Letter to the Editor

Point spread function in a confocal microscope with trigonometric pupil filters

ANNA MAGIERA

Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

In this paper the distribution of point spread function was examined versus the spatial frequencies of the filters of $\cos(N\rho)$ type modulating the aperture of the confocal CSM for different values of numerical aperture. In particular, the following relations were determined: i) PSF as dependent on the pupil modulating spatial frequency r for N = 1, 2, 3, 4, 5, 6, 7, 9, 11 and numerical aperture NA = 0.8; ii) PSF for filters of $\cos(4\rho)$, $\cos(10\rho)$ type and NA = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4; iii) cut-off spatial frequences r_e for the aperture modulated by $\cos(N\rho)$ for N = 0, ..., 20, NA = 0.2, 0.5, 1.0 and $\lambda = 0.6328 \mu m$.

In paper [1], the point spread function (PSF) was determined as a function of spatial frequency r in a CSM microscope of apertures modulated by ρ^n for n = 2, 4, 6, 8, 10, 12, 14, 16 and for NA = 0.5 and NA = 0.8. Also a characteristic of the cut-off spatial frequency $r_c(n)$ was examined as dependent on parameters n for NA = 0.5.

In the present paper, the distribution of the PSF is examined as a function of spatial frequency r in a confocal CSM microscope of aperture modulated by the filters of $\cos(N\rho)$ type (for N = 1, 2, 3, 4, 5, 6, 7, 9, 11) and NA = 0.8. Here, ρ is the absolute value of the radius-vector in the pupil plane. Additionally, the PSF has been examined for different r and $\cos(4\rho)$, $\cos(10\rho)$ and for NA = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4. The characteristic of the cut-off frequency r_c has been determined for the aperture modulated by filters of $\cos(N\rho)$ type (for N = 0, 1, ..., 20) and NA = 0.2, 0.5, 1.0, with $\lambda = 0.6328 \ \mu m$.

The resultant point spread function (RPSF) h_{i} in a confocal microscope is defined by the PSFs h_{1} , h_{2} of the first and second objectives, respectively, *i.e.*

$$h_r = h_1 h_2.$$

For the case of two identical nonmodulated circular objectives the image of the point object is defined by

$$I(w) = \left[\frac{2J_1(w)}{w}\right]^4$$

where: J_1 – Bessel function of the first kind and first order, $w = k\rho r/f$ – reduced coordinate in the image plane, $k = 2\pi/\lambda$ – propagation constant (wave number).

The PSF is a Fourier transform of the pupil function

$$PSF = FT\{P(\rho)\}.$$

For apertures modulated by the trigonometric filters we obtain [1]

$$h_N(\mathbf{r}) = 2\pi \int_0^{\rho_0} \cos(N\rho) \rho J_0(k\rho r/f) d\rho$$

where: J_0 – Bessel function of the first kind and zero order, ρ_0 – rim value of ρ . In the numerical calculations $f = 1 \ \mu m$ and $\lambda = 0.6328 \ \mu m$ have been assumed.

In Figure 1, the pupil function modulated by $cos(N\rho)$ for N = 1, 4, 10 and 20 is shown. In Figure 2, the PSF is presented as a function of spatial frequencies

Fig. 1. Distribution of the pupil function $\cos(N\rho)$ for: N = 1 (a), N = 4 (b), N = 10 (c), N = 20 (d).

Letter to the Editor

Fig. 2. Point spread function versus the spatial frequencies $r [\mu m]$ for the pupil filter $\cos(N\rho)$ and the numerical apertures NA = 0.8 for: N = 1 (a), N = 2 (b), N = 3 (c), N = 4 (d), N = 5 (e), N = 6 (f), N = 7 (g), N = 9 (h), N = 11 (i).

r for pupil filters of $\cos(N\rho)$ type in CSM and for NA = 0.8, while N takes the values: 1, 2, 3, 4, 5, 6, 7, 9, 11.

457

Fig. 3. Point spread function versus the spatial frequencies $r [\mu m]$ for the pupil filter $\cos(4\rho)$ and the numerical apertures NA = 0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d), 1.0 (e), 1.2 (f), 1.4 (g).

In Figure 3, the PSF is presented as a function of spatial frequencies r for the pupil filter $\cos(4\rho)$ and the following values of the numerical aperture: NA = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4. In Figure 4, the PSF is presented as a function of spatial

Letter to the Editor

Fig. 4. Point spread function versus the spatial frequencies $r [\mu m]$ for the pupil filter $\cos(10\rho)$ and the numerical apertures NA = 0.2 (a), 0.4 (b), 0.6 (c), 0.8 (d), 1.0 (e), 1.2 (f), 1.4 (g).

frequencies r for the pupil filter of $\cos(10\rho)$ for numerical apertures: NA = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4. In Figure 5, the characteristic of the cut-off frequency r_c [µm] versus the parameter N (N = 0, 1, ..., 20) of the pupil filter $\cos(N\rho)$

Fig. 5. Cut-off spatial frequencies $r_e [\mu m]$ for different values of the parameter N of the pupil filters of $\cos(N\rho)$ type ($\lambda = 0.6328 \ \mu m$), $f = 1 \ \mu m$) for numerical apertures: NA = 0.2 (a), 0.5 (b), 1.0 (c).

has been determined for numerical apertures: NA = 0.2, 0.5, 1.0 and $\lambda = 0.6328 \ \mu m$. These frequencies have been determined by solving the equation

 $h_{N} = 0.$

For a circular nonmodulated pupil (N = 0) and the numerical aperture of NA = 0.5, $\lambda = 0.6328 \ \mu m$, $f = 1 \ \mu m$, the cut-off frequency is equal to $r_c = 0.771807 \ \mu m$. For the aperture $P(\rho) = \rho^n$, as reported in [1], the cut-off frequency r_c ranges from $r_c = 0.772 \ \mu m$ for the nonmodulated circular frequency (n = 0) to $r_c = 0.43 \ \mu m$ for high values n = 16. In the case of aperture $P(\rho) = \cos(N\rho)$ and NA = 0.5 the characteristic $r_c(N)$ is shown in Fig. 5b. The results obtained are shown in the next page.

N	r, [µm]
0 (nonmodulated aperture)	0.7718
4.66	1.33425
4.66225	0.001351
12.56	1.06397
12.567	0.01034
18.41	0.5506
18.42	0.0488
20	0.487

For NA = 0.2, the characteristic $r_{c}(N)$ is shown in Fig. 5a, while for NA = 1.0 in Fig. 5c.

Reference

[1] HAMED A. M., Optik 107 (1998), 161.

Received June 20, 2000