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Perturbation calculus for eikonal application 
to analysis of the deflectional signal 
in photothermal measurements

Roman J. Bukowski, Dorota Korte

Institute o f Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland.

Using complex geometrical optics methods the influence of a one dimensional plane thermal wave 
on probing Gaussian beam phase was analysed. Detection of the probing beam parameters by 
quadrant photodiode was investigated. The dependence of the photodiode current signal on probing 
beam diameter, its waist, sample position, angular modulation frequency, the height of the beam 
over the sample and the focal length of the lens at the input of experimental setup was studied.

1. Introduction
Nowadays, investigation into the solid state thermal properties is of great importance, 
especially for different nonhomogeneous layered systems. Some of the most essential 
are such photothermal methods which consider the differences between thermal 
properties of different parts of the layered system. Temperature changes in such a 
system are measured directly or indirectly, which finelly, allows us to conclude about 
its structure.

One of the indirect methods for measuring changes of sample surface temperature 
is a photodeflectional method. In this method, the periodically heated sample makes 
the surrounding gas temperature change, resulting in changes of the gas refraction 
index. The latter changes are detected by probing light beam with known light intensity 
distribution passing through the heated gas layer. The gas refraction index changes 
cause the phase change in the probing beam.

At present, two theoretical methods for description of these phenomena are used 
[1], [2]. The first one is the ray method. It is based on the small shift of light beam 
(deflection) in nonhomogeneous media. There is also a generalization of that method 
for wide probing beams [3], [4]. The second method is the wave one [2]. In this work, 
a wave equation was solved for the probing beam propagation but only its phase change 
was taken into consideration.

A complete (with arbitrary accuracy) description of light beam propagation in 
optically nonhomogeneous medium can be achieved by geometrical optics method, 
for example by means of Debye’s expansion [5]—[7]. A proper analysis using complex 
geometrical optics methods and taking into account the phase change of probing light 
beam, caused by thermal waves, is presented in [7], [8].
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In all of the above works it has been assumed that deflection of probing beam is 
registered by the use of quadrant photodiode, from which we can obtain two signals -  
normal and tangential one. The first one responds to illumination difference between 
the upper and lower and the second one between the left and right photodiode halves 
(defined with respect to the “horizontal” surface of the sample investigated). If the 
stimulation is much wider than the width of the probing beam, the theoretical 
description is one-dimensional and only the normal signal is important.

2. Geometrical optics equations
Information on the electric field distribution in Gaussian beam with angular frequency 
œ which is propagated in homogeneous medium is given by Helmholtz’s equation 
(together with the proper boundary conditions)

Ai/(r) + ^ e ( r ) « ( r )  = 0, k0 = e (r) = n2{ r)  (1)

where c -  light velocity in free space, £ -  dielectric constant, n -  refractive index.
The solution of Eq. (1) for homogenous medium with refractive index n0 can be 

written in the form of a plane wave

u( r)  = A e 'r(r) , W(r) = k0n0r°ek (2)

where ek -  unit vector in the direction of wave propagation.
In general case (arbitrary wave, arbitrary medium) within the scope of geometrical 

optics the solution of Eq. (1) can be assumed as

“ (r)  = A (r)exp [i'¥ '(r)] , T(r)  = k0 y/(r), (3)

A(r) £
m = 0 (/¿o /" '

(4)

The above expansion of the wave amplitude A(r) in “partial amplitudes” Am(r) is called 
Debye’s expansion. After substituting the assumed solution into Helmholtz’s equation 
(see Eq. (1)) we are given a system of differential equations for amplitudes Am:

’(Vi//)2 = n2,

2(VA0)° (V i//) + A0Ai// = 0, 

2(VA,)°(Vi//) + AjAl// = -A  A

2(VAm)°(Vi//) + A„,Ai// = -A  Am_ l,
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The first equation is called eikonal one and the others are transport equations of the 
1st, 2nd order, and so on.

Boundary condition for Helmholtz’s equation can be found by defining the electric 
field m°(^, tj) on a surface Q, the equation of which can be written in a parametric form

r = r 0(£r?) (6)
where 77 -  curvilinear coordinates on surface Q.

In the case of geometrical optics, the field u°(£, 77) should also be presented in the 
form of Debye’s expansion

“° (6  n) = T  " ^ T ^ e x P *?))·
„ (*'*b)m = 0

Therefore

= / ( 5 ,  »7). = 4 L ( 6 77).

(7)

(8)

3. Gaussian beam in an optically homogenous medium
From [6] it follows that the electric field distribution in Gaussian beam with radius a 
and wavelength À (wave number k = 2ti/A) which propagates in homogenous medium 
with refraction index n0 can be written as

u{x,y,z)  = A0(r)e\p(iky/0(r)) (9)

where

A0(r)  = f / i  + i i i ^ T 1,
V ZR )

V0W  = (z - L ) n 0 + in0X- ^ ( l  + i- ^ ^ y .  (10)
■¿Zr V Zr J

The beam enters the system in the plane z = 0 and propagates in the plus direction of 
the OZ axis, and its waist is placed in the plane z = L. E0 is the electric field intensity 
in the middle of the waist. The parameter zR = ka2n0 is called Rayleigh’s length, the 
quantity y/0 -  wave eikonal, and A0 -  its amplitude (of the zero order). The beam ray 
coordinates r(r) = [jt(r), y(f), z( t)] are defined by equations:

*(*) = Ç+iJ*no( 1 - —) T’zR v Zr/

y (r)  = 77 + ^ T Io i1 1
x zr 7
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z(T) = n0r J l  + ( š  (11)

where rj are the ray start point coordinates from the plane z = 0 (XY), and r  is the 
running coordinate (in general case the complex one) along the ray.

For a given observation point r D = [;cD, yD, Zp] (e.g., a point in the detection plane) 
we need to find all rays coming into that point, i.e., the solution of the set of Eq. (11), 
relatively to “rays” variable [£, 77, r], needs to be found (the so-called geometrical 
optics reversal problem). After linearization we have

TD =
ZD \ . i £ ± p ( i j ±

2z R ’r

ZD

£d = XZ

^D-yD

zr V zR

ZR V ZR.
( 12)

It follows from this solution that for such a simplification we have a particularly 
simple situation, i.e., only one ray comes to all observation points. Equations (12) 
define exactly the start point of the ray (£, rj) when its observation point (xD, yD, Zq) 
is known.

4. Gaussian beam in a thermally disturbed medium

Let us consider a standard experimental setup scheme for the solid state photothermal 
investigation with photodeflectional detection (Fig. 1). Modulated light beam incident 
on the sample gives it periodically specified energy flux. As a result the sample and 
surrounding gas (e.g., air) are heated and in stationary state we deal with temperature 
changing periodically in time and space, so-called thermal waves. These thermal waves 
cause changes in the gas refraction index, which brings about of the probing beam 
parameters modification. In the first approximation we can assume that

n(T) n dn 
0 d T

( T - T 0) = n0 + n0sT( T - T 0), T0 = const(r) (13)

where n0 -  gas refraction index in temperature T0, sT -  refraction index thermal 
sensitivity, and

sT
1 cM 7 q) 

" 0  dT
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Fig. 1. Experimental setup scheme for solid state investigation by photothermal method with 
photodeflectional detection. The gas heated region have the width Az = zp -  Zi and its left edge distance 
from the setup beginning (light beam “input”) is equal z/. We assume that the heated region width along 
the OY axis is much more greater than the probing light beam diameter. The light beam radius in its waist 
equals a and it is placed at a distance L from the “input”. The screen (detector) is placed at distance zD 
from the light beam “input”.

In this situation the dielectric constant of the medium in the thermally changed region 
is expressed by the equation

£(T) = n{ T)  + 2n0sT{T{r) -  T0) = n20 + v(r). (14)

The changes in probing beam are expressed by v.
In order to obtain disturbed probing beam parameters we apply the perturbation 

calculus [6]. The first correction to the eikonal can be expressed as
r

t//(r) = V0(T) + ii/yiT) = i/r0(T) + ^ |v ( r 0(T'))dr', ( 15)

0
with the integration being carried out along the undisturbed ray trajectory. It means 
that the amplitude of the Gaussian beam in the plane of detector has the form

A(rD) = A0(zd)- (16)
Finally, the electric field distribution of probing beam on the surface of detector 
(quadrant photodiode) can be written as

w(rD) = ^ 0(r D)exP t^^(«*D)] (17)

where A0 is expressed by the first of Eqs. (10). Now, we are allowed to calculate the 
intensity distribution on that detector

Z(rD)oc |M(rD)|2. (18)
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The concrete calculations depend on the form of dielectric constant disturbance 
Eq. (13) of the air, in which the probing beam propagates. This disturbance in our case 
is determined by temperature field. The form of temperature distribution in gas over 
the sample depends on many parameters of the experimental setup, which are defined 
by the proper boundary conditions. In this work, a model presented in [8] was used. 
For such assumptions the temperature distribution in the gas directly over the sample 
(i.e., in the regionxD > 0, < yD < +°°, Zi< z< zp) has the shape(comp. [9])

T ( x , z ) - T 0 = # (*) =

+ 9 exp (x + h) Icosl Q t -  \-Q-{x + h) + Y H[(z-Zi)(zp - z )]

(19)

where: fcg -  thermal diffusivity of gas, #g -  an increase of the gas temperature constant, 
0g -  amplitude of temperature changes on the surface of the sample, yg -  phase shift 
between the sample surface temperature and the pumping beam, H{s) -  Heaviside’s 
step function. From expression (19) all fundamental properties of the thermal waves 
can be deducted; these are highly dumped waves (the attenuation coefficient equals 
the wave number) and they also have strong dispersion. Although the sample 
stimulation is not strictly harmonic, at a sufficient distance from the sample surface in 
the thermal perturbation spectrum only its fundamental component is observed. The 
parameters 0g and yg depend on the angular modulation frequency Q, other 
experimental parameters also depend on thermal properties of the sample.

The eikonal change of the Gaussian beam on the basis of Eqs. (13) and (15) can 
be written as

T

t//,(r) = n20sTjû ( x ( T ) , z ( r ) ) d r '

where
o

(20 )

â(x,z)  = tfg + ¿>ge x p f-  l~~~x]cos(^£2t
2 ks J ^ 2l X + V *

H[(z-Zi)(zp - z ) ] ,

(21)
and

g g

g 'g

Integration in (20) is carried out along the undisturbed ray trajectory (Eqs. (11) and 
(12)). For simplification, the integration is done by middle point approximate methods.
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Finally, we obtain

Vi(T) = [n057-t?g + l/Z'iy] Tpi

where

W\f = n0sTbgexp(-kgx0s) c o s ( Q t - k gx0s +(pg) = Wi/R + iWifP 

z R + i (n 0 r s - L )
'■Os =  x ( Ts) =  XD-

z R + i (z D - L ) ’

- [ ( T +  Tt) H ( r -  T,) -  ( T -  Tp) H ( r -  Tp)],

(22)

(23)

(24)

(25)

Tpi = ( r -  r , )H(T- r,) -  ( r -  zp) H ( r -  rp). (26)

In Equation (23), functions t / /^  and are accordingly the real and complex parts 
of the correction to the eikonal. The phase of the wave can be written as

V(r)= ¥0(r) + Vi(r) (27)
where functions if/0 and i\)x are defined by Eqs. (10) and (22). In this case, the electric 
field distribution in the plane of detection of probing beam has the form

«(r D) = '4o(zD) exP[*7:(i/'o(r D)+ ^ i ( r D))l. (28)
and as a result the Gaussian beam intensity distribution can be written as

/ ( r D) ~  |« ( rD)|2 = |A0(zD)ex p [^ v /0( r D)]|2exp[-2^i//1//( r D)r/,/]. (29)

Taking into account that /0g is the undisturbed Gaussian beam intensity distribution 
and |2ici//r1y7r/,/| «  1, we finally obtain

7(r o) = 7og(r o ) -  2^ V/(r D)z/j/7og(r D) = 7og( r o) + 7v( r D). (30)

5. Normal signal from quadrant photodiode

The current signal from the photodiode under reverse bias is proportional to the 
intensity of light incident on it. In this the signal being case analyzed arises from the 
illumination difference between the upper and lower photodiode halves

/+■>

Snk = K,

o \

K  H dxDI(rD)

VO -h J

(31)

where Kd -  photodetector constant (its sensitivity). In expression (31), it was regarded 
that the sample conceals a part of the photodiode (in the region -  <xD< -  h).
Proceedings as in [8], we obtain
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s nk = Akcos(£2t + ę g - ę k) 

where

^ k  2  J j ^ d n Os T b g k I m( zp Z , ) J ( F U + F 2l) +  ( p 2 R p l r ) >

tamp* = P 2R  ~ F \ R

~ ^ U + p2,y

(32)

(33)

(34)

F2 -  exp 11 i ' ' V r i - 2 e r !W / 2 J f

Zr +  İ(ZS -  L )  

x 8 zR + i{zD~L) = * o . zs = n0rs,

=
a cP l

J n a j a 2c + ( L - zd )2
/  =

a2[a2c + ( L - z D)2\

~  P 2R  i p 2 < ( 3 6 )

(37)

(38)

In the last expression, P, is the total power of undisturbed probing beam and erf(£) is 
the error function.

Waist coordinate of Gaussian beam L and its radius a in the waist a depend on the 
focal length of the lens placed at the input of experimental setup. If a0 is the intensity 
radius of the beam incident on the lens and its waist is at the point of lens position 
(z = 0), then a and L can be written in the form [10]

L = X
i + (f / z , )

2 ’ a = a,
( f/z, )

71 + Cf / z , r
(39)

2
where/ -  focal length of the lens, z, = (na0n0) / ( 4 f ) .

The results of numerical calculations are presented by graphs with photothermal 
signal amplitude Ak [arb. u.] and additional phase shift (pk [rad] (i.e., relatively to the 
temperature phase on the sample surface) depending on some experimental setup 
parameters.

In typical photothermal measurements the amplitude Ak{h) and phase (pk(h) of 
photothermal signal dependence on distance between probing beam axis and 
illuminated sample (Fig. 2) are investigated. After analysing these graphs it can be 
concluded that the course of the curves is strongly dependent on both the probing beam 
diameter and angular modulation frequency.

Figure 3 presents the amplitude and phase of photothermal signal dependence on 
probing beam diameter for different angular modulation frequencies and heights of
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Fig. 2. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the probing 
beam height over the sample (zD = 1.5 m, zp = 0.505 m, Z; = 0.5 m, ¿  = 0.5 m; h = 200 pm, 
Q  = 60 rad/s, - A -  h = 200 pm, Î2 = 600 rad/s, -O -  h = 800 pm, Q  = 600 rad/s).

Fig. 3. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the probing 
beam diameter (zD = 1.5 m, zp = 0.505 m, z; = 0.5 m, ¿ = 0.5 m; a = 500 pm, Q  = 600 rad/s, 
- A -  a = 1 mm, Q = 600 rad/s, - O -  a -  50 pm, £2 = 60 rad/s).

Fig. 4. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the modulation 
angular frequency (zD = 1.5 m, zp = 0.505 m, Z; = 0.5 m, ¿  = 0.5 m; a = 50 pm, h = 200 pm, 
- 0 -  a = 500 pm, h = 800 pm, - O -  a = 500 pm, h = 800 pm, - A -  a = 1 mm, h = 800 pm).

the probing beam over the sample. For a certain beam diameter the signal amplitude 
reaches a maximum value. This maximum shifts towards higher values of beam 
diameter when the height of the probing beam over the sample grows and it gets smaller 
when the angular modulation frequency increases.
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Fig. 5. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the detector 
position (zp = 0.505 m, z; = 0.5 m, L = 0.5 m; Q  = 60 rad/s, a = 50 pm, h = 200 pm, - A -  Q  = 600 
rad/s, a = 50 pm, h = 800 pm, -O -  Î2 = 600 rad/s, a = 500 pm, h = 800 pm).

Fig. 6. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the focal 
length (z D  = 1.5 m, L = 0.5 m; - O -  zp = 0.035 m, zt = 0.03 m, zp = 0.305 m ,^; = 0.3 m, -  A -  z p = 
0.505 m ,z( = 0.5 m , - 0 - z /, = 0.805 m, Z; = 0.8 m, - x - z p = 1.005 m, z/= 1 m .-H c -z ^  1.405 m, z(= 1.4 m).

It can be seen from Fig. 4 that the signal from quadrant photodiode dramatically 
decreases with an increase of angular modulation frequency.

In Figure 5, the dependence of photothermal signal on detector coordinate for 
different angular modulation frequencies, different probing beam radii and its height 
over the sample is presented. There can also be seen a dramatic drop of the signal when 
the beam waist is over the detector and a dramatic rise when the beam waist is a bit in 
front of or behind it.

Figure 6 shows that the focal length influences the value and the shape of the 
photothermal signal. The lens was placed at the input of our experimental setup. The 
signal reaches a maximum and its position is independent of the sample position 
between the input and the detector. The value of the signal drops when approaching 
the detector.

Figure 7 shows the dependence of the signal amplitude and additional phase shift 
on the sample and waist position of probing beam. The sample and waist position was 
changed so that the beam waist was always over the sample. The value of the signal 
decreases while approaching the detector.
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z, [m] z, [m]

Fig. 7. Quadrant photodiode signal amplitude (a) and additional phase shift (b) changes vs. the sample 
position and beam waist position (zc  = 1 . 5 m , / i  = 200 pm; -O -  £2 = 60 rad/s, Î2 = 120 rad/s, - A -
£2 = 200 rad/s, - 0 -  = 320 rad/s, - x -  £2 = 600 rad/s, = 1200 rad/s).

Some discontinuities can be seen on the graphs with phase change of photothermal 
signal from quadrant photodiode. They result from only “partial” phase normalization 
of the signal to the range (0, 2n).

6. Conclusions
The influence of the different parameters of experimental set-up on signal value in 
photothermal investigations with mirage effect was analysed in the work. The signal 
dependence on such parameters as probing beam radius, waist position, focus length 
of the input optical system, height over the sample surface and detector position was 
considered. A theory worked out on the basis of complex geometrical optics methods 
gives the possibility of taking into account many other parameters (e.g., probing beam 
modulation frequency), which are important for interpreting the measurement results. 
One-dimensional thermal wave propagated in the gas over the sample exited by 
harmonically modulated pumping beam was taken into account. So-called phase 
normal signal created as a result of the phase change of the Gaussian beam probing 
this thermal wave was considered. Quadrant photodiode detection was analysed. The 
results are presented in analytical form and in the form of graphs and they can be used 
for experimental set-up optimisation.

References
[1] M urphy J.C., Aamodt L.C., J. Appl. Phys. 51 (1980), 4580.
[2] G lazov A., M uratikov K., Opt. Commun. 84 (1991), 283.
[3] A amodt L.C., Murphy J.C., J. Appl. Phys. 52 (1981), 4903.
[4] Bukowski R.J., Bodzenta J., Mazur J., Kleszczewski Z., Parameter Estimation in Photothermal 

Measurements with Photodeflectional Detection, [In] Nondestructive Characterization o f Materials 
VII, Part I, Proceedings of the Seventh International Symposium on Nondestructive 
Characterization o f Materials held in Prague, Czech Republic, June 1995, pp. 295-302, Transtec 
Publications 1996.

[5] K rawcow Ju.A., O rlov Ju.L, Geometrical Optics of the Nonhomogeneous Media (in Polish), [Ed.] 
WNT, Warszawa 1993.



828 R.J. Bukowski, D. Korte

[6] B ukowski R.J., Complex geometrical optics application for description o f the Gaussian beam 
propagation in optically nonhomogeneous media, [In] Proc. 2nd Nat. Conf. Physical Basis o f the 
Nondestructive Investigations, Gliwice Chapter o f the Polish Physical Society and Institute of 
Physics o f the Silesian University o f Technology, Gliwice 1997, pp. 45-55, (in Polish).

[7] Bukowski R.J., Proc. SPIE 3581 (1998), 285.
[8] Bukowski R.J., Complex geometrical optics application for analysis o f different methods detection 

in photothermal measurements (in Polish), Zesz. Nauk. Pol. ¿1., Seria: Matematyka-Fizyka, No. 87 
(1999), pp. 37-54.

[9] Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, Oxford University Press, Oxford 1959.
[10] Yariv A., Y eh P., Optical Waves in Crystals, Propagation and Control o f Laser Radiation, Wiley,

New York 1984.

Received March 12, 2002


