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Exact algebraic method for design of the model 
nonastigmatic spherical ophthalmic glasses

Tadeusz K ryszczynski

Institute of Applied Optics, Department of Geometrical Optics, ul. Kamionkowska 18,03-805 Warszawa, 
Poland.

An exact algebraic method for designing the model nonastigmatic spherical ophthalmic glasses is 
given. The method allows us to determine construction parameters of glasses with an assumed 
back vertex power, which completely fulfil all conditions of correct performance, and takes into 
account manufacture recommendations. The method consists in solving the system of nonlinear 
equations by means of software. Calculation of the parameters of nonastigmatic spherical 
ophthalmic glasses of 65 mm in diameter for positive and negative back vertex powers were 
designed of organic material CR39 in the most interesting range of vertex powers from 0 to ±7 
with 0.25 D step are presented.

1. Introduction
This work describes a new approach to the design of model nonastigmatic 
spherical glasses, so called “punktals” . Nonastigmatic ophthalmic glasses are used 
for correction of the eye refraction errors and they should feature corrected astigmatism 
in the characteristic field o f view with low residual astigmatism in intermediate 
zones of the field of view. The model version of glasses refers to theoretical solutions 
and does not include any technological simplifications introduced to reduce the 
optical tooling.

Design of nonastigmatic lenses has although not rich but a rather long history [1]. 
In 1801, Young arrived at formulae necessary to calculate the astigmatism of an 
extremely narrow light beam. In the years 1889-1900, Ostwald used the 3rd order 
aberration method to design nonastigmatic glasses for infinity and obtained for each 
glass two solutions differing in the convexity. In 1904, Tscherning presented his 3rd 
order solutions of nonastigmatic glasses in the form of so-called “Tscherning ellipse”. 
It is also worthwhile to mention design works performed between 1903 and 1914 by 
Gullstrand and Rohr, and works of Ostwald from 1935 to design the nonastigmatic 
glasses for near vision. Also Wollaston, Schleiermacher, Martin, Percival, Southall 
and many others contributed to the development of ophthalmic glasses.

Later for precise calculations of astigmatism trigonometric methods were 
commonly used, and then came the computer-based methods. Today the 3rd order 
aberration methods are no longer in use. In the case of low-power nonastigmatic glasses 
the angles of incidence on individual surfaces are moderate and smaller than 10-15°,
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which explains the past relative usefulness of these methods, especially in situations 
where tolerances of convexity were rather loose. However the angles of incidence are 
significant enough to cause deformation compared to the 3rd order aberration 
calculations.

The new approach presented in this work consists in using exact algebraic 
equations for computation of nonastigmatic glasses. Besides the correction of 
astigmatism this method assures that the ophthalmic glasses fulfil exactly all other 
requirements necessary for proper performance. Hitherto, researchers considered it 
impossible to give exact algebraic formulae binding the aberrations and astigmatism 
in particular and its construction and physical parameters. This was due to their extreme 
complexity. Today we should verify this approach taking into account works of 
H er zb erg er  [2], W a lth er  [3], [4], C a str o -R am os et al. [5] and the author 
K r y sz c z y n sk i’s paper [6] was devoted to algebraic computations in correction of 
aberrations o f simple optical systems (minimum of spherical aberration o f single lens, 
a system of two spherical m irrors with zero spherical aberration at the edge of aperture).

2. Meridional pupil ray
The astigmatism of ophthalmic glass is calculated along the meridional pupil ray that 
determines selected angle of view. During the observation the eye follows the object 
and rotates. Traditionally it is assumed that the eye’s pupil is in its rotation center. In 
this work, it is assumed that the variables determining the ray tracing in the case of 
the pupil ray are the consecutive angles of incidence and ; 2 of the ray at the glass 
surfaces. The Figure shows among others also the parameters describing the pupil ray.

Respective refraction angles j \  and j 2 are calculated from the law of refraction, 
denoting by n, the refractive index of glass. This way we obtain the following formulae:

. s in ;, 
= arc sin------ ,

n \
j 2 = arc sin (n , sin ; 2). ( 1)

In the meridional plane the angular deviation D of the ray can be calculated equally 
as the difference of ray angles with the axis or the difference between the angles of 
incidence and refraction. In this work, the second possibility is employed. Consecutive 
angular deviations of the ray Z), and D2 at the glass surfaces can be calculated from 
the following formulae:

D x — j \  ~ j \ i  D2 = j 2 - j 2. (2)

Assume that the pupil ray in the object plane forms constant angle w0 with the 
optical axis. Consecutive angles of refraction w, and w2 can then be calculated from 
the following formulae:

w, = w0 + £>,, w2 = w0 + D l + D2. (3)
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Parameters of the pupil ray and differential astigmatic meridional and sagittal rays.

From Equations (1)—(3) it is evident that the angular variables j x and y2 describe 
the angular pupil ray tracing through the ophthalmic glass. To position the ray with 
respect to the vertex of surfaces we need the coefficients /1 , and ^  described in the 
book of S m it h  [7]. The coefficients are given as follows:

cosw, + cos j\ cosw, + cos u= ------- !-------- ¿1, n 2 = ------ l --------¿1. (4)
COS W0 +  COS y! cosw 1 + cosy2

The shortest distance of the ray to the vertex of the first surface we will denote by 
M x and the center thickness of the glass by d i. Then the shortest distance of the ray to 
the vertex of the second surface M2 and M2 (before and after refraction) is as follows:

M 2 =  y t j A / j - d j s i n w j ,  M 2 =  \ i 2M 2 =  n l f i 2M l -  jj,2d l s m w l . (5)

Formulae (1)—(3) show that angular variables j x and j 2 also describe the location 
of the pupil ray together with the distance M x and thickness dx. Assuming the angular 
variables j x and j 2 it is possible to determine the pupil ray tracing not knowing the 
surface curvatures. Curvatures c, and c2 of consecutive glass surfaces depend on the 
above-mentioned angular and linear variables in accordance with the following 
formulae:

_ sinw0 + sin y, sinwj + sin y2
Cl = Af{ ’ C2 = AT2 (6)
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When calculating astigmatism of ophthalmic lens we also need the oblique 
thickness along the pupil ray measured between the points of intersection of the ray 
with surfaces, including the object plane during observation of the near vision (L * 0). 
For that purpose we will need sags g[ and g2 of intersection points, which can be 
calculated from the following formulae:

Si =
sin(w0 + 

COSWq + cos j  j
M v 8 2 =

sinCw, +j2) 
COSW( + cos j 2 (7)

The oblique distance d*Q between the object plane and the first surface, and the 
oblique thickness d\ between the first and the second surfaces can be determined from 
formulae:

II* o

¿o + 2i 
COSWq

for L ±  0
> j* d i - S i + g 2 

d \ = (8)

for
oII

COSWj
0

In Eqs. (8) we assume the conventional zero oblique distance d*Q in the case of an 
object being located at infinity (L = 0).

3. Astigmatic rays
The formulae given by Young concern the extremely thin pencil of rays in two 
perpendicular planes: meridional and sagittal. From his formulae it is evident that the 
pencil of rays performs differently in both planes producing astigmatism as the result. 
Astigmatism control is a difficult task for the designers of optical systems. In the case 
of ophthalmic glasses the situation is easier because in principle it is the only aberration 
that requires correction. Other aberrations, such as distortion or transversal chromatism 
in the medium power range are rather small and can remain uncorrected.

Less known is the angular version of Young’s formulae. In this version, the 
auxiliary angles 8mw and and differential heights 8mh and 8sh are introduced in 
two perpendicular planes. Thus the formulae take the following form:

n 'cos j8mw '- n c o s j8 mw = 8mh{n cos/ -n c o s j)c ,

5mh+i cosj +i = 8mh co s j '-d * 8 mw,

n 8sw - n 8 sw = 8sh(n c o s / n cosy)c,

SsKi = 8sh - d * S sw. (9)

In Equation (9) n and n' denote the refractive indices, and subscript +1 denotes 
the next surface of the system. This version simplifies the notation reducing by one
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exponent of the cosine present in the original Young’s formulae. Further we will take 
advantage of formulae (9) because they are very convenient to use.

3.1. Differential meridional ray
We assume conventionally the entrance differential angle dmw0 between the meridional 
and pupil rays as equal to

5mw0 = { _ 0 ·01 for L * 0 . (10)
1 0 for L = 0

For further consideration it would be favourable to increase the number of angular 
parameters describing the meridional ray. We will introduce as variables the 
differential angles Smj l and Smj 2, respectively, for the consecutive surfaces of the 
glass. After differentiation of the refraction law we obtain the following relation 
between the angles of incidence and refraction

n cos j  
ri cos j

S,J· ( 11)

By analogy with formula (2) we will introduce the meridional deviations Sm D of 
the differential ray as the differences between the differential angles of incidence and 
refraction. For consecutive surfaces we obtain the following meridional differential 
deviations:

i -  àmj x -  8mj \ ,

àmD2 -  Smh~&mj2· ( 12)

Replacing formula (11) for each surface into formulae (12) we obtain the relation 
between the deviation and variable differential angles:

=
{ cosJ {

l  n 1c o s ;1J

( ■ \
SmD2 =

1 n l COS./2

\  COS y2 /

1 ’

SmJ2· (13)

The consecutive differential angle of refraction 8mw{ and 8mw2 with the pupil ray 
can be calculated from the following formulae:



52 T. Kryszczynski

We will conventionally assume the entrance differential height Smh0 of the 
meridional ray at the point of intersection with the object plane as equal to

5mK
0 for L * 0
1 for L = 0

(15)

The differential heights and Smh2 at consecutive glass surfaces obtained 
from formulae (9) are as follows:

S  . S mh Q - d 0 S mW0
/71 M ’COS J x

Smh2
COSj'lSmh \ - d *5mW\ 

COS j  2
(16)

The location of the meridional image t2 along the pupil ray does not depend on 
the entrance angle (Eq. (10)) and height (Eq. (15)) but mainly on the variable angles 
of incidence j ] and j 2, and differential angles <5mj x and Smj 2. This location can be 
calculated from the following formula:

.· Smh2t2 = COS ] 2 - -------.
5 mw  2

(17)

Curvatures c , and c2 of glass surfaces calculated from Young’s formulae (9) depend 
on the above-mentioned angular pupil and differential meridional variables in 
accordance with the following formulae:

_ n xcos j lSmw { -  cos 
c \ ~ ’

( n ,c o s ;1- c o s ; , ) 5 mft1

Co =
cosj'2Smw2- n l cosj28lmwl

(cosy'j - n l cosj2)Smh2
(18)

Curvatures calculated from the differential meridional ray (Eqs. (18)) must 
conform to the respective curvatures calculated from the pupil ray.

3.2. Differential sagittal ray

By analogy to formula (10) we assume conventionally the entrance differential angle 
<5^0 of the sagittal ray with the pupil ray to be equal to

= -0.01 for L ±  0
0 for L = 0

(19)
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We introduce as variables the differential angles 8 j { and Ssj 2 for consecutive glass 
surfaces. The refraction of sagittal ray is similar to that of paraxial one. The relation 
between the angles of incidence and refraction is thus given by the following formula:

8 J  = 0-8J. (20)
n

By analogy to Eq. (12) we introduce the sagittal deviations 8SD of the differential 
sagittal ray as the differences between its differential angles of incidence and 
refraction. For consecutive surfaces we obtain the following sagittal differential 
deviations:

5s D i = S J i - S j ] ,

SsD2 = 8J2- 8 J 2. (21)

Replacing formula (20) taken for each surface into formulae (21) we obtain the 
relation between these deviations and variable differential angles:

5 s D  1 =

8sD2 = (1 - n x)8sj 2. (22)

Consecutive differential angles of refraction and <5^2 related to the pupil ray 
can be calculated from the following formulae:

8sw2 = 8sw0 + 8s D2. (23)

The entrance differential height 8sh0 of the sagittal ray at the point of intersection 
of the pupil ray with the object plane we conventionally assume as equal to

S,K
0 for L * 0
1 for L = 0

(24)

Differential heights 8sh l and Ssh2 on the consecutive glass surfaces obtained from 
Eq. (9) are the following:

<V *i =  S sh 0 ~ d 0 S sw 0 ’

S sh 2 = S sh l ~ d \ S sW l·  ( 2 5 )

The location of sagittal image s'2 along the pupil ray does not depend on the 
entrance angle (Eq. (19)) and height (Eq. (24)) but mainly on the variable incident
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angles j l and j 2 and differential angles Ssj l and 5sj 2■ This location can be calculated 
from the following formula:

j ,  = 5sh  2 

Ssw  2
(26)

The curvatures c, and c2 of consecutive glass surfaces depend on the above 
-mentioned pupil and sagittal angular variables in accordance with the following 
formulae:

_ _ N8sw x- 8 sw0 _ _ 8sw2- N 8 sw x ^
C \ — ------------------------------------ , C  2  — · vz / /

(Ncos j \  -  cos j x)8sh x (cos j'2 - N  cos j x)8sh2

Curvatures calculated from the differential sagittal ray (Eqs. (27)) must conform 
to the respective curvatures calculated from pupil (Eq. (6)) and differential meridional 
(Eq. (18)) rays.

4. Conditions of correct performance
Performance of the nonastigmatic ophthalmic glass is characterized by the back vertex 
power. This power denoted as BVP is a function of construction parameters such as: 
surface curvatures cx and c2, thickness of glass d { and the refractive index n, of glass 
in accordance with following formula:

p
BVP = P2 + ---------- l---------. (28)

1 - 0 .0 0 1 P , -
«1

Surface powers Px and P2 expressed in diopters, found in formula (28), can be 
calculated from the following formulae:

P , = 1 0 0 0 ( n ,- l ) c , ,  P2 = 1000(1 - n , ) c 2. (29)

Perfectly designed positive ophthalmic glass should feature minimum edge 
thickness de at the outer diameter cP, that depends on geometric construction 
parameters according to the formula

de = d l - x l + x2. (30)

Sags denoted by x x and x2 in Eq. (30) at the height h = &I2 are determined from 
the formulae:

h2 c ,
x. =

1 + J l - h 2c2x

h2c-,
x2 =

l + J l - h 2c22
(31)
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The enterence positive glass edge thickness concerns the initial situation before 
we start to process the glass to obtain different outer shapes, e.g., oval, pilot or square. 
Negative ophthalmic glasses have fixed minimum center thickness along the optical 
axis.

The condition for correct performance of ophthalmic glass is the correct location 
of the exit pupil p'2. This location is calculated from the pupil ray with the use of 
formulae (3) and (5) as follows:

P 2 =
M

SinW!
(32)

The most important parameter characterizing the performance of ophthalmic 
glasses is astigmatism (Ast) for the characteristic angle of view wch. Astigmatism 
expressed in diopters (D) is calculated based on the location of images determined in 
formulae (17) and (26)

Ast(wch) =
( \  

i _ ±
K{2 s2y

1000. (33)

The condition for correct performance of the model ophthalmic glasses is zero 
astigmatism Ast(wch) = 0 D in the characteristic angle of view. According to formulae 
given earlier all conditions for correct performance of glasses can be presented in the 
form of functions of linear and angular variables.

5. Algebraic method for the design of ophthalmic glasses
All dependences given in this work were defined as mutually nested functions of 
angular and linear variables. Owing to that we can describe very complex dependences 
in a simple and clear manner and solve them with the use of advanced professional 
software. In this work, the Mathcad software was used. The exact algebraic method 
of design of nonastigmatic spherical glasses consists in solving the system of nonlinear 
equations.

In the case of positive glasses it is necessary to solve the system of 8 nonlinear 
equations with 8 unknowns. The unknowns include:

-  the angles of incidence at the glass surface of: the pupil rays j { and j 2, the 
differential meridional rays j ml and j m2, and the sagittal rays j sl and j s2,

-  two linear parameters: center thickness dx of the glass along the optical axis, and 
the shortest distance M x of the incident ray from the vertex of the first surface.

Nonlinear equations concern: required back vertex power, location of the exit 
pupil, the minimum edge thickness of glass, correction of dioptric astigmatism to zero, 
conformity of curvatures of the first surface calculated for the meridional and pupil 
rays, conformity of curvatures of the second surface calculated for the meridional and 
pupil rays, conformity of curvatures of the first surface calculated for the sagittal and
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pupil rays, and conformity of curvatures of the second surface calculated for the sagittal 
and pupil rays.

To start the calculation it is necessary to fix the values of global constants and 
initial values of variables. Global constants are: refractive index n { of glass, object 
vergence in diopters L and the outer glass diameter <f>. Initial values of variables are 
determined with the use of the trial-and-error method. Once set the values are useful 
for a large group of glasses of various powers because the solution only slightly 
depends on initial values.

Equations of conformity of the curvatures of surfaces calculated with the use of 
different rays should be multiplied by weight coefficients to reduce the errors to 
minimum. Such an operation guarantees that the parameters of all three rays concern 
the same and common optical system.

After determination of unknowns the calculations of curvatures or radii of 
curvatures can be made with the use of an arbitrary ray. For verification purposes 
usually they are calculated by means of three methods (rays) in accordance with 
formulae (6), (18) and (27).

In the case of negative glasses the algebraic method of design becomes slightly 
simpler. The number of nonlinear equations and unknowns is reduced to 7. The 
thickness of glass is not a variable any more and remains in the group of global 
variables.

6. Model nonastigmatic spherical glasses
The present method of design of nonastigmatic spherical ophthalmic glasses was used 
for exemplary calculations of the construction parameters of model ophthalmic glasses 
of a given range of back vertex power, which completely fulfil all conditions of correct 
performance. Nonastigmatic positive and negative ophthalmic glasses were designed. 
The following assumptions were made: range of back vertex power from 0 to ±7 in steps 
of 0.25 D, outer diameter 0  = 65 mm, material: Columbian resin CR39 with ne = 1.500, 
location of the exit pupil p2 = 25 mm, minimum edge thickness for the positive glasses 
de = 0.8 mm, characteristic one-side angle of view wch = 15°, dioptric astigmatism equal 
to zero for characteristic angle of view, and calculation for three object vergences 
L = 0, -2 , -4  D (distance from the object 500 and 250 mm, respectively).

Assumed angle wch = 15° reflects approximately the situation where the text line 
on the portrait A4 page is read from the distance of 250 mm (L = - 4  D) or the text line 
on the landscape A4 page is read from the distance of 500 mm (L = -2  D). Calculated 
construction parameters (radii of surfaces R:, R2 and thickness d j) of nonastigmatic 
positive glasses can be found in Tab. 1.

Table 1 presents the solutions with the longest radii (Ostwald type). It is a bit 
difficult to obtain this kind of glasses with zero astigmatism in the end of BVP 
range. The solution of Wollaston type of glasses can be avoided when we assume 
certain value of residual astigmatism lower than the eye’s tolerance. As we see from 
Tab. 1, thicknesses determined in BVP range to 1 D are too small from technological
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T a b l e  1. Model positive spherical ophthalmic glasses, diameter = 65 mm, material CR39.

BVP L = 0 [D] L ~ - 2 [D]
Q-'3-1II

[D] * i r 2 *1 *2 ¿1 *1 *2 d\
0.25 79.983 82.929 1.07 102.989 108.186 1.07 140.279 150.450 1.06
0.50 72.037 77.102 1.36 89.978 98.333 1.35 117.736 132.875 1.34
0.75 68.325 75.438 1.66 84.158 95.603 1.63 108.083 128.231 1.62
1.00 65.804 74.908 1.96 80.309 94.768 1.92 101.855 126.918 1.89
1.25 63.801 74.838 2.27 77.312 94.705 2.21 97.096 126.961 2.17
1.50 62.077 74.989 2.58 74.777 95.022 2.50 93.138 127.687 2.45
1.75 60.526 75.253 2.89 72.532 95.545 2.79 89.687 128.798 2.73
2.00 59.095 75.572 3.19 70.976 97.130 3.08 86.590 130.141 3.01
2.25 57.750 75.911 3.50 68.593 96.882 3.37 83.758 131.625 3.29
2.50 56.473 76.246 3.82 66.815 97.603 3.67 81.137 133.190 3.57
2.75 55.249 76.557 4.13 65.133 98.321 3.96 78.689 134.791 3.85
3.00 54.070 76.830 4.45 63.532 99.014 4.26 76.386 136.395 4.13
3.25 52.926 77.050 4.76 61.999 99.662 4.55 74.209 135.971 4.41
3.50 51.814 77.203 5.09 60.527 100.248 4.85 72.142 139.491 4.70
3.75 50.726 77.275 5.41 59.106 100.756 5.15 70.173 140.928 4.98
4.00 49.758 75.494 5.53 57.732 101.167 5.45 68.291 142.256 5.27
4.25 48.606 77.108 6.08 56.399 101.465 5.76 66.488 143.447 5.55
4.50 47.563 76.830 6.42 55.102 101.628 6.07 64.755 144.471 5.84
4.75 46.524 76.389 6.78 53.836 101.637 6.38 63.086 145.300 6.13
5.00 45.481 75.752 7.14 52.597 101.468 6.70 61.476 145.900 6.43
5.25 44.423 74.871 7.52 51.379 101.095 7.02 59.917 146.239 6.72
5.50 43.333 73.675 7.92 50.178 100.486 7.35 58.406 146.279 7.02
5.75 42.182 72.044 8.34 48.986 99.604 7.68 56.937 145.982 7.32
6.00 40.902 69.716 8.83 47.797 98.402 8.03 55.504 145.307 7.63
6.25 39.244 65.759 9.46 46.600 96.817 8.39 54.102 144.208 7.94
6.50 37.637 61.694 10.20 45.378 94.758 8.76 52.725 142.637 8.26
6.75 37.612 63.242 10.49 44.104 92.077 9.16 51.366 140.535 8.58
7.00 37.584 64.852 10.78 42.725 88.483 9.61 50.018 137.833 8.91

point of view but they do follow earlier assumption (de = 0.8 mm). Results of 
calculation confirm earlier observation that the radii of glass curvatures elongate when 
the object is getting closer to the eye. However, the assumption of common solution 
for L = - 4 D  independent of object location leads to the impairment of visual comfort 
for L = 0 D. It is a good idea to assume common solution for L = -2  D because the 
present astigmatism in the characteristic angle for L -  0 D and L = - 4  D is then lower 
than the astigmatism tolerances of the eye equal 0.12-0.15 D.

Table 2 presents the calculated construction parameters of nonastigmatic negative 
ophthalmic glasses, which also fulfil all assumptions. Zero glasses (BVP = 0 D) were 
also added to this group. As it is evident from Tab. 2 thicknesses of negative glasses



58 T. Kryszczynski

T a b l e  2. Model negative spherical ophthalmic glasses, diameter = 65 mm, material CR39.

BVP L = 0 [D] L = -2 [D ] L = - 4  [D]
[D] K. r 2 ¿1 *1 *2 d \ *1 R2
0.00 76.208 75.608 1.8 106.252 105.652 1.8 153.878 153.278 1.8

-0.25 63.753 59.402 1.8 83.130 79.260 1.8 96.422 91.441 1.8
-0.50 70.662 65.475 1.8 77.455 71.370 1.8 89.023 81.239 1.8
-0.75 58.156 52.981 1.8 65.840 59.424 1.8 78.248 69.548 1.8
-1.00 49.321 44.450 1.6 57.662 51.271 1.6 70.100 61.070 1.6
-1.25 55.078 47.999 1.6 65.342 55.773 1.6 80.948 66.955 1.6
-1.50 58.984 49.730 1.6 70.800 58.033 1.6 89.112 69.982 1.6
-1.75 62.120 50.665 1.6 75.319 59.271 1.6 96.1556 71.645 1.6
-2.00 65.810 51.804 1.4 80.772 60.781 1.4 104.932 73.678 1.4
-2.25 68.222 51.923 1.4 84.437 60.942 1.4 111.119 73.870 1.4
-2.50 70.547 51.896 1.4 88.043 60.906 1.4 117.387 73.785 1.4
-2.75 72.834 51.764 1.4 91.656 60.730 1.4 123.863 73.508 1.4
-3.00 75.702 51.868 1.2 96.268 60.860 1.2 132.327 73.638 1.2
-3.25 77.954 51.562 1.2 99.979 60.451 1.2 139.456 73.039 1.2
-3.50 80.247 51.219 1.2 103.830 59.994 1.2 147.096 72.376 1.2
-3.75 82.593 50.848 1.2 107.847 59.499 1.2 155.344 71.664 1.2
-4.00 85.440 50.633 1.0 112.820 59.207 1.0 165.859 71.218 1.0
-4.25 87.900 50.201 1.0 117.226 58.634 1.0 175.663 70.405 1.0
-4.50 90.445 49.758 1.0 121.882 58.048 1.0 186.475 69.579 1.0
-4.75 93.083 49.305 1.0 126.826 57.453 1.0 198.463 68.742 1.0
-5.00 95.822 48.846 1.0 132.065 56.847 1.0 211.849 67.899 1.0
-5.25 98.971 48.381 1.0 137.688 56.242 1.0 226.907 67.053 1.0
-5.50 101.638 47.913 1.0 143.685 55.630 1.0 243.983 66.206 1.0
-5.75 104.733 47.441 1.0 150.119 55.017 1.0 263.523 65.361 1.0
-6.00 107.965 46.968 1.0 157.043 54.403 1.0 286.114 64.519 1.0
-6.25 111.344 46.494 1.0 164.515 53.790 1.0 312.540 63.682 1.0
-6.50 114.882 46.020 1.0 172.610 53.178 1.0 343.880 62.850 1.0
-6.75 118.591 45.545 1.0 181.411 52.569 1.0 381.652 62.025 1.0
-7.00 122.483 45.072 1.0 191.017 51.964 1.0 428.073 61.207 1.0

were adopted with the use of step method starting from 1.8 mm, which simulates 
existing constructions. Solution of negative glasses of Ostwald type for the entire 
range of BVP does not bring too much trouble. Table 2 confirms the tendency of 
radii to elongate when the object is getting closer to the eye.

7. Conclusions
It is evident from this work that designing the nonastigmatic spherical ophthalmic 
lenses with the use of exact algebraic method instead of the simplified 3rd order
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methods is possible. The method was tested for correctness in exemplary calculations 
of low-diopter nonastigmatic spherical glass of both positive and negative BVP.

The results concern the theoretical solutions of model glasses because they do not 
include any technological simplifications introduced to reduce the tooling.
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