^{(1)} \psi^{(1)} \tag{14}\\
& \vdots \\
& i \psi_{t}^{(2 n+1)}+\rho \psi_{x x}^{(2 n+1)}+i \sigma \psi_{x x x}^{(2 n+1)} \\
&=-i 3 \alpha \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1} \psi^{(2 l+1)} \psi^{(2 m+1)} \psi_{x}^{(2 n-2 l-2 m-1)} \tag{15}\\
&- \delta \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1} \psi^{(2 l+1)} \bar{\psi}^{(2 m+1)} \psi^{(2 n-2 l-2 m-1)}
\end{align*}
$$

We can solve the set of equations iteratively:

$$
\begin{align*}
\psi^{(1)} & =\sum_{l_{1}=1}^{N} \phi_{l_{1}}^{2}(x, t) \tag{16}\\
\psi^{(3)} & =-\frac{\lambda}{8} \sum_{l_{1}=1}^{N} \sum_{l_{2}=1}^{N} \sum_{l_{3}=1}^{N} \frac{1}{\left(P_{l_{1}}+\bar{P}_{l_{2}}\right)\left(\bar{P}_{l_{2}}+P_{l_{3}}\right)} \phi_{l_{1}}^{2}(x, t) \bar{\phi}_{l_{2}}^{2}(x, t) \phi_{l_{3}}^{2}(x, t) \tag{17}
\end{align*}
$$

where $\phi_{k}(x, t)=A_{k}(0) \exp \left(P_{k} x-\Omega_{k} t\right), \Omega_{k}=-2 i \rho P_{k}^{2}+4 \sigma P_{k}^{3}, A_{k}(0)$ and P_{k} are complex constants relating respectively to the amplitude and phase of the k-th soliton
$(k=1,2, \ldots, N)$. We introduce two $N \times N$ matrices B and D whose elements are given respectively by:

$$
B_{m n}=\left[\frac{1}{P_{m}+P_{n}}\right] \phi_{m}(x, t) \phi_{n}(x, t), \quad D_{m n}=\left[\frac{1}{P_{m}+\bar{P}_{n}}\right] \phi_{m}(x, t) \bar{\phi}_{n}(x, t)
$$

With matrices B and $D, \psi^{(1)}$ and $\psi^{(3)}$ are expressed as:

$$
\begin{align*}
\psi^{(1)} & =\operatorname{Tr}\left[B_{x}\right] \tag{18}\\
\psi^{(3)} & =-\frac{\lambda}{8} \operatorname{Tr}\left[B_{x}(D \bar{D})\right] \tag{19}
\end{align*}
$$

In general, we can prove that

$$
\begin{equation*}
\psi^{(2 n+1)}=(-1)^{n} \frac{\lambda^{n}}{8^{n}} \operatorname{Tr}\left[B_{x}(D \bar{D})^{n}\right], \quad n=0,1,2, \ldots \tag{20}
\end{equation*}
$$

satisfies Eq. (15).
With the definitions of matrices B and D

$$
\begin{align*}
& \psi^{(2 n+1)}= \\
& =(-1)^{n} \frac{\lambda^{n}}{8^{n}} \sum_{1} \cdots \sum_{2 n+1} \frac{\phi_{1}^{2} \bar{\phi}_{2}^{2} \ldots \bar{\phi}_{2 n}^{2} \phi_{2 n+1}^{2}}{\left(P_{1}+\bar{P}_{2}\right)\left(\bar{P}_{2}+P_{3}\right) \ldots\left(P_{2 n-1}+\bar{P}_{2 n}\right)\left(\bar{P}_{2 n}+P_{2 n+1}\right)} \tag{21}
\end{align*}
$$

Here and in the following we simplify the expressions by writing $1,2, \ldots, 2 n+1$ instead of $l_{1}, l_{2}, \ldots, l_{2 n+1}$. There should be no confusion about this. We have

$$
\begin{align*}
& i \psi_{t}^{(2 n+1)}+\rho \psi_{x x}^{(2 n+1)}+i \sigma \psi_{x x x}^{(2 n+1)} \\
&=(-1)^{n} \frac{\lambda^{n}}{2^{3 n-1}} \sum_{1} \ldots \sum_{2 n+1}\left\{4 i \sigma \left[\left(P_{1}+\bar{P}_{2}+\ldots+\bar{P}_{2 n}+P_{2 n+1}\right)^{3}\right.\right. \\
&\left.-\left(P_{1}^{3}+\bar{P}_{2}^{3}+\ldots+\bar{P}_{2 n}^{3}+P_{2 n+1}^{3}\right)\right]+2 \rho\left[\left(P_{1}+\bar{P}_{2}+\ldots+\bar{P}_{2 n}+P_{2 n+1}\right)^{2}\right. \\
&\left.\left.-\left(P_{1}^{2}-\bar{P}_{2}^{2}+\ldots-\bar{P}_{2 n}^{2}+P_{2 n+1}^{2}\right)\right]\right\} \\
& \times \frac{\phi_{1}^{2} \bar{\phi}_{2 \ldots}^{2} \bar{\phi}_{2 n}^{2} \phi_{2 n+1}^{2}}{\left(P_{1}+\bar{P}_{2}\right)\left(\bar{P}_{2}+P_{3}\right) \ldots\left(P_{2 n-1}+\bar{P}_{2 n}\right)\left(\bar{P}_{2 n}+P_{2 n+1}\right)} \tag{22}
\end{align*}
$$

Substituting two identities

$$
\begin{align*}
& \left(k_{1}+k_{2}+\ldots+k_{2 n}+k_{2 n+1}\right)^{3}-\left(k_{1}^{3}+k_{2}^{3}+\ldots+k_{2 n}^{3}+k_{2 n+1}^{3}\right) \\
& =3 \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1}\left[\left(k_{1}+\ldots+k_{2 l+1}\right)\left(k_{2 l+1}+k_{2 l+2}\right)\left(k_{2 l+2 m+2}+k_{2 l+2 m+3}\right)\right. \\
& \left.+\left(k_{2 l+1}+k_{2 l+2}\right)\left(k_{2 l+2 m+2}+k_{2 l+2 m+3}\right)\left(k_{2 l+2 m+3}+\ldots+k_{2 n+1}\right)\right], \tag{23}\\
& \left(k_{1}+k_{2}+\ldots+k_{2 n}+k_{2 n+1}\right)^{2}-\left(k_{1}^{2}-k_{2}^{2}+\ldots-k_{2 n}^{2}+k_{2 n+1}^{2}\right) \\
& =2 \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1}\left[\left(k_{2 l+1}+k_{2 l+2}\right)\left(k_{2 l+2 m+2}+k_{2 l+2 m+3}\right)\right] \tag{24}
\end{align*}
$$

into Eq. (22) and using Eq. (20) for $\psi^{(2 k+1)}(k<n)$, we obtain

$$
\begin{aligned}
i \psi_{l}^{(2 n+1)} & +\rho \psi_{x x}^{(2 n+1)}+i \sigma \psi_{x x x}^{(2 n+1)} \\
& =-\delta \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1} \psi^{(2 l+1)} \psi^{(2 m+1)} \psi^{(2 n-2 l-2 m-1)} \\
& -i \frac{3}{2} \alpha \sum_{l=0}^{n-1} \sum_{m=0}^{n-l-1} \psi^{(2 m+1)}\left(\psi^{(2 l+1)} \psi^{(2 n-2 l-2 m-1)}\right)_{x}
\end{aligned}
$$

Therefore we obtain the N-envelope-soliton solution for Eq. (9) in the following form:

$$
\begin{equation*}
\psi=\operatorname{Tr}\left\{\sum_{k=0}^{\infty}(-1)^{k} \frac{\lambda^{k}}{8^{k}}\left[B_{x}(D \bar{D})^{k}\right]\right\}=\operatorname{Tr}\left[B_{x}\left(1+\frac{\lambda}{8} D \bar{D}\right)^{-1}\right] \tag{25}
\end{equation*}
$$

where $\|D \bar{D}\|<8 / \lambda$ in a certain region. In particular, for $N=1$, we obtain the one-envelope-soliton solution

$$
\begin{align*}
\psi(x, t) & =\frac{A_{1}(0)}{2} \operatorname{sech}\left[\left(P_{1}+\bar{P}_{1}\right) x-\left(\Omega_{1}+\bar{\Omega}_{1}\right) t+\eta\right] \\
& \times \exp \left[\left(P_{1}-\bar{P}_{1}\right) x-\left(\Omega_{1}-\bar{\Omega}_{1}\right) t-\eta\right] \tag{26}
\end{align*}
$$

where

$$
\eta=\frac{1}{2} \ln \left(\frac{\lambda\left|A_{1}(0)\right|^{4}}{8\left(P_{1}+\bar{P}_{1}\right)^{2}}\right)
$$

Acknowledgments - The author is grateful to Dr. Ireneusz Wilk and the reviewers for their constructive comments and suggestions.

References

[1] Miki Wadati, Katuro Sawada, J. Phys. Soc. Jpn. 48 (1980), 312.
[2] Ibidem, p. 319.
[3] Kenii Ohкuma, Miki Wadati, J. Phys. Soc. Jpn. 52 (1983),749.
[4] Hideo Tsuru, Mike Wadati, J. Phys. Soc. Jpn. 53 (1984), 2908.
[5] Weiming Zheng, J. Phys. A: Math. Gen. 19 (1986), L485.
[6] Weiming Zheng, Kexue Tongbao 32 (1987), 210 (in Chinese).
[7] Jian-Jun Shu, J. Phys. A: Math. Gen. 20 (1987), L49.
[8] Ryogo Hirota, J. Math. Phys. 14 (1973), 805.
[9] Zakharov V.E., Shabat A.B., Sov. Phys. - JETP 34 (1972), 62; Zh. Eksp. Teor. Fiz. 61 (1971), 118 (in Russian).
[10] Ryogo Hirota, J. Phys. Soc. Jpn. 33 (1972), 1456.
[11] Miki Wadati, J. Phys. Soc. Jpn. 32 (1972), 1681.

