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An analysis of isotropic multi-step fiber structures with elliptical geometry, in particular, the fiber 
structures which provide the large value of the birefringence, is presented. The multi-layer 
confocal-elliptical fibers can be analyzed by the exact analytical method with Mathieu function 
expansions. In that group of fibers, the W-profile elliptical fiber provides the largest value of the 
birefringence. In order to investigate the three-layer elliptical fibers with layers of any ellipticity we 
apply the improved point-matching method with Mathieu function expansions. It was found that 
the highly-birefringent fibers with hollow layers outside an elliptical core can be suitable for the 
single-mode single-polarization transmission. Numerical resutls are presented for the silica fibers 
doped G e0 2 and F, respectively. The results obtained are of the practical value and can be used 
directly in designing the elliptical fibers with large value of the birefringence.

1. Introduction

The elliptical fiber is defined as a fiber with the core of elliptical cross-section. Due to 
the cross-section asymmetry, in the elliptical fiber two orthogonally polarized modes 
of different values of the propagation constants can be propagated. Therefore the 
elliptical fibers can preserve the polarization of guided mode and they play an 
important role in the domain of the optical fiber technology, especially, optical fiber 
sensing systems. The ability of a fiber to preserve the polarization becomes greater as 
the modal birefringence B of a fiber is increasing, where B is defined as

B =  | A/? | /k (1)
where A/J is the difference of propagation constants of the odd and even fundamental 
modes, and k — the wave number of a free space.

In a real fiber structure with large value of birefringence, i.e., for the case of 
B larger than 10_5, accidental B fluctuations caused by heterogeneity of the core 
and mechanical stresses do not have an effect on the light polarization.

The first paper on elliptical fibers appeared in 1961 [1], while the theoretical 
study on the step-index dielectric-elliptical fiber was published by Yeh in 1962 [2], 
He derived the characteristic equations for odd and even modes and presented
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selected propagation characteristics for the fundamental modes of the fiber. Yeh has 
also derived the characteristic equations in a simplified form in case of the weakly 
guiding fibers [3] and investigated attenuation in elliptical fiber [4]. Single-mode 
optical fibers with elliptical core have been shown to preserve the polarization [5], 
RENGARAJAN and Lewis analyzed the first higher-mode cut-off parameter of the 
step-index elliptical fiber [6], The results of studies have confirmed that a value of 
B possible to obtain in the case of step-index elliptical fibers of low-dispersion is not 
so large (about 10 _s).

The analysis of elliptical dielectric tube waveguides [7] was modified to study the 
propagation characteristics of three-layer elliptical fibers [8]. Among that group of 
fibers the W-type confocal-elliptical fiber was proposed for polarization-maintaining 
and low-dispersion applications [8], [9]. In order to investigate the W-type elliptical 
fibers with layers of any ellipticity the authors proposed the improved point 
-matching method (IPMM) with Mathieu function expansion [10]. In our IPMM, 
unlike in the previously reported methods [11], [12], high computational accuracy 
was chieved even in the case of fibers with layers of larger ellipticity. It was found 
that the fibers with hollow layers outside an elliptical core can provide the large 
value of birefringence (B > 10“3) and they can be suitable for the single-mode 
single-polarization transmission [13].

The subject of analysis are isotropic multi-step optical-fiber structures with 
elliptical geometry, in particular, the fiber structures which provide the large value of 
the birefringence.

The software to calculate the Mathieu functions was prepared by the authors. 
Numerical results of the propagation and dispersion characteristics, modal birefrin
gence and cut-off conditions for the selected fiber structures are presented. The 
birefringence that arises from stress is assumed to be neglected in this paper.

2. Confocal-elliptical fibers

2.1. Step-index elliptical fibers
In an analysis of the step-index elliptical fibers the elliptical coordinates (£, 17, z) are 
used. The cross-section of the step-index elliptical fiber is shown in Fig. 1. It is 
assumed that the core is an infinitely long dielectric cylinder of an elliptical 
cross-section and a permittivity e4. Outside of the surface £ = f 0 we have an infinite 
dielectric medium of permittivity e2, the so-called cladding, where Ej > e2.

We assume that the core and the cladding are isotropic, perfectly transparent for 
the light and their magnetic permeability is equal to the magnetic permeability of the 
free space u0.

We shall confine our treatment to harmonic waves propagating along the 
positive z axis. Therefore, the time t and z dependence of ei'K-W for all field 
components is assumed, where a> = 2nf, f  is frequency and /? is propagation 
constant

The wave equation in the elliptical coordinates system has the form:
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Fig. 1. Cross-section of step-index elliptical fiber: a = qchf0 — semi-major axis of the ellipse, b =  <jsh{0 
— semi-minor axis of the ellipse, q — semi-focal length.

- ^ T + g -2 + x V (c h 2f —cos2>f)<Pr =  0 (2)

where <PZ = {Ez, Hz), E. and Hz are the axial electric and magnetic field components, 
respectively, y2 =  k f - f i 2, kf = oi2eip0, ‘ =  {1, 2}.

Using the method of separation of variables we can write that

(3)

where /(£) — function of g(rj) — function of rj. Therefore, the functions /  and g are 
solutions of the equations [9]:

d2g
^ |  +  [b(s)-scos2t/]0 = 0,

0 - [ h ( s ) - s c h 2£]/=O,

where s = x2q2, b(s) is the eigenvalue that is independent of /; and rj.
Equations (4) and (5) are known as the Mathieu equation and modified Mathieu 

equation, respectively. Solutions of Eq. (4) have the form of the even and odd 
Mathieu functions of the first kind denoted by ce and se, respectively. In the case of 
Eq. (5), we have the modified Mathieu functions of the first kind: even — Ce and odd
— Se, of the second kind: even — Fek and odd — Gek and of the third kind: even
— Fey and odd — Gey, respectively. The Mathieu functions and modifies Mathieu 
functions are also known as the functions of hyperbolic and elliptic cylinders, 
respectively. Relations to calculate the Mathieu functions are given in [14], [15].

(4)

(5)

Modes of the elliptical fiber
Unlike the circular fiber, the elliptical fiber guides only the hybrid modes. In this case 
the modes TE (Ez = 0, Hz ^  0) and TM (Hz = 0, Ez ^  0) do not exist. Due to the 
asymmetry of the elliptical cylinder, it is possible to have two orientations of field 
configurations. Consequently, there are odd and even hybrid modes. The odd modes
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are denoted by „HEmp, 0EHmp [2] or HE|mp, EH(mp [16], where m and p are azimuthal 
and radial mode numbers, respectively. For HE and EH hybrid modes the axial 
components ratio of the electric and magnetic field ratio is positive and negative, 
respectively. In the case of the odd fundamental mode 0HE11, electric field lines in the 
center of the fiber are perpendicular to the minor axis of the ellipse (Fig. 2a).

Fig. 2. Transverse electric and magnetic field lines of step-index elliptical fiber: the odd fundamental mode 
JHEn  (a — E field, b — H field) and the even fundamental mode eH En  (c — E field, d — H field) for 
b/a =  0.75, A =  0.4.

The even modes are denoted by eHEmp, eEHmp [2] or HElmp, EHlmp [16]. In the 
case of the even fundamental mode eHE11, the electric field lines at the center of the 
fiber are perpendicular to the major axis of the ellipse (Fig. 2c).

The transverse electric and magnetic field configuration of the fundamental 
modes 0HEU and tHEu , as shown in Fig. 2, tend to the field configuration of the 
circular H E^ mode when the ellipticity tends to zero [17]. The transverse electric 
and magnetic field configuration of the higher-order modes are presented in [9], 

The axial magnetic and electric fields of an odd wave are represented by odd and 
even Mathieu functions, respectively, while those of an even wave by even and odd 
Mathieu functions, respectively.

Odd 0HEmp and 0EHmp modes
The appropriate solutions of Eq. (2) for the odd modes of the step-index fiber are as 
follows [9]:
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00

m= 1

£  DMCte„tf,rf)cem(ii,yi),
m = 0

for the core (0 <  f  ^  <f0) and

(6)

Hzl =  E  GrGekr ({ y2) ser(rj, y\),
r =  1

£*2= E FrFek,(i,y2)cer(»f,yl),
r= 0

for the cladding ( i0 <  i  <  oo), where: yj =  (kf -  P2)q2/4, 
k2 =  co2/i0E1, fcf =  o>Vo£2> Cm, Dmr G„ Fr are constants. 

The transverse field components can be expressed as

(7)

y\ = ( k l - p 2)q2/4,

(8)

where: Q = q(sh /^ f +  sin2»/)172.
Using the boundary conditions for the tangential components of the field we 

obtain the set of equations to solve [9]. For a nontrivial solution, the determinant of 
the set of equations must be equal to zero. Thus, we obtain the characteristic 
equation, from which for given fiber parameters the propagation constant of the odd 
modes can be determined.

For example, the characteristic equation for m = 1 has the form of the infinite
ninant equal to zero

01.1 *1.1 03.1 *3.1 05.1 *5.1 ···
*1.1 *1.1 *3,1 *3,1 *5,1 *5,1 ···
01,3 *1.3 03.3 * 3 .3 05.3 *5.3 ···
* 1 ,3 *1,3 * 3 ,3 * 3 .3 *5.3 *5.3 ···
01,5 *1.5 03,5 *3.5 05,5 * 5 .5

*1.5 *1.5 *3.5 *3.5 * 5 .5 * 5 ,5  . . .
= 0 (9)

where: g, h, t and s are defined in [9].
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Practically, the determinant can be significantly reduced depending on a demand
ed accuracy. For the modes of the main number m, the first element of the 
determinant is gm m.

Even 0HEmp and eEIImp modes
General expressions for the axial magnetic and electric fields of the even mode have 
a similar form to Eqs. (6), (7) when we replace in these equations the even Mathieu 
functions by the odd ones and vice versa. Using the boundary conditions, after 
transformations, we obtain the characteristic equation of the even modes in the form 
of the infinite determinant equal to zero [9].

Approximate characteristic equations
In the case of the weakly guiding fiber, i.e., when A = (nl — n2)/n2 «  1, where nl and 
n2 are the core and cladding refractive indices, respectively, instead of the infinite 
determinant equal to zero (9), for the odd modes we obtain the characteristic 
equation in a form

1 b'm _  1 p'ml  I”nj a'm _  n\ l'm
yl bm y2 Pm][_ y ia m y\ lm

where B = (N2 — n2)/(n2 — nl) here denotes the relative propagation constant, 
N = P/k is the normalized refractive index, k is the wave-number of the free space, 

=  Cem(£0), hm = Sem(£0), lm =  Fekm(f0), pm =  Gekm(£0), and sign ' denotes a deri
vative of a function with respect to £0.

Similarly as for the odd modes, we obtain the approximate characteristic 
equation for the even modes of weakly guiding fiber in the form of Eq. (10) when we 
replace in this equation the even Mathieu functions by the odd ones and vice versa
[9]·

The approximate characteristic equations are relatively simple and enable the 
exact estimation of the propagation constants difference of the modes in a weak
ly-guiding fiber.

N 2 m2 
(yiB)2

(10)

Classification of the modes
There are two fundamental modes: odd 0HE11 and even JHEu· Because of the 
difference between their propagation constants a structural birefringence appears 
and it is defined as

W  =  P o - P c (11)
where: P0— propagation constant of the 0HE11 mode, Pe — propagation constant of 
the eHEn  mode. In the step-index elliptical fiber the higher-order modes are: eEH01,
eHE01, 0HE21, :HE21, JEH,,, tEHu , dHE31, eHE31, 0HE12, eHE12, „EH21, eEH21»

oEH02, eHE02, 0EH22, eHE22, 0EH31, eEH31 ....... The circular hybrid HE (EH)
modes correspond to the two modes HE (EH) in elliptical fiber, odd and even ones,
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designated by prescripts “o” and “e”, respectively. Instead of the axial symmetric 
modes TE0p and TM0p we have the hybrid modes eEK0p and oEH0p, respectively.

Numerical results
The Fortran programs for the Mathieu functions which we use in our numerical 
computations are based on the algorithms that have been developed by YAMASHITA 
[18], [19]. The accuracy of the Mathieu functions is confirmed to be of more than 
ten significant digits for the double precision computations. It has been proved that 
a 4 x 4  determinant is sufficient to obtain the practically accurate values of 
propagation constants of the step-index fiber. Computations were carried out for the 
silica step-index elliptical fibers doped G e02 at the wavelength X — 1.3 pm 
(n2 =  1.446917).

In Figure 3, the propagation characteristics B = /(F ) of the odd 0HEn  mode are 
shown, for A =  1% and various values of c = b/a, where B = (N2 — nf)/(n? — n2) is 
the relative propagation constant, V= ka(n2 — n |)1/2 is the normalized frequency, 
A =  (n1 — n2)/n2, N = fi/k. The propagation characteristics of the even fundamental 
mode are almost the same as for the odd one because their propagation constants 
differ slightly. Both fundamental modes have the cut-off frequency Vc equal to zero.

Fig. 3- Propagation characteristics B = f(V )  of the odd „HE,, mode for A =  1% and various values of c.

The structural birefringence becomes larger as the relative index difference A and 
ellipticity of the core of a fiber e = l —b/a are increasing (Tab. 1). The step-index 
elliptical fiber of low-dispersion can realize the modal birefringence of value B 
about 10_5.

The first higher mode of the step-index elliptical fiber is oEH01. Its normalized 
cut-off frequency

Vc — ka(n2 — n2)112 (12)
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T a b l e  1. Structural birefringence A/? of the step-index elliptical fibers versus V and c, for A =  1%

A P = P '- P ' [ 1/m]

c \ V 1.8 2.2 2.6 3 3.5 4

0.9 35.64 34.53 30.39 25.76 20.58 16.42
0.7 109.45 119.09 112.74 100.49 83.98 69.18
0.5 154.14 204.20 220.10 214.96 195.10 170.77

can be calculated from the condition

Ce0(£0)72) =  0

where y2 = (k2n2 — k2n2)q2/4. It is greater than 2.405 and depends significantly on 
ellipticity of the fiber (Tab. 2). For small values of c we have that Vc -» 0.5 n/c.

T a b l e  2. Normalized cut-off frequency of the ^ H n  mode versus c

c 0.9 0.8 0.7 0.6 0.5
Vc 2.542 2.720 2.960 3.293 3.777

Fig. 4. Propagation characteristics B =  f (V)  of the odd „HEn and oEH01 modes for A =  1% and various 
values of c.

Propagation characteristics of the first odd modes 0HEn  and 0EH01 for A = % 
and various values of the c are shown in Fig. 4. The dispersion D = — (l/f)d2N/dX2 
versus wavelength X of the odd fundamental mode „HE11 for parameters: a = 3.2 pm, 
A = 0.9% is presented in Fig. 5. The dispersion characteristics of fundamental modes 
are practically the same but they are significantly different compared to those of the
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Fig. 5. Dispersion characteristics of „HEjj mode for odd a =  3.2 pm, A =  0.9% and various values of c.

circular step-index fiber, i.e., they are shifted towards long wavelength range. 
Changing the values of parameters a, b and the index difference we can design fibers 
of the zero dispersion in the wavelength range 1.3 — 1.55 pm.

22. Double-step confocal-elliptical fibers
The method described in Subsection 2.1. can be extended for the multistep-index 
confocal-elliptical fibers, particularly for the double-step fibers of refractive indices: 
nlt n2 and n3, where n3 < max(n1,n2), (Fig. 6). In this case, two elliptical cylinders, 
with £ =  and t  = t 2, are assumed to coincide with the boundaries of the layers 
1 and 2, respectively.
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Fig. 6. Models of the double-step confocal-elliptical fibers.

Odd BHEm„ and aEHmB modeso mp o mp

The axial magnetic and electric fields of odd modes can be expressed as follows:
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Htl =  I  B ^S eM(£,y?)sem(>,,y?),
m— 1

Ezi =  Z  Am)Cem(<r,7i)cem(i7,yf)
m =  0

for layer 1,

(13)

Hz2 = Z  BL2)Gm(£,yf)sem(»7,yi),
m= 1

Ez 2
oo
Z  AL2)Fm(£,yf)cemfa,yf)

(14)

for layer 2,

tfz3 =  Z  BL3)Gekm(£,yf)sem(i7,yf),
m = l
oo (15)

£ z3= Z  Am)Fekm(i.y3)cem(>7,y|)
m =  0

for layer 3 (cladding), where yf = (kf — fl2)q2/4, kf = k2nf, i =  {1, 2, 3}, q is the 
semifocal length, nt is the refractive index for layer of number i, A^, are the 
constants.

The field equations in layer 2 depend on the refractive-index profile of the fiber. 
For the model, which corresponds to the well known circular W profile (Fig. 6a), 
we have the following expressions:

Fm(i,y§) =  Ce(^,yi) +  [C®/Ai»2)]Fek m(£,yf),

Gm(£>y2) =  Se(^,yi) +  [D l ,W ]G e k M(i,yi),

and for the models shown in Fig. 6c —e:

Fm(£,y|) =  Ce(i,^) + [CL2VA!n2)]Feym(^y!), (n )

G JZ ,y l) =  Se^.yD + M W lG e y J ^ y i )
where and are the arbitrary constants. For the model in Fig. 6b either 
expression (16) or (17) are used depending on the value of yf.

Using the boundary conditions for the tangential components of the field we 
obtain the set of equations and finally the characteristic equation of the odd modes 
in the form of the infinite determinant equal to zero [9],

Odd aHEm. and aEHmB modeso mp o mp

The axial magnetic and electric fields of odd modes can be expressed in a similar 
form to Eqs. (13) —(15) when we replace in these equations the even Mathieu 
functions by the odd ones and vice versa [9]. The characteristic equation in this case 
has a similar form like for odd modes when we replace in the determinant elements 
the variables and even Mathieu functions by the odd ones and vice versa [9],
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Similarly to the case of the step-index elliptical fibers (Subsec. 2.1), we can obtain 
the approximate characteristic equation for the modes of the double-step weakly 
guiding fiber [9].

Numerical results
It has been proved numerically that the elliptical fibers preserve the polarization and 
show the properties of circular fibers [20], Results are presented for the silica 
double-step elliptical fiber of W  profile (Fig. 6a) doped with GeOz and F, respectively, 
for the wavelength X — 1.3 pm. The complete set of characteristics for the other profiles 
of fibers, shown in Fig. 6, is given in [9]. Sufficient accuracy of the propagation 
constant calculation was obtained for a 4 x 4  determinant of the characteristic 
equation. The relative propagation constant B =  (N2—n\)l(n\ — n\) versus normalized 
frequency V — ka^n* — n|)1/2 of the fundamental mode CHE11, for given 
A; = (n; — n3)/n3, i = {1, 2}, and selected values of d = b1/al , is presented in Fig. 7.

Fig. 7. Propagation characteristics B =  f(V,d) of the odd „HE], mode for fibers as shown in Fig. 6a.

In Table 3, the dependence of the structural birefringence on the normalized 
frequency V is presented. It is possible to get the larger structural birefringence than 
that of the step-index elliptical fiber even in the case of small ellipticity (300 — 500 
[1/m]). When we increase the ellipticity e, the structural birefringence becomes larger 
(up to 1000 [1/m]). It can be larger than 2000 [1/m] that corresponds to B of 4 x 10~4 
when the concentrations of dopants are appropriate higher. So, we can get the similar 
values of B like in the case of anisotropic silica fibers Bow-Tie and Panda, in which the 
birefringence arises from high mechanical stresses.

When the value of c is large enough, the fundamental modes have the cut-off 
frequency V > 0. The cut-off characteristics of the odd fundamental and the 
higher-order modes: „EH11 and eHE01 are shown in Figs. 8 and 9, respectively, where 
y = (n l-n 22)/(nl-ni).
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T a b l e  3. Structural birefringence A/? of the fibers as shown in Fig. 6 a versus V for various values 
of semi-axes ratios, A, =  1.4721% (G e02 -  3.5 M%), Aa =  -0.6082%  (F -  2 M%)

— for the case: a1/a1 =  1.25

Ap =  M e [ 1/m]

2 2.25 2.5 2.75 3 3.25 3.5

0.9 114.83 110.17 101.53 91.55 81.60 72.33 63.96
0.7 383.79 398.24 387.11 362.72 33279 301.64 271.56
0.5 523.08 678.12 755.44 775.09 758.64 721.93 675.15

— for the case: a2/a i = 1.5

AP = M « [ 1/m]

\r 2 2.25 2.5 2.75 3 3.25 3.5

0.9 129.12 121.38 109.73 97.36 85.67 75.16 65.94
0.7 435.37 444.23 422.41 38823 350.75 314.18 280.32
0.5 517.57 768.52 850.42 850.71 813.72 760.70 702.14

— for the case:
I/-)IIa

A P = M e [ 1/m]

2.15 2.25 2.5 2.75 3 3.25 3.5

0,9 134.35 128.33 11329 99.22 86.65 75.69 66.22
0.7 494.88 48120 440.86 397.61 355.62 316.76 281.71
0.5 952.14 956.02 937.17 89228 834.27 771.16 707.61

The dispersion characteristics of the fundamental modes: „HE^ and eHE31 for 
W  profile elliptical fiber of large relative-index difference are shown in Fig. 10, while 
the flattened dispersion characteristics of the odd mode CHE11 are given in Fig. 11.

The W  profile elliptical fiber, as shown in Fig. 6 a, provides large value of the 
birefringence and has good propagation characteristics. Moreover, the mechanical 
stresses of the presented structure are not so high as in the case of Panda and 
Bow-Tie fibers, doped B20 3.

23. Triple-step confocal-elliptical fiber
The triple-step confocal-elliptical fiber (Fig. 12) has better dispersion characteristic 
(Fig. 13) than the fiber shown in Fig. 6a. Introducing the additional layer causes that 
the structural birefringence is slightly less compared to that of the double-step-index 
fiber with the same parameters (Tab. 4).

In Figure 14, the propagation characteristics of the first odd modes, i.e., 
fundamental eHE11 mode and first higher „HE12 mode are presented for selected 
parameters of the fiber, where A; =  (n,· —n4)/n4, i =  {1, 2, 3}. The cut-off wavelength 

becomes greater when A3 is increasing [9].



Highly-birrfringent elliptical structures 63

Fig. 8. Dependence Vc =  f ly , d) of the 0H E j, mode for fibers as shown in Fig. 6a.

Fig. 9. Dependence Vc — f{c,d] of the 0EH n  and .HE,,, modes for fibers as shown in Fig. 6a.

Fig. 10. Dispersion characteristics of the fundamental modes: „HEjj and eH E ,, for the fiber as shown in 
Fig. 6a, when the structural birefringence is approximately equal to 750 [1/m].

From numerical analysis of the multi-step confocal-elliptical fibers, we can 
conclude that they have similar propagation properties as appropriate circular fibers 
and the structural birefringence depends mainly on the refractive-index difference in
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Fig. 11. Flattened dispersion characteristics of the fundamental mode „HE,, for the fiber as shown 
in Fig. 6·.

T a b l e  4. Structural birefringence A/J of the fibers as shown in Fig. 12 for V = 2.75, b ja 1 =  0.5, 
a1/a i = 1.5, Aj =  1.4721% (GeQ2 -  3.5 M%), A2 ----- 0.6082% (F -  2 M%)

A/J [ 1/m]

ai/al
A3

X 0.1% 0.3% 0.5%

2 828.97 807.00 778.48
3 823.37 770.86 621.48
5 822.34 746.35 187.29

Fig. 12. Triple-step confocal-elliptical fiber.
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Fig. 13. Dispersion characteristics of the fundamental mode „HEjj for the fiber as shown in Fig. 12.

1.0 1.25 1.5 b [pm ]

Fig. 14. Phase characteristics B = /(2 ) of the odd „HEu and „HE12 modes for the fiber as shown in Fig. 12.
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the first two layers. Moreover, the dispersion is very sensitive to small changes in 
geometry of the fiber. Therefore, the W profile elliptical fiber seems to be optimal 
because of large birefringence, low dispersion and relatively simple structure.

3. Three-layer nonconfocal-elliptical fibers

The cross-sections of the W-type nonconfocal-elliptical fibers for two configurations: 
coaxial (a) and noncoaxial (b), are shown in Fig. (15. In order to investigate the 
three-layer elliptical fibers with layers of any ellipticity es = 1 — bja^  where 
j  = { 1, 2}, we apply the IPMM with Mathieu function expansion [10]. The 
noncoaxial structures of IT-type circular fibers have been investigated by IPMM 
with Bessel function expansion, whose numerical results are quite reliable [21].

Fig. 15. Cross-section of the tF-type nonconfocal-elliptical fibers for two configurations: a — coaxial 
and b — noncoaxial.

In the IPMM two elliptical coordinate systems (f4, rjl , z) and (<j;2, rj2, z) are 
introduced for the complete modal expansions and two of the elliptical cylinders 
with =  £10 and £2 =  <J20 are assumed to coincide with the boundaries of the layers 
1 and 2, respectively. The propagation factor e](f0t~Pẑ  (fi is the propagation constant 
in the z-direction and co is the angular frequency) will be omitted in the expressions 
for the field components. Since the fiber structure is symmetrical about the x-axis, the 
electromagnetic fields can be separated into the odd modes 0HEmp, 0EHmp and the 
even modes eHEm{>, tEHmp. In our IPMM the z-components of electric and magnetic 
fields (Ez and Hz) for the odd modes are approximated by the complete modal 
expansions with the Mathieu functions as follows:

Hz l

JV-1
Z  Bi1)SeB( { 1,yi)ae11(if1,y i), " z l Z  A i1)Ce ,({1yf)ce,(»f1,7i)

11 =  0
(18)

for layer 1,
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Hz2 = £  Bj2)Se,(f2,y22)se,(i72,yi2)+  £  Di2)Gek„(f1,y!1)seII(ij1,y i1), 
1=1 «=1

Ez2=  £  A}2)Ce((^2,722)ce((>72,722)+ £  Ci2)Fek11(1,y l1)ce(lfa1,y i1)
1 =  0  n = 0

for layer 2,

Hz3 =  £  Bi3)Gek((£2,}>i)se,(n2,yl),
1=1

Ez3 =  £  Ai3)Fek,(f2,73)06,(172,71),
1 =  0

(19)

(20)

for cladding, where y2 = { k \ - p 2)q2J4, y2j = {kl~P2)qj/4, y\ = ( k \ - P 2)qll4, and 
fc; =  kni, qs is the semifocal length in elliptical coordinate system of a number j, 
j  =  {1, 2}; ce, se are the even and odd Mathieu functions of the first kind; Ce, Se 
are even and odd modified Mathieu functions of the first kind; Fek, Gek are the even 
and odd modified functions of the second kind; Aj,1) ~  Bj3) are constants; N  and 
L are the number of space harmonics taken in our IPMM. Axial field components 
for the even modes are in the form of Eqs. (18) —(20), when the even Mathieu 
functions are replaced by the odd ones and vice versa. The total transverse 
components of the field in layer 2 can be expressed by combining the fractional 
^-component and <!;-component in two elliptical coordinate systems at any points at 
£io and S20 [10]·

Because of the symmetry of the structure, the matching is only performed in the 
first quadrant of the x — y plane (coaxial structures as shown in Fig. 15 a) or the 
upper half of the x — y plane (noncoaxial structures as shown in Fig. 15b), [13], [14],

Using the boundary conditions at equiangularly spaced points around the 
boundaries between layers of the fiber (^10:2V points, £20:L points) yields finally the 
characteristic equation, from which we can get the propagation constants of the 
modes [10],

Numerical results
Numerical computations were carried out by using the truncation number N  = L, 
which makes the relative error of the modal birefringence B less than 0.01% [10], 
The birefringence that arises from stress is assumed to be neglected in our 
considerations.

In our IPMM, unlike in the previously reported methods [11], [12], high 
computational accuracy was achieved even in the case of fibers with layers of larger 
ellipticity [ =  1 — bjaj, bj, aj — the semiaxes of elliptical layers, j  = {1, 2}].

Among the elliptical structures presented in this paper, the largest value of 
birefringence is realized by the fibers with hollow layers outside an elliptical core and 
n2 =  1 (Fig. 16). It is possible to obtain the modal birefringence B > 1 0 3 [13], i.e., 
larger than for anizotropic fibers. The noncoaxial elliptical fibers (Fig. 16c) can 
realize the larger modal birefringence compared to the elliptical fibers with coaxial
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Fig. 16. Models of W-type elliptical fibers with hollow layers.

Fig. 17. Dependence of the modal birefringence B on the normalized frequency V for the elliptical fibers 
with a hollow layer and a, =  a2 (Fig. 16a) for different values of eu e2 =  0 and A, =  1.4692%.

symmetry but they seem to be much more complicated to manufacture than 
symmetrical ones [22],

Our computations were carried out for the selected structures of the pure silica 
fibers as shown in Fig. 16 with hollow layers outside the germanium dioxide elliptical 
core (A = 1.3 pm). Figure 17 shows the dependence of the modal birefringence B
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Fig. 18. Dependence of the modal birefringence B on the normalized frequency V for the elliptical fibers 
with a hollow layer and a1 =  a2 (Fig. 16a) for different values of A,, el = 0.5 and e2 =  0.

Fig. 19. Dependence of the modal birefringence B on the normalized frequency V for the elliptical fibers 
with a hollow layer and 6 , =  b2 (Fig. 16b) for different values of A,, e, =0.3 and e2 =0.5.

on the normalized frequency V= ka^nj — nf)l/2 for the first group of the elliptical 
fibers with a hollow layer and a1 = a2 (Fig. 16a) for different values of eu e2 = 0 and 
Ax =  1.4692%.

The modal birefringence B versus normalized frequency V for fibers representing 
the second group of the fibers with symmetry and ai = a2 (Fig. 16a) for different 
values of Als ex = 0.5 and e2 = 0 is given in Fig. 18. In the frequency range 
VCOI < V < VceT (broken-line curves in Fig. 18), the single-mode single-polarization 
transmission is possible, where r = 1 ... 6; Vcot and Veer denote the normalized 
cut-off frequencies of the odd and even fundamental modes, respectively, and we
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have that: Vcel *  3.55, Fcol a  3.37, Vce2 *  3.59, Fm2^3.45, Fce3 a  3.65, a  3.54, 
Kc4 -  2.15, Fm4 2.06, FoeS *  2.31, F ^  *  2.20, Fce6 ~  2.52, F ^  *  2.41.

The modal birefringence B versus normalized frequency F for fibers representing 
the second group of the fibers with symmetry and bl = b2 (Fig. 16b) for different 
values of Ax, = 0.3 and e2 = 0.5 is given in Fig. 19. By changing the value of 
parameters we can design the optimal shape of modal birefringence characteristics.

4. Conclusions

The analysis of isotropic multi-step optical-fiber structures with elliptical geometry, 
in particular the fiber structures which provide the large value of the birefringence 
has been presented.

As the first group of fibers we investigate the following confocal multi-layer 
structures: the step-index elliptical fiber, double-step confocal-elliptical fibers and 
triple-step confocal elliptical fiber. The multi-layer confocal-elliptical fibers can be 
analyzed by the exact analytical method with Mathieu function expansion and 
characteristic equations for the modes have the form of infinite determinants equal to 
zero. In that group of fibers, the fibers of the IT-profile provide the largest value of 
the modal birefringence B (about 10“4 and even more).

The second group of elliptical fibers are three-layer nonconfocal elliptical fibers, 
i.e., the fibers with layers of any ellipticity. In order to investigate the three-layer 
nonconfocal elliptical fibers we apply the improved point-matching method and the 
electromagnetic field components are expressed by the complete modal expansions 
with the Mathieu functions. In particular, we discuss the optical fibers with hollow 
layers outside an elliptical core, which provide the very large value of the modal 
birefringence B (about 10-3). In the case of such structures, it is possible to obtain 
the non-zero cut-off frequency of the even fundamental mode and they can be 
suitable for the single-mode single-polarization transmission.
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