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Stigmatic imaging by spherical hybrid surface
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In the paper we consider the condition for stigmatic imaging by spherical surface with deposited 
diffractive structure (hybrid surface). The results are verified numerically. We also present an 
example of fringe pattern which being deposited on plane refractive surface enables stigmatic 
imaging.

1. Introduction

Progress in optical manufacturing technology makes various kinds of diffractive 
elements more available. This results in increasing interest in their optical properties. 
In this paper we discuss the condition for stigmatic imaging given by single spherical 
surface with diffractive structure (hybrid structure). Such a condition is well known 
in the case of a single refractive spherical surface [1], [2] and has also been specified 
for plane kinoform lens [3] — [5],

In the case of refractive surface the stigmatic condition has the form

n sin u
— —----; =  const
n sinu ( 1 )

where n, ri are refractive indices of the medium placed in front of and behind the 
refractive surface, respectively, u is an aperture angle, u' is an image angle (Fig. 1). 
Condition (1) imposes strict limitations on possible realization of stigmatic imaging 
by refractive surface. The location of source and image point must satisfy the 
following relations:

s =  r (2)

s' = r ( 1 + (3)

where s, s' are source and image z-coordinates, respectively (Fig. 1). There are two 
more possibilities to get stigmatic image: — s' =  —s =  —r and s =  s' — 0, however, 
they are obvious.

From the above formulas we can notice that it is impossible to get real stigmatic 
image of a real object with single refractive surface. The spherical hybrid surface is 
more flexible. One can find the fringe geometry that provides stigmatic imaging for
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Fig. 1. Beam passing through spherical surface with an object P being at finite location.

any two points on axis. In the present paper, formulas describing such fringe 
geometry are derived. The diffractive structure is represented here holographically,
1. e., by means of two forming beams located on the optical axis (we limit our 
consideration to the rotationally symmetric case). This allows us to refer directly to 
the formula describing beam deflection at the diffraction surface (see Eq. (5)). Such 
representation is also intuitive, which is helpful in the system analyses. On the other 
hand, the formulas presented in the paper can be easily transformed to other 
methods of diffraction structure representation (e.g., polynomial representation).

2. Ray deflection by hybrid imaging surface

In this section, we derive a formula describing the deflection of a single ray by hybrid 
imaging surface. We refer to the Snell refraction law and the appropriate formula 
describing the beam deflection by diffractive structure. The Snell refractive law may 
be written as

n'ri x r' =  nnfr (4)

where f ',  fr are unit vectors along image and object beams, respectively, n is a unit 
vector along the normal at the point of ray incidence.

In the case of diffractive surface the formula for the diffracted rays may be written 
as (Fig. 2), [6], [7]

r ix ?d =  n x ( f d +  n(fa +  fp)) (5)

where: f d, f d are unit vectors along the image and object beams, fa, f e are unit vectors 
along forming beams, n is a unit vector along the local normal at the point of 
incidence, /i is the parameter which in holography takes the form [8]
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X

Z

Fig. 2. Beams forming the diffractive structure.

(6)

is the readout wavelength, X2 is the forming wavelength. Furthermore we put 
A*= !·

Formula (5) is valid for the primary image. For the secondary image, a plus sign in 
front of parameter pi must be changed to a minus sign. The diffractive structure 
changes the direction of the incident beam. Next, the diffracted beam can be treated as 
being refracted at the surface considered. Thus f d =  f r and combining (4) and (5) we get

where f ' =  r' and f  =  f d. In paper [9], formula (7) is derived directly from Fermat 
principle.

Next, we limit our considerations to the two-dimensional case. In Cartesian 
co-ordinates equation (7) has the form

Equation (8) my be considered as a two-dimensional refraction law for single hybrid 
surfaces.

3. Stigmatic imaging for finite object location

In this section, we derive a formula describing fringe geometry supporting stigmatic 
imaging in the case of finite location of the object. From Fig. 1 we can find the 
following geometrical relations:

(7)

sin(—i') =  — [sin(—i) +  sin( — a) — sin( — /J)].
ri ( 8)
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r — s =  r

s ' - r  =  r

sin( —i) 
sin(—u)’

sin(—i')

(9)

( 10)
sin(u')

Dividing Equations (10) and (9) and combining the result and Eq. (8) we get 

r — s' n sin(—i) +  sin(—a) — sin(—fi) sinu
r —s n sini sinu

For a spherical surface the value of angle a is 

— a =  0  —

(U )

( 1 2)

where az is an angle between forming beam ra and optical axis z. Angle i is equal 
to (Fig. 1)

- i  =  0 - u .

Combining (11), (12) and (13) we get

r — s' n sin(a_ — 0 )  +  sin(— a) — sin( — ß) sin(u)
r — s n' sin(u —0 )  sin(u')

(13)

(14)

In order to get the stigmatic imaging condition we have to eliminate u' from the 
above equation. From Fig. 1 we have

tan(u') =  ^tan(u) (15)
z

where: z =  — s +  As and z' =  s' —As.
Taking (15) into (14) we get

. fr — s' n' sin[arctan(z/z'tan(u))l . , . . . . . „ J  _
a„ =  arc sin <------------------------— ----------— sin(0 — u) — sin( — a) +  sm( — P)> +  0 .

‘ ( r  — s n sin(u) J
(16)

Following the holographic reconstruction scheme (the object is located at the 
position of one of the forming beams: — s =  — zp, hance — i =  —fi (Figs. 1 and 2)) 
we can simplify Eq. (16) to the form

r — s' n' sin [arctan(z/z' tan(u))1 . / ^
L w  sin(0 —u)[> +  0 .a. =  arcsin , . . ,

' r  — s n sin(u)

It is worth noting that for the plane surface Eq. (16) takes the form

(ri sin(arctan(z/z') tan(u)))
a, =  arcsin

sin(u)

(17)

(18)
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The values of angle a. calculated from Eqs. (16) —(18) result in different locations 
of the forming beam z„ for varying aperture angle u (Fig. 2). This makes it impossible 
to record the appropriate diffractive structure in the holographic way. However, for 
each aperture angle we can use Eqs. (16) —(18) to find the corresponding location za. 
Next, we can calculate the phase shift <f>u introduced by the corresponding diffractive 
structure

<f>u =  <Pa-<Pp (19)

where

2  71(p =  — R « 2 « A2
(20)

with Rq being an optical path length from the source point zq to the point of beam 
intersection. Next, we can plot the diffractive structure (corrected diffractive 
structure) using one of the computer-aided methods.

4. Stigmatic imaging for infinite object location

Equations (16) —(18) have different form when the object is located at infinity (plane 
wave illumination). From Fig. 3 we can find:

u' =  arctan (21)

V =  u'— 0 , (22)
— i =  0 . (23)

Combining the above equations and Eq. (8) we get

Fig. 3. Beam passing through spherical surface with an object being at infinity.
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(24)sin ^arctan — 0 ^  =  ^ [s in (0 ) +  sin(—a) — sin(—/?)].

Taking similar steps as in the previous section we get

a . =  arcsin sin ^ 0  — arctan ( ^ j j  +  sin(0) — sin( — /i)| +  0 .  (25)

If we apply the holographic reconstruction scheme, Eq. (25) takes the form 

a. =  arc sin ·! — sin i 0  — arc tan ( — J j > +  0 .  (26)

For the plane hybrid surface Eq. (25) simplifies to 

az =  arc sin sin ^arc tan — sin(—/?)j. (27)

We can use Eqs. (25) — (27) to calculate the fringe geometry supporting stigmatic 
imaging in the same way as in Sect. 3.

5. Numerical examples

In this section, we verify numerically the results discussed in the previous sections 
[10], [11]. The table shows the parameters of the spherical hybrid surfaces being 
investigated (with radius r — 100 mm). The last three columns show the values of 
standard deviation of the aberration spot calculated for the field angles of 0, 0.02, 
0.05 (in radians), respectively. The diffractive structure of hybrid surface I is designed 
in a standard way. In the case of hybrid surfaces II — V the corrected diffractive 
structures were calculated using an equation whose number is shown in the fourth 
column of the table. The image distance s' of hybrid surface I was calculated from 
paraxial optics formulas. In the case of hybrid surfaces II — V it was an arbitrary 
value. For the fixed image position the proper corrected diffractive structures were 
calculated (Eqs. (17) and (26)).

T a b l e .  Parameters and standard deviation rms of the aberration spot for the investigated spherical 
hybrid surfaces. The standard deviation is given in [mm]· 10“ *. All hybrid surfaces have radius 
r =  100 mm.

No. zc =  s Z| =  s' z . zß Radius Angle 0 Angle 0.02 Angle 0.05
[mm] [mm] [mm] [mm] [mm] rms rms rms

I - 5 0 - 1 5 0 - 6 6 .6 6 - 5 0 100 15.98 18.03 30.58
II - 5 0 - 1 5 0 Eq. (17) - 5 0 100 0 7.47 2.14

III —  00 - 1 5 0 Eq. (26) - 4 0 0 100 0 1.71 4.73
IV —  0 0 - 1 5 0 Eq. (26) —  00 100 0 1.71 4.73
V - 1 0 0 - 1 0 0 Eq. (17) - 1 0 0 100 0 0.08 0.5
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Fig. 4. Spot-diagrams for hybrid surfaces listed in the table, (a —c) hybrid surface I, field angles 0, 0.02, 
0.03, (d,e) hybrid surface II, field angles 0.02, 0.04, (f, g) hybrid surface III, field angles 0.02, 0.04, (h, i) 
hybrid surface IV, field angles 0.02, 0.04, (j,k) hybrid surface V, field angles 0.02, 0.04.

Figures 4a  —k show spot-diagrams corresponding to hybrid surfaces listed in the 
table. We have not included spot-diagrams for the field angle 0 in the case 
of hybrid surfaces II —V. In this case the imaging is stigmatic. All figures, except 
4j, k are plotted to the same scale.

Comparing the spot-diagrams for hybrid surfaces I (Fig. 4 a —c) and II (Fig. 4d,e) 
we can see that hybrid surface II with corrected diffractive structure gives better
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image quality, particularly for small field angles. For larger field angles the 
differences become negligible. Hybrid surfaces III (Fig. 4 f, g) and IV (Fig. 4h, i) are 
illuminated with plane wave (infinite object location). The two hybrid surfaces 
differ in location of the forming source zp. However, their aberration spots are 
practically the same. Studying similar cases we arrive at the same conclusion. The 
aberration spots do not depend on the forming source location. The last example 
illustrates the advantage of representing the diffractive structure in a holographic 
way. Following the holographic readout scheme we can easily find the location of 
sources that result in a diffractive structure which works as a filter compensating the 
refractive power of the hybrid surface (zp =  zc =  zj. In this case, the rays originating 
from the object source point are not deflected at the hybrid surface. We can see that 
for non-zero field angles the aberration spot is very small and coma free (Figs. 4j, k) 
are plotted to a much smaller scale than the previous one).

Fig. 5. Fringe pattern of plane hybrid surface with classical diffractive structure (a), plane hybrid surfcae 
with corrected diffractive structure (b).

Figures 5a,b show examples of diffractive structures for classical plane hybrid 
surfaces with source locations za =  zi =  —150 mm, zp — zc =  —50 mm, and plane 
hybrid surface with corrected diffractive structure calculated using Eq. (19), (source 
location: z, =  —150 mm, zp =  zc =  —50 mm). Both structures were calculated and 
plotted by means of computer method [12], [13].

6. Conclusions

We have shown that for spherical hybrid surfaces it is possible to design the 
diffractive structure that yields stigmatic imaging between any two points on the 
axis. Although we represent the diffractive structures in a holographic way, the 
calculated fringe geometry cannot be realised by means of optical holography. This is 
not a disadvantage of the holographic approach. We can easily compute the phase 
shift introduced by diffractive structure and plot the desired fringe pattern. On the
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other hand, the holographic approach seems to be intuitive. This allowed us to 
design the diffractive structure which works as a filter compensating refractive power 
of the hybrid system (position V in the table).

We have not discussed the problem of diffraction efficiency of the diffractive part 
of hybrid surface. This question is strictly related to limitations of the available 
technology and is not a subject matter of this paper.
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