
ARGUMENTA OECONOMICA

No 1-2 (19) 2007

PL ISSN 1233-5835

Leszek A. Maciaszek *

AN INVESTIGATION OF SOFTWARE HOLONS

– THE ‘adHOCS’ APPROACH

This paper overviews our approach to application development using Holons, Objects,

Components and Services (adHOCS) process, it explains the relevance of some modern

software technologies to the adHOCS approach, and it presents a case study to measurably

illustrate the adHOCS benefits. The holon abstraction – introduced by Arthur Koestler to

interpret the structures and processes in living systems – is used to restrain software

complexity. The adHOCS approach addresses the adaptiveness issue – namely that the

software can adapt to changes and growth provided that better structuring and behavioural

abstractions are used for the development and description of software systems. The paper

shows that by superimposing the holon abstraction on application development methods, the

resulting software systems display readily-understood structures that can accommodate the

future growth while managing the underlying complexity.

Keywords: Complex system, adaptive system, holon, holarchy, software architecture,

composite pattern, aspect-oriented programming, multi-agent systems, single-subject

experimental design, software dependencies, software metrics.

1. INTRODUCTION

This paper investigates a holon notion for describing software systems.

This notion is based upon Arthur Koestler‟s interpretation of the structure of

natural systems (Koestler 1967, 1978 and 1980; The Alpbach Symposium

1969), which has been adopted by a growing number of scientists in many

different fields of research. The central concept of holon is interpreted as an

object that is both the part and the whole. More precisely, holons are self-

regulating objects which exhibit both the interdependent properties of parts

and the independent properties of wholes. Furthermore, these holons form

naturally into stratified layers organized in so-called holarchy, which

happens to be the most promising paradigm to be used (amenably or not) by

today‟s computer industry to model software designs.

The main reason why one should use the holon abstraction is that it

restrains complexity, which is after all an essential property of software. The

 Department of Computing, Macquarie University, Sydney, Australia

L. A. MACIASZEK

126

complexity of software derives from various elements of which the

intricacies of the problem domain and the inadequacies of development

methods are most significant. While the former is an inherent, – and

therefore invariant – property of software, the latter could and should be

addressed. The point is that the inherent complexity of the problem domain

must not be further exacerbated by poor development abstractions and

models. The development methods and designs should explain and clarify

the underlying problem domain.

The adaptiveness of software systems remains a great challenge of

contemporary computing. Software solutions tend to be characterized by

incomprehensible networks of objects/components responding to random

events that invoke a real jungle of interrelated operations. While in small

systems such architectures can be controlled, the exponential growth of

possible execution paths among operations become quickly uncontrollable in

large applications. This is in sharp contrast with living systems that are more

complex than any software systems, yet are able to adapt to the changing

environment. The holonic view of the world offers an explanation to this

adaptation process. Hence, in this paper, we advance the hypothesis that

holonic principles can be used to understand and describe the software

problem domains and, as a consequence, can be used as an abstraction

underpinning the software development methods.

While the holon hypothesis emerged in the context of natural systems, it

has also been used to describe and interpret man-made (engineered or

designed) systems and social (human activity) systems. In particular, the

realm of manufacturing systems has been influenced, or even dominated, by

the holonic thinking (e.g., Tharumarajah et al. 1996; Babiceanu 2006). In

our work, we have used the holon hypothesis to propose a meta-architectural

framework together with modelling principles and patterns to guide software

architects and engineers in their responsibility to produce complex systems

with the built-in quality of adaptiveness.

We call our approach adHOCS (application development – Holons,

Objects, Components and Services). The adHOCS approach is not a new

application development method and it is not a substitute for other well-

known object-oriented analysis and design methods (Maciaszek 2007). It is

rather a modeling philosophy that can be applied with any method to

produce adaptive software systems.

This research started more than a decade ago with the papers by

Maciaszek et al. (1996a and 1996b). The approach was then called AD-HOC

and stood for Application Development – Holon-Object-Centric approach.

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

127

The research was then channeled to industry projects, elaborated in

successive experiments and papers, applied in the books (Maciaszek 2005a;

Maciaszek and Liong 2005) and addressed in more recent papers. In

Maciaszek (2006b) the meaning of the acronym was changed to Application

Development – Holons, Object, Components (to reflect the growing

significance of software re-use via components). In Maciaszek (2006a), our

approach to managing adaptive complex systems was extended to include

application integration and interoperability based on web services. The

importance of web services is formally acknowledged in this paper in the

extended adHOCS acronym.

The paper is structured as follows. In the next section we explain the

holon hypothesis as expressed by its architect, Arthur Koestler. Then we go

on to describe in Section 3 the adHOCS approach and its representative

meta-architecture called PCBMER. Section 4 refers to some of the most

important properties of holonic systems and it identifies those major

contemporary software technologies that, quite coincidentally, can be used to

support those properties. Section 5 presents a simple case study to demonstrate

how the adHOCS approach can bring about adaptiveness in a complex

enterprise and e-business systems. The Summary Section completes the paper.

2. THE HOLON HYPOTHESIS

“Living systems are organised in such a way that they form multi-levelled

structures, each level consisting of subsystems which are wholes in regard to

their parts, and parts with respect to the larger wholes. Thus molecules

combine to form organelles, which in turn combine to form cells. The cells

form tissues and organs, which themselves form larger systems, like the

digestive system or the nervous system. These, finally, combine to form the

living woman or man; and the 'stratified order' does not end there. People

form families, tribes, societies, nations. All these entities from molecules to

human beings, and on to social systems can be regarded as wholes in the

sense of being integrated structures, and also as parts of larger wholes at

higher levels of complexity.

Arthur Koestler has coined the word `holons' for these subsystems which

are both wholes and parts, and he has emphasised that each holon has two

opposite tendencies: an integrative tendency to function as part of the larger

whole, and a self assertive tendency to preserve its individual autonomy. In a

biological or social system each holon must assert its individuality in order

L. A. MACIASZEK

128

to maintain the system's stratified order, but it must also submit to the

demands of the whole in order to make the system viable. These two

tendencies are opposite but complementary. In a healthy system an

individual, a society, or an ecosystem there is a balance between integration

and self assertion. This balance is not static but consists of a dynamic

interplay between the two complementary tendencies, which makes the

whole system flexible and open to change.” (Capra 1982, p. 27)

This quote from the book „The Turning Point‟ (Capra 1982) is where the

holon concept was first encountered by the author. It suggests that most of

the successful systems are arranged according to a stratified order that hides

complexity in successively lower layers, whilst providing greater levels of

abstraction within the higher layers of its structure. For example, stratified

layers in living systems are:

 Organism (e.g., animal and humans),

 Organ Systems (e.g., nervous, circulatory and lymphatic systems),

 Organs (e.g. brain, heart and lungs),

 Tissues (e.g., epithelial, i.e. skin, and connective, i.e. bone, tissue),

 Cells (e.g., nerve muscle and blood cells),

 Organelles (e.g., mitochondria, ribosomes),

 Molecules (e.g., nucleic acids, i.e. DNA, which are known as the

building blocks of life),

 Atoms (e.g., hydrogen, carbon and oxygen).

Each of the layers hides its complexity from the layer above. There are

many layers with which the system must progress through before a complex

action is completed, like a movement within the human body. We do not

consciously know of all the operations that are performed when we move any of

our body parts such as when we walk. The complexity of this task is hidden in

the various stratified layers within the human body. If we had to worry about

where every cell must be any particular moment then we would probably stop

breathing while trying to do even the most simplest of operations.

A complex system can be defined as “a large network of relatively simple

components with no central control, in which emergent complex behavior is

exhibited” (Mitchell 2006, p. 1194). Accordingly, and in the graph-theoretic

sense, a holonic system is a network of holons, where a network is

understood as “a collection of nodes (vertices) and links (edges) between

nodes” (Mitchell 2006, p. 1196). What makes holonic systems special is the

layering of holons, i.e. the „network‟ is not a flat chain of links but a hierarchy

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

129

of stratified holon layers (i.e., holarchy). In Koestler‟s words: “The chain is a

hopeless model; we cannot do without the tree” (Koestler 1978, p. 296).

Koestler defines the holon principles together with a point summary on

some of the general properties of Self-regulating Open Hierarchic Order

(SOHO). The holon/SOHO concept is an attempt at reconciling

atomism/reductionism and holism as two opposite ways of interpreting the

world. Atomism is a doctrine according to which all higher structures of matter

(complex systems) can be explained by (reduced to) their components, i.e.,

explained by the emergent properties of components acting on each other. By

contrast, holism can be defined by the statement that the whole is greater than

the sum of its components; i.e., the whole is determined on the basis of

emergence and interconnectedness of components. Atomism is derived from

the Greek word atomos = anything that cannot be divided into smaller pieces,

holism from holos = whole, all, entire, total.

The word holon is also derived from the Greek word holos, but with the

suffix on suggesting a part, as in neutron or proton. Holon refers to these

entities which are both wholes and parts, and which exhibit two opposite

tendencies: an integrative tendency to function as a part of a larger whole,

and a self assertive tendency to preserve its individual autonomy.

The holonic view of the world forms a middle-ground between atomism

and holism, and the holonic structures form a middle-ground between

network and hierarchic structures. The stratified order of holonic layers

resembles a hierarchy of layers and allows flat networks within layers, but it

is different from both. The stratified order is not about a rigid transfer of

control or about free interconnectedness of nodes, but it is rather about the

self-organization of complexity and adaptation. The various stratified layers

are stable holons of differing complexities and with a degree of autonomy that

enables them to adapt to new circumstances and to changes in the environment.

“Nonstratified systems, on the other hand, would totally disintegrate and would

have to start evolving again from scratch. Since living systems encounter many

disturbances during their long history of evolution, nature has sensibly favored

those which exhibit a stratified order. As a matter of fact, there seem to be no

records of survival of any others.” (Capra 1982, p. 304)

The SOHO properties are broken into ten key points (quoted below from

Koestler 1978, pp. 304-311):

1. The Holon

 The organism in its structural aspect is not an aggregation of

elementary parts, and in its functional aspects not a chain of elementary units

of behaviour.

L. A. MACIASZEK

130

 The organism is to be regarded as a multileveled hierarchy of semi-

autonomous sub-wholes, branching into sub-wholes of a lower order, and so

on. Sub-wholes on any level of the hierarchy are referred to as holons.

2. Dissectibility

 Hierarchies are „dissectible‟ into their constituent branches, on which

the holons form the nodes; the branching lines represent the channels of

communication and control.

 The number of levels which a hierarchy comprises is a measure of its

„depth‟, and the number of holons on any given level is called its „span‟

(Simon).

3. Rules and Strategies

 Functional holons are governed by fixed sets of rules and display

more or less flexible strategies.

 The rules – referred to as the system‟s „canon‟ – determine its

invariant properties, its structural configuration and/or functional pattern.

 While the canon defines the permissible steps in the holon‟s activity,

the strategic selection of the actual step among permissible choices is guided

by the contingencies of the environment.

4. Integration and Self-Assertion

 Every holon has the dual tendency to preserve and assert its

individuality as a quasi-autonomous whole; and to function as an integrated

part of an (existing or evolving) larger whole. This polarity between the self-

assertive and integrative tendencies is inherent in the concept of hierarchic

order; and a universal characteristic of life.

5. Triggers and Scanners

 Output hierarchies generally operate on the trigger-releaser principle,

where a relatively simple, implicit or coded signal releases complex, preset

mechanisms.

 Input hierarchies operate on the reverse principle; instead of triggers,

they are equipped with „filter‟-type devices (scanners, „resonators‟,

classifiers) which strip the input of noise, abstract and digest its relevant

contents, according to that particular hierarchy‟s criteria or relevance.

„Filters‟ operate on every echelon through which the flow of information

must pass on its ascent from periphery to center(...)

6. Arborization and Reticulation

 Hierarchies can be regarded as „vertically‟ arborizing structures whose

branches interlock with those of other hierarchies at a multiplicity of levels

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

131

and form a „horizontal‟ network: arborization and reticulation are

complementary principles in the architecture of organisms and societies.

7. Regulation Channels

 The higher echelons in a hierarchy are not normally in direct

communication with “lowly” ones, and vice versa; signals are transmitted

through „regulation channels‟, one step at a time.

8. Mechanization and Freedom

 Holons on successively higher levels of the hierarchy show

increasingly complex, more flexible and less predictable patterns of activity,

while on successive lower levels we find increasingly mechanized,

stereotyped and predictable patterns.

 (…) New or unexpected contingencies require decisions to be referred

to higher levels of the hierarchy, an upward shift of controls from

„mechanical‟ to „mindful‟ activities.

9. Equilibrium and Disorder

 An organism or society is said to be in dynamic equilibrium if the self-

assertive and integrative tendencies of its holons counter-balance each other.

 The term „equilibrium‟ in a hierarchic system does not refer to

relations between parts on the same level, but to the relation between part

and the whole (the whole being represented by the agency which controls the

part from the next higher level).

 If the challenge to the organism exceeds a critical limit, the balance

may be upset, the over-excited holon may tend to get out of control, and to

assert itself to the detriment of the whole, or monopolize its functions. (…)

The same may happen if the coordinating powers of the whole are so

weakened that it is no longer able to control its parts (Child).

 The opposite type of disorder occurs when the power of the whole

over its parts erodes their autonomy and individuality.

10. Regeneration

 Critical challenges to an organism or society can produce degenerative

or regenerative effects.

 The regenerative potential of organisms and societies manifests itself

in fluctuations from the highest level of integration down to earlier, more

primitive levels, and up again to a new, modified pattern.

By Koestler‟s own admission, some of the propositions listed above may

appear trivial, some rest on incomplete evidence, others may need correcting

and qualifying. However, they have provided a sound basis for discussion

among kindred spirits in both atomism and holism cultures, in search of an

L. A. MACIASZEK

132

alternative to the mechanistic image of a living system. They have also provided a

basis for better understanding of man-made systems and, in the context of this paper,

for better understanding of how adaptive complex systems should be modeled.

3. THE ‘adHOCS’ APPROACH

The holon concept offers a new perspective on software and a guidance

on how software should be constructed. The kind of software that we are

most interested in is modern enterprise and e-business systems. These are

complex systems that, sadly in current practice, are not adaptive (or at least

not adaptive enough). Our hypothesis is that to accomplish an adaptive

complex system, its structure ought to resemble a holarchy of holons and its

behaviour ought to adhere to the holonic principles.

In any given layer of such a holarchy, a software holon („H‟ in the

adHOCS acronym) could be described by the object that provides a specific

service to the next higher layer and by the services it uses from the next

lower layer. A holon is a recursive concept, i.e., a holon can contain other

holons. Likewise, an object is a recursive concept, as per the dominant

contemporary programming paradigm – the object-oriented paradigm. At the

lower level, an object („O‟) is an instance of a class.

The inclusion of the component „C‟ concept in the adHOCS acronym

refers to objects as components, i.e., units of object composition with

contractually specified interfaces and which need to be loaded, installed,

composed, deployed and initialized before they can be run. In general, a

software holon can represent a holarchical layer or a set of layers in any

given system. Accordingly, an object can refer to a subsystem representing a

layer or to the entire system. However, „S‟ in the adHOCS acronym is

chosen to stand for web services rather than subsystem/system (but the

broader interpretation of „S‟ would have its merits as well).

Services are running software instances. In adHOCS, they account for

„societies‟ of software holons akin to societies in nature, such as ant

colonies, human social networks or economic markets. In software systems,

„S‟ refers to e-business systems created by orchestrating services of various

business partners, suppliers and customers.

The complexity of software systems is in the wires – in the linkages and

communication paths between software objects. This places software

systems on the holistic end of holonic structures, which states that the ways

holons are interconnected and integrated are more important than the holons

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

133

themselves. The resulting whole is more than the sum of its parts. This also

places software systems firmly within the context of general systems theory.

“Systems theory looks at the world in terms of the interrelatedness and

interdependence of all phenomena, and in this framework an integrated

whole whose properties cannot be reduced to those of its parts is called a

system.” (Capra 1982, p. 26)

The “wires” create dependencies between distributed objects that may be

difficult to understand and manage (a software object A depends on an

object B, if a change in B necessitates a change in A). System adaptiveness

is then a function of dependencies in the software. A necessary but not

sufficient condition for an adaptive system is that dependencies are explicit,

i.e., readily visible and discoverable from the code. However, to ensure

adaptiveness the number of dependencies must be manageable to start with

and grow at most polynomially with the evolutionary growth of the system.

This second condition can be achieved by a holonic organization of the

system, i.e., by constructing it according to some meta-architecture that

conforms to the adHOCS model. Over the years we have advanced a number

of adHOCS conformant meta-architectures. The latest and most elaborate one

is called PCBMER and consists of six main layers – Presentation, Controller,

Bean, Mediator, Entity, and Resource (Maciaszek 2006a, 2006b, 2007).

Figure 1 presents the holonic view of a PCBMER system. The arrowed

lines represent dependency relationships between PCBMER layers. Hence,

for example, Presentation depends on Controller and on Bean, and

Controller depends on Bean. Note that the PCBMER hierarchy is not strictly

linear and a more complex layer can have more than one adjacent layer

above it (and that adjacent layer may terminate within the scope of the

presented system, i.e., it may have no layers above it, although in general the

open-ended property of holons allows creating new dependencies as the

system grows or integrates with other systems).

By contrast with more traditional top-down presentations of software

architectural layers (including PCBMER visualizations in earlier works by

this author), the presentation in Figure 1 is a bottom-up tree-like structure.

The tree emphasizes here the changing levels of complexity within a holonic

software system and it de-emphasizes the domination and control aspect of

traditional top-down hierarchies (for which the pyramid is a typical symbol).

The trunk of the tree signifies that the software system can be connected to

or integrated with other software systems which have a similar holonic

organization. Each layer has a degree of independence and may, therefore,

provide its services to other software systems (it can be re-used).

L. A. MACIASZEK

134

Presentation

Controller

Bean

Mediator

Entity

Resource

Figure 1. Holonic view of a PCBMER system.

Source: author’s own

In general, the tree is “…a more appropriate symbol for the ecological

nature of stratification in living systems. As a real tree takes its nourishment

through both its roots and its leaves, so the power in a systems tree flows in

both directions, with neither end dominating the other and all levels

interacting in interdependent harmony to support the functioning of the

whole.” (Capra 1982, p. 305).

The relationships between layers are those of composition or

containment. Each layer is a whole for layers with lower levels of

complexity (i.e., higher in the tree in Figure 1), and also a part for larger

wholes at higher levels of complexity (i.e., lower in the tree). The relative

sizes of the circles in Figure 1 capture the nature of these relationships.

The Presentation layer represents the screen and user interface (UI)

objects on which the data (beans) from the Bean layer can be rendered. It is

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

135

responsible for maintaining consistency in its presentation when the beans

change. So, it depends on the Bean layer. This dependency can be realized in

one of two ways – by direct calls to methods (message passing) using the

pull model or by event processing followed by message passing using the

push model (or rather push-and-pull model)

The Bean layer represents the data classes and value objects that are

destined for rendering on UI. Unless entered by the user, the bean data is

built up from the entity objects (the Entity layer). The Core PCBMER

framework does not specify or endorse if access to Bean objects is via

message passing or event processing as long as the Bean layer does not

depend on other subsystems.

The Controller layer represents the application logic. Controller objects

respond to the UI requests that originate from Presentation and that result

from user interactions with the system. In a programmable GUI client, UI

requests may be menu or button selections. In a web browser client, UI

requests appear as HTTP Get or Post requests.

The Entity layer responds to Controller and Mediator. It contains classes

representing “business objects”. They store (in the program‟s memory)

objects retrieved from the database or created in order to be stored in the

database. Many entity classes are container classes.

The Mediator layer establishes a channel of communication that mediates

between Entity and Resource classes. This layer manages business

transactions, enforces business rules, instantiating business objects in the

Entity layer, and in general manages the memory cache of the application.

Architecturally, Mediator serves two main purposes. Firstly, to isolate the

Entity and Resource layers so that changes in any one of them can be

introduced independently. Secondly, to mediate between the Controller and

Entity/Resource layers when Controller requests data but it does not know if

the data has been loaded into memory or it is only available in the database.

The Resource layer is responsible for all communications with external

persistent data sources (databases, web services, etc.). This is where the

connections to the database and SOA servers are established, queries to

persistent data are constructed, and the database transactions are instigated.

Figure 2 illustrates the PCBMER meta-architecture modeled in UML and

showing layers as UML packages. The diagram reverts from the bottom-up

visualization in Figure 1 to the top-down engineering view. The system is

presented as a utility service to emphasize its readiness to integrate with

other systems, hence this variant of the meta-architecture is referred to as

PCBMER-U (Maciaszek 2006a).

L. A. MACIASZEK

136

The PCBMER-U meta-architecture is explicitly extended with an

interoperability automation package called Orchestration, included in

Controller. Orchestration is responsible for discovering web services,

providing service binding information to Mediator, and „orchestrating‟ an

exchange of information through web service interactions. The dependency

called service discovery is normally realized through WSDL descriptions.

The dependency service binding is normally realized through SOAP

invocations, but REST (Representational State Transfer) and Events Triggers

can also be used as the invocation means of the service.

Figure 2. The PCBMER-U meta-architecture.

Sorce: author‟s own

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

137

The definition of the PCBMER meta-architecture includes seven

overriding principles:

1. Downward Dependency Principle (DDP)

The DDP states that the main dependency structure is top-down from

more to less complex layers. Objects in layers of higher complexity depend

on objects in layers of lower complexity. Consequently, lower complexity

layers should be more stable (should change less) than higher complexity

layers. Interfaces, abstract classes, dominant classes and similar devices

should encapsulate stable layers so that they can be extended when needed.

2. Upward Notification Principle (UNP)

The UNP promotes low coupling in a bottom-up communication between

layers. This can be achieved by using asynchronous communication based

on event processing. Objects in layers of higher complexity act as

subscribers (observers) to state changes in layers of lower complexity. When

an object (publisher) in a lower complexity layer changes its state, it sends

notifications to its subscribers. In response, subscribers can communicate

with the publisher (now in the downward direction) so that their states are

synchronized with the state of the publisher.

3. Neighbour Communication Principle (NCP)

The NCP demands that a layer can only communicate directly with its

neighbour layer as determined by direct dependencies between layers. This

principle ensures that the system does not disintegrate to a network of

intercommunicating layers, but it maintains its stratified order. To enforce

this principle, the message passing between non-neighbouring objects uses

delegation or forwarding (the former passes a reference to itself; the latter

does not). In more complex scenarios, a special acquaintance layer can be

used to group interfaces to assist in collaboration that engages distant layers.

4. Explicit Association Principle (EAP)

The EAP visibly documents permitted message passing between objects.

This principle recommends that associations are established on directly

collaborating classes of objects. Provided the design conforms to PCBMER,

the downward dependencies between classes (as per DDP) are legitimized

by corresponding associations. Associations resulting from DDP are

unidirectional (otherwise they would create circular dependencies). It must

be remembered, however, that not all associations between classes are due to

message passing. For example, both-directional associations may be needed

to implement referential integrity between classes in the entity layer.

5. Cycle Elimination Principle (CEP)

L. A. MACIASZEK

138

The CEP ensures that circular dependencies between layers and classes

within layers are resolved. Circular dependencies violate the separation of

concerns guideline and are the main obstacle to reusability. Cycles can be

resolved by placing offending classes in a new layer created specifically for

that purpose or by forcing one of the communication paths in the cycle to

communicate via an interface (Maciaszek and Liong, 2005).

6. Class Naming Principle (CNP)

The CNP makes it possible to recognize in the class name the layer to

which the class belongs. To this aim, each class name is prefixed in

PCBMER with the first letter of the layer name (e.g. EVideo is a class in the

Entity layer). The same principle applies to interfaces. Each interface name

is prefixed with two capital letters – the first is the letter “I” (signifying that

this is an interface) and the second letter identifies the layer (e.g. ICVideo is

an interface in the Controller layer).

7. Acquaintance Package Principle (APP)

The APP is the consequence of the NCP. The acquaintance layer consists

of interfaces that an object passes, instead of concrete objects, in arguments to

method calls. The interfaces can be implemented in any PCBMER layer. This

effectively allows communication between non-neighboring layers while

centralizing dependency management to a single acquaintance package.

4. HOLONIC SOFTWARE TECHNOLOGIES

The PCBMER meta-architecture together with its seven main principles

and various matching design patterns and programming practices demands

enabling software technologies to produce adHOCS compliant systems.

Perhaps not surprisingly many existing and emerging technologies are quite

suitable for adHOCS development. The main challenge is to use them

skillfully and synergistically. In this Section, four technologies are addressed

in the context of the 3
rd

 and the 6
th
 SOHO property (Section 2).

Holarchies do not operate in isolation, but interact with others. “Thus the

circulatory system controlled by the heart and the respiratory system controlled

by the lungs function as quasi-autonomous, self-regulating hierarchies, but they

interact on various levels” (Koestler 1980, p. 463). Koestler uses the term

arborization for vertical structures and reticulation for horizontal net formations

between holarchies (the 3
rd
 SOHO property – Section 2).

Behaviour of holarchies is defined by fixed rules and flexible strategies

(the 6
th
 SOHO property). The rules are referred to as the system‟s canon that

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

139

determines its invariant properties – its structural configuration and/or

functional pattern. “The canon represents the constraints imposed on any rule-

governed process or behaviour. But these constraints do not exhaust the

system‟s degrees of freedom; they leave room for more or less flexible

strategies, guided by the contingencies in the holon‟s local environment. …In

acquired skills like chess, the rules of the game define the permissible moves,

but the strategic choice of the actual move depends on the environment – the

distribution of the chessmen on the board.” (Koestler 1978, pp. 293-294).

Associated with the four SOHO concepts above are the four technologies

discussed next:

1. Arborization object composition (e.g., the GoF composite pattern).

2. Reticulation weaving in aspect-oriented programming.

3. Fixed rules meta-architectures.

4. Flexible strategies autonomous agents in multi-agent systems.

4.1. Arborization via object composition

The Merriam-Webster OnLine dictionary (http://www.m-w.com/) defines

arborization as “formation of or into an arborescent figure or arrangement” and

arborescent as “resembling a tree in properties, growth, structure, or

appearance”. Koestler used the term arborization to emphasize that holarchies

are vertical structures. However, these vertical structures are not isolated but

entwined with other vertical structures. To emphasize this entwining, Koestler

used the term reticulation for horizontal network formations between holarchies.

“One obvious point is that hierarchies do not operate in a vacuum, but

interact with others. This elementary fact has given rise to much confusion.

If you look at a well-kept hedge surrounding a garden like a living wall, the

rich foliage of the entwined branches may make you forget that the branches

originate in separate plants. The plants are vertical, arborising structures.

The entwined branches form horizontal networks at numerous levels.

Without the individual plants there would be no network. Without the network,

each plant would be isolated, and there would be no hedge. Arborisation and

reticulation (net-formation) are complementary principles in the architecture of

organisms and societies.” (Koestler 1980, p. 463)

Thus, life forms are hierarchically ordered with each layer in the

hierarchy being a whole/part holon. Each holon is autonomous, but not

spontaneous. The behaviour of each holon is a result of the composition of

behaviours provided by the lower-level holons. This implies a top-down

vertical communication between hierarchical layers of holons.

L. A. MACIASZEK

140

 “Biologically, a cell is separated from outside by a membrane, through

which material enters and exits. Inside a cell there is an organelle, which

creates the cell‟s functions. Cells are immersed in an environment which is

chemical. Substances are taken in from this environment.(…) When several

distributed units operate in an autonomous manner, there is potential for

conflicts and ultimate disintegration of community behaviour. Therefore,

some form of coordination is essential. This function in biological systems is

executed by enzymes.(…) When specification is given at the top-layer, it

passes down layer-by-layer to the bottom. In the bottom-up process, units‟

actions cumulate and manifest in an operation of the whole system.

Coordination is required for the layers to perform in harmony. Biologically

this function is fulfilled by enzymes which mediate between layers.”

(Tharumarajah et al. 1996, p. 218)

The feedback loops between arborization and reticulation are realized by

a nested nature of holons enabling a composition (containment) of

behaviour. The issue here refers back to a considerable debate among

scientists aimed at distinguishing holarchies from hierarchies (Wilber, 1995).

Clearly, a holarchy is a kind of hierarchy for otherwise the very containment

of a part in any whole cannot be defined and understood. What is special

about a holarchy is dispensing with any traces of ranking or dominance

between holons. As Wilber observes, a whole contains parts in a way

reminiscent of what can be seen in one mirror in a house of mirrors.

The composition processes are both vertical and horizontal. Vertical

composition finds a counterpart in the object-oriented notion of software

composition (discussed in this subsection). Horizontal composition finds a

counterpart in weaving of the base code and the aspect-code in aspect-

oriented programming (discussed in the next subsection).

Vertical object composition is governed by the composite pattern

(Gamma et al., 1995). The composite pattern represents whole-part

hierarchies of objects and allows treating parts and wholes in a uniform way

(by narrowing the difference between the components and compositions of

components). Object composition represents a very nature of holons and

holarchies. Figure 3 is a UML graphical representation of the composite

pattern, as made available by Sparx Systems‟ Enterprise Architect

(http://www.sparxsystems.com.au/uml_patterns.html).

As stated in Gamma et al. (1995, p. 163): “The key to the Composite

pattern is an abstract class that represents both primitives and their

containers.” To be precise, the Component class is a partially implemented

abstract class that declares an interface for objects in the composition. The

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

141

behaviour of primitive objects is defined (implemented) in the Leaf class and

the behaviour of components having children is defined in the Composite

class. Default implementations of the behaviours common to all classes in

the composition can be provided in the Component class (hence, this class is

a partially implemented abstract class, not an interface (in Java or UML

sense) or not even a pure abstract class). Client programs use the public

interface of the Component class to communicate with objects in the

composition. If a target object is an instance of the Composite class, then the

client‟s message will usually trigger (delegate) requests to its child

components before the requested operation can be completed.

cd CompositePattern

Component

+ Operation()

+ Add() : Component

+ Remove() : Component

+ GetChild() : Component

Client

Leaf

+ Operation()

Composite

+ Operation()

forall g in children

 g.Operation();

+ Add() : Component

+ Remove() : Component

+ GetChild() : Component

This class (a) defines behaviour for

components having children, (b) stores child

components, and (c) implements child-related

operations in the Component interface.

This class (a) represents leaf objects in the

composition, and (b) defines behaviour for

primitive objects in the composition.

This class (a) declares the interface for objects in the composition, (b) implements

default behaviour for the interface common to all classes, as appropriate, (c)

declares an interface for accessing and managing its child components, and (d)

optionally defines an interface for accessing a component's parent in the recursive

structure and implements it if that's appropriate.

This class manipulates objects in the

composition through the Component

interface.

-children

1..*

Figure 3. The Composite pattern.

Source: author‟s own

L. A. MACIASZEK

142

The composite pattern represents the arborization principle in a holonic

system. Complex software systems consist of several layers of abstraction.

Each one of them is a quasi-autonomous construction visible as a part that

contributes behaviour to the higher layer of complexity and at the same time

counting on behaviour from lower layers of complexity. A layer has its own

semantics which is complete according to its specification and which is

independent from the semantics of the higher layers. The composite pattern

determines all transitions between different layers of abstractions that make

sense in such a system.

The Component objects conform to the following observation by

Koestler with regard to holons: they “...should operate as an autonomous,

self-reliant unit which, though subject to control from above, must have a

degree of independence and take routine contingencies in its stride, without

asking higher authority for instructions. Otherwise the communication

channels would become overloaded, the whole system clogged up, the

higher echelons would be kept occupied with petty detail and unable to

concentrate on more important factors” (Koestler 1967, p. 55)

Composition (or aggregation) has been used as a major semantic

modeling technique rivaling inheritance (or generalization) since the seminal

work by Smith and Smith (1977). We have been emphasizing the relative

advantages of composition over inheritance since 1985 originally by

implementing both concepts in a commercial CASE workbench (IDDK),

then in a book (Maciaszek, 1990), and in a few research contributions (e.g.,

Maciaszek et al. 1992a; Maciaszek et al. 1992b). Some of our earlier work

was consistent with the proposals of other researchers to use composition as

a method of stratifying entity-relationship diagrams to improve their

readability (Teorey et al. 1989). In Maciaszek et al. (1996a) we contrasted

composition (aggregation) with inheritance (generalization) and showed that

composition is a better abstraction when it comes to supporting the

understanding and evolution of large systems.

4.2. Reticulation via aspect weaving

Reticulation expresses horizontal net formations between holarchies.

Without reticulation, each holarchy would be isolated, and there would be no

integration of functions. Clearly, any application integration project

(Maciaszek 2006a) can be seen as a reticulation process. However, even

within a single application development there is a need for reticulation. That

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

143

need has led to a relatively recent paradigm of Aspect-Oriented

Programming (AOP) (Kiczales et al. 1997).

AOP is not a revolutionary idea – few truly useful ideas are. As discussed

at the end of this subsection, most concepts underpinning AOP have been

known and used before, although frequently under different names and using

different technologies. The main objective of AOP is to produce more

modular systems by identifying so-called crosscutting concerns and

producing separate software modules for these concerns. The modules are

called aspects (akin of holonic arborizations). The aspects are integrated

through the process called aspect weaving (akin to holonic reticulation).

A starting point for AOP is a realization that a software system consists

of many vertical modules. The pivotal module contains classes that

implement the functional requirements of the system. However, each system

must also obey nonfunctional requirements that determine such software

qualities as correctness, reliability, security, performance, concurrency, etc.

(Maciaszek and Liong 2005). These qualities need to be addressed from

various (or even most) classes/components/services responsible for the

system‟s functions. In “conventional” object-oriented programming, the

code implementing these qualities would be duplicated (scattered) in many

classes. These nonfunctional qualities are known in AOP as concerns – goals

that the application must meet. Because the object-oriented implementation

of these concerns would cut across many classes, they are known as

crosscutting concerns.

To avoid code scattering due to crosscutting concerns, AOP advocates the

gathering together of such code into separate modules called aspects.

Although aspects tend to be units implementing nonfunctional requirements,

in general they could also be units of the system‟s functional decomposition.

In particular, they could implement various enterprise-wide business rules that

need to be enforced by classes responsible for the application‟s program logic.

Thus, AOP decomposes systems into aspects built around the core

functional classes, interfaces and other object-oriented constructs. The

classes constitute the base code. The aspects constitute the separate aspect

code. A form of reticulation is required for such a system to work. Classes

have to be composed with aspects or, to put it the other way around, aspects

have to be weaved into the program logic flow. Such a process of software

composition is called aspect weaving. Some aspects can be weaved into the

system at compile time (static weaving), others can only be weaved at

runtime (dynamic weaving).

L. A. MACIASZEK

144

Aspect weaving applies to join points in the program‟s execution. Join

points are pre-defined points of software composition, such as a call to a

method, an access to an attribute, an instantiation of an object, pointing out

an exception, etc. A particular action that needs to be taken for a join point is

called an advice (e.g., checking security permissions of the user or starting a

new business transaction). An advice can run before the join point it operates

over (before advice), after a join point completes (after advice), or it can

replace the join point it operates over (around advice).

In general, the same advice may apply to many join points in the

program. A set of join points related to a single advice is called a pointcut.

Pointcuts are often defined programmatically with wildcards and regular

expressions. Compositions of pointcuts may also be possible (and desirable).

With all its good intentions to improve software modularization (and

therefore adaptiveness), AOP can be a potential source of emergent or even

incorrect behaviour (e.g., Murphy and Schwanninger 2006). This is because

aspects modify behaviour at join points in a way that may be oblivious to the

developer responsible for the application‟s functional logic. Interactions of

aspects with the base code can be quite far reaching and result, for example,

in an instantiation of an object, invoking a method in the public interface of a

class, or even introducing a new method or constructor declaration into a class.

Moreover, aspects themselves are not necessarily independent and multiple

aspects can affect each other in a subtle way resulting in emergent behaviour.

There is a clear need for AOP development practices to ensure that the

aspect code and the base code evolve gracefully together and the

crosscutting concerns are well-documented and known to application

developers at all times. A resolution to this dilemma is particularly difficult

in the presence of dynamic weaving (e.g., Hirschfeld and Hanenberg 2005).

A necessary condition to be able to tackle these issues is the developer‟s

awareness of the mutual impact of changes in the base and aspect code. This

difficulty is similar (although, arguably, easier to deal with) to that faced by

developers of multi-agent systems in which dynamic agent interactions can

also result in potentially unpredictable patterns and outcomes (Section 4.4).

Reticulation is a necessity in adaptive complex systems. Hence, AOP‟s

implementation of reticulation by the use of aspect weaving is not a radically

new approach, but rather a neat evolution and generalization of previous

concepts, approaches, and technologies. Johnson and Hoeller (2004) identify

the following established object-oriented ideas on which AOP has built its

framework:

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

145

 Metaclasses in languages such as Python, which offer the way to

modify the behaviour of classes and help to reduce code duplication across

multiple methods.

 Before, after and around constructs in the CLOS (Common Lisp

Object System) language.

 The Decorator pattern (Gamma et al. 1995) that allows the addition of

a custom behaviour when a method is invoked. The pattern uses a Decorator

class that implements the same interface as the “base” class but is able to

extend the implemented interface with a custom code. By doing so, the

Decorator pattern can be seen as a variation of the Composite pattern allowing

distribution of responsibilities among objects and modularization of concerns.

 The Observer pattern that defines “a one-to-many dependency

between objects so that when one object changes state, all its dependents are

notified and updated automatically” (Gamma et al. 1995, p. 293). Also

known as the Publish-Subscribe pattern, the Observer pattern makes

subscriber objects perform particular process (“advice”) when a publisher object

notifies of an event. Under this scenario (and unlike in AOP), the publisher

objects are not oblivious of the advice composition that applies to them.

 The Chain of Responsibility pattern (Gamma et al. 1995), known also

as delegation, that allows a client object to request a service without

knowing which of the supplier objects in a “chain of responsibility” is able

to supply the service (“advice”). However, as in the Observer pattern, the

client object is not oblivious of the advice composition because it is

necessary to explicitly set up a chain of responsibility for each method

requiring one.

Apart from object-oriented influences on AOP, one can find influences

from database programming. For example, the before, after and around

constructs are reminiscent of the before, after and instead triggers (e.g.,

Silberschatz et al. 2006). Triggers are programs that fire automatically when

an underlying table is subject to change by SQL operations of insert, update

or delete. Comparing with AOP, triggers provide “advice” for join points

defined as method invocations (and the methods are mutator methods, i.e.,

setters, not getters).

4.3. Fixed rules via architectural frameworks

Associated with holons and holarchies are fixed rules and flexible

strategies. Fixed rules impose constraints and controls on the holon‟s

activities. In Koestler‟s terminology, they define the holon‟s code or canon –

L. A. MACIASZEK

146

holon‟s structural configuration and functional pattern; the permissible steps

in the holon‟s activities. “… every level in a holarchy of any type is

governed by a set of fixed, invariant rules, which account for the coherence,

stability, and the specific structure and function of its constituent holons.”

(Koestler 1980, p.454)

Flexible strategies enable selection of the actual step among permissible

choices. The step that will be taken is guided by the contingencies of the

holon‟s current environment. “The canon determines the rules of the game,

strategy decides the course of the game.” (Koestler 1978, p.305). The

following example illustrates the relationship between fixed rules and

flexible strategies.

 “The common spider‟s web-making activities are controlled by a fixed

inherited canon (which prescribes that the radial threads should always

bisect the laterals at equal angles, thus forming a regular polygon); but the

spider is free to suspend his web from three, four or more points of

attachment – to choose his strategy according to the lie of the land.”

(Koestler 1980, p.455)

Not surprisingly, there is a direct mapping from the canon of holons to

the canon of software systems. This canon of software systems is

represented by meta-architectures (frameworks) that are used to design

system architectures. Most modern architectural frameworks, including the

PCBMER framework (Section 3), are underpinned by the Model-View-

Controller (MVC) framework developed as part of the Smalltalk-80

programming environment (Krasner and Pope 1988). In Smalltalk-80, MVC

forces the programmers to divide application classes into three groups that

specialize and inherit from three Smalltalk-provided abstract classes –

Model, View and Controller.

Model objects represent data objects – the business entities and the

business rules in the application domain. Changes to model objects are

notified to view and controller objects via event processing. This uses the

publisher/subscriber technique. Model is the publisher and it is therefore

unaware of its views and controllers. View and controller objects subscribe

to the Model, but they can also initiate changes to model objects. To assist in

this task, Model supplies necessary interfaces, which encapsulate the

business data and behavior.

View objects represent user interface (UI) objects and present the state of

the model in the format required by the user and rendered on the user‟s

graphical interface. View objects are decoupled from model objects. View

subscribes to the Model so that it gets notified of Model changes to update

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

147

its display. View objects can contain subviews, which display different parts

of the Model. Typically, each view object is paired with a controller object.

Controller objects represent mouse and keyboard events. Controller

objects respond to the requests that originate from View and that are the

results of user interactions with the system. Controller objects give meaning

to keystrokes, mouse clicks, etc. and convert them into actions on the model

objects. They mediate between view and model objects. By separating user

input from visual presentation, they allow changing system‟s response to

user actions without changing the UI presentation, and vice versa – changing

UI without changing system behavior.

Figure 4 illustrates an actor‟s (user‟s) perspective on communication

between MVC objects (Maciaszek and Liong 2005). The arrows represent

communication between objects (they are not really meant to represent

dependencies as discussed in Section 2). The user GUI events are intercepted

by view objects and passed to controller objects for interpretation and further

action. Mixing the behavior of View and Controller in a single object is

considered a bad practice in MVC.

Client ServerApplication program

View

Model

Controller

Figure 4. The MVC architectural framework.

Source: author‟s own

MVC is a backbone of virtually all modern frameworks, which then

extend the framework to enterprise and e-business systems. The Core J2EE

architecture is one such framework (Alur et al. 2003; Roy-Faderman et al.

2004). As shown in Figure 5, the J2EE model consists of tiers – three

embracing the application program components (Presentation, Business, and

Integration), and two external to the application (Client and EIS – Enterprise

Information System).

L. A. MACIASZEK

148

Client Tier EIS Tier
Presentation

Tier

Application program

Business Tier Integration Tier

Presentation

logic

Session

management

Content

management

Application

logic

Business

objects

Business

rules

Database

access

Service

integration

Messaging

Figure 5. The Core JEEE architectural framework.

Source: author‟s own

The user communicates with the system from the Client tier. This tier can

be a programmable client (e.g. a Java Swing based client or applet), a HTML

web browser client, a WML mobile client or even an XML-based web

service client. The process that presents a user interface can execute on the

client machine (a programmable client) or can execute from a web or

application server (e.g. a Java JSP/servlet application).

The EIS tier (called also the Resource tier) is any persistent information

delivery system. This could be an enterprise database, an external enterprise

system in an e-business solution, or an external SOA service. The data can

be distributed across many servers.

The user accesses the application via the Presentation tier (known also as

the Web tier or a Server-Side Presentation tier). In a web-based application,

this tier contains user interface code and processes that run on a web and/or

application server. With reference to the MVC framework, the Presentation

tier contains both the view and controller components.

The Business tier contains parts of the application logic not already

implemented as controller components in the Presentation tier. It is

responsible for validation and enforcement of enterprise-wide business rules

and business transactions. It also manages business objects, previously

loaded from the EIS tier to the application memory cache.

The Integration tier has sole responsibly for establishing and maintaining

connections to data sources. This tier knows how to communicate with

databases via JDBC (Java Database Connectivity) and how to integrate with

external systems via JMS (Java Messaging Service).

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

149

The Core J2EE framework is generic and explanatory, rather than

regulatory. It introduces “separation of concerns” between the three

application programs‟ tiers. It also dictates that Presentation components can

only communicate with Integration components via a Business tier, and vice

versa. But it does not, for example, enforce a strict stratified order because it

does allow both-way communication (invocation of methods) and it does

therefore allow invocation cycles.

There are, however, multiple technologies developed for J2EE that are

quite regulatory and address various holonic-like complexity concerns in the

development and integration of enterprise and e-business systems. They start

with technologies such as Jakarta Struts to allow proper implementation of

the MVC pattern. They extend to enterprise services with technologies such

as the Spring Framework and application servers (e.g. JBoss or Websphere

Application Server). They further extend to e-business integration with

implementations of JMS within applications servers.

4.4. Flexible strategies via autonomous agents

The notion of flexible strategies establishes another connection between

Koestler‟s holons and holarchies and the IT technologies that seem suitable

for building adaptive complex systems. One such promising technology is

that of agents and multi-agent systems in agent-based computing (Ferber

1999; Jennings 2000). Arguably, the multi-agent computing model together

with the associated multi-agent software engineering can be used to realize

holarchical systems with a sufficient dose of flexible strategies (Pichler 2000).

Multi-agent systems are designed as sets of autonomous software entities

(agents) that are embedded in an organizational structure (the environment).

Agents perform tasks by acting in the environment and interacting with one

another. Being autonomous, agents have control over their internal state as

well as over their behavior.

Having run-time control over their behavior distinguishes agents from

objects as normally implemented in object-oriented systems. Objects

encapsulate state and some of their behavior (through private and protected

visibility modifiers). However, most object services are public and do not (in

typical implementations) discriminate how these services are used by other

objects. This means that objects do not have control over their choice of

action and they only become active when requested by other objects. We

stress, however, that this prevalent computational model for objects is

merely the implementation issue. A system could be implemented to allow

L. A. MACIASZEK

150

computations at the knowledge level such that the software entities (whether

called objects, components, agents or holons) exert autonomy over their run-

time choice of actions based on the definition of the organizational context

in which the system executes.

After Ferber (1999) (as cited in Pichler 2000), agents “can realize

different organizational function such as being a supplier (servicing

customers), a mediator (managing execution requests), a planner

(determining actions to be taken), a coordinator (distribution of actions and

execution requests), a decision maker (making the choice between different

possible actions) or an executive (realizing actions)”. As further observed by

Pichler, similar functions can be attributed to holons.

Like agents, holons have the ability to interact with their environment

(organizational context). Unlike agents, holons are whole-parts with built-in

feedback channels to their master holons above in the holarchy and with

communication channels to their sub-holons below them. By contrast, agents

interact within a flat (but flexible) organizational context in which explicit

organizational relationships provide agents with a decision-making

framework. The organizational relationships are themselves the subject of

ongoing changes (due to varying social interactions, flow of time, etc.).

Accordingly, protocols need to be specified to enable forming and

dismantling of organizational groupings.

The connection between multi-agent systems and holonic biological

systems is not accidental. After all, the ultimate goal is to be able to

construct artificial (mechanical) systems that are “naturally” complex and

need to be adaptive. One (albeit dominant) category of such artificial

systems is enterprise and e-business systems. There is a need to determine

the degree to which the nature of enterprise and e-business systems is

compatible with the run-time self-regulation powers of holons and agents.

It turns out that by and large the reality of enterprises is (and must

remain) much more deterministic and, hence, the behavior of enterprise and

e-business systems is more prescriptive. They operate within the context of

prescribed business rules. Biological and agent-like features such as dynamic

(execution-time) learning, self- adaptiveness, etc. are only required in more

strategic enterprise and e-business applications associated with decision-

making, data mining, knowledge discovery and other artificial intelligence

domains. Enterprise and e-business systems need rather to be adaptive, i.e. to

be understandable, maintainable and scalable in the sense that the required

changes are made as a software development effort (i.e. at a compile-time,

not at a run-time).

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

151

Clearly, enterprise and e-business systems change in structures and in

behavior (after all, company structures, product and employee

classifications, plant operation specifications, and many other aspects of

business are in a constant state of flux). Enterprise and e-business systems

need to be designed for change but they cannot typically allow unpredictable

patterns and outcomes of the interactions characteristic of multi-agent

systems. To become a mainstream technology for enterprise and e-business

systems, the multi-agent computing model needs to be equipped with social

level characterizations (i.e. an organizational context) that would counteract

any emergent behavior (Jennings 2000). Interestingly, and as an aside, the

changes in enterprise and e-business systems seem to be more far reaching

than changes in biological systems. Biological organisms change behavior

and their internal state, but they are unlikely to acquire new behavior or new

structures (outside, of course, of the biological evolution).

Secondly, and as a related issue, the holon hypothesis explains the

structure and behavior of an “implemented” system (e.g. living organism),

but it does not explain the abstractions needed for the development of a

system. Short of further analyzing the evolution of living organisms, we

follow the suggestions of Koestler and others that a large system that works

is always a result of an evolution of a small system that was built using an

adaptive structure reminiscent of a holarchy.

Therefore, the development process must start with an architectural

design that proposes stratified layers of abstractions, such as in the

PCBMER meta-architecture (Section 2). The layering structure that governs

that higher layers depend on lower layers but lower layers should be

independent from the higher layers. This in turn results in a requirement that

lower layers should be designed to be more stable than higher layers, i.e.

lower layers must not be subject to changes or the changes should be very

infrequent and carefully controlled. Note that the fact that a layer is not

susceptible to changes does not mean that it is difficult to extend (Martin

2003). Interfaces, abstract classes, dominant classes and similar devices should

encapsulate stable packages so that they can be extended when needed.

There is a direct relevance of this notion of stable layers to the interplay

between fixed rules and flexible strategies in holarchies:

“Generally we find on successively higher levels of the hierarchy

increasingly complex, more flexible and less predictable patterns of activity

with more degrees of freedom (a larger variety of strategic choices); while

conversely every complex activity, such as writing a letter, branches into

sub-skills which on successively lower levels of the hierarchy become

L. A. MACIASZEK

152

increasingly mechanical, stereotyped and predictable (Cf. the ethnologist‟s

“fixed action patterns”).” (Koestler 1980, p.462)

This reflection by Koestler implies that the more stable the architectural

layers are (or need to be), the less strategic choices they present (or allow).

On closer investigation, the layer stability and the scope for strategic choices

are two sides of the same adaptiveness coin. (Incidentally, in Koestler‟s

holarchies, the relevance of this distinction is taken further to the analysis of

such fundamental problems in living systems as free will versus

determinism.)

It is therefore crucial that an architectural intent is obeyed in the

implemented system. This is the pivotal assumption of the adHOCS

approach and the PCBMER framework, which not only dictates the fixed

rules of the game, but also provides (as many as possible) flexible strategies

defining the course of the game. Unsurprisingly, the latter task is much more

formidable than the former. Like in the game of chess, the rules are simple

and define the permitted moves, but the strategy that decides the choice of

the actual move is not available in the rule-book. There are only some partial

strategies suggesting which move to take in some well-defined situations,

such as strategies for game opening, for checkmate attacks, for endgames.

There are also more elaborate winning plans, such as French Defense,

Vienna Gambit, Sicilian Grand Prix Attack, etc. The knowledge of these

strategies turns a social player into a professional whose moves are no longer

random. Well, this is the best we can hope for in the “software game” as well.

5. CASE STUDY

Associated with the adHOCS approach for constructing holonic software

systems are various design patterns that software developers can use to solve

specific implementation problems and ensure PCBMER conformance

(Maciaszek and Liong 2005; Maciaszek 2007). Also associated with

adHOCS are various controlling mechanisms to measurably verify (using

complexity metrics) that any specific implementation is PCBMER compliant

and that it minimizes dependencies to facilitate software adaptiveness (e.g.

Maciaszek and Liong 2003; Maciaszek 2006b). Rather than re-iterate these

issues in this paper, we present here a small case study that illustrates the

benefits of the adHOCS approach, and the PCBMER meta-architecture in

particular, to constructing adaptive software systems.

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

153

The research method applied in this case study is single subject

experimental design popularized by clinical psychology (Heffner 2004),

experimental medicine (e.g. McReynolds and Thompson 1986), education,

social sciences, and also advocated for using in software engineering

(Harrison 2005). As a consequence of B.F. Skinner‟s research known as

operant behavior (ref. BFSkinner 2006), single subject designs perform and

measure behavioral modifications by the comparison of treatment effects on

a single subject (rather than comparing groups of subjects).

The most common application of single subject methods is known as the

A-B-A-B design (Heffner 2004). The design starts with the gathering of

pretest information sufficient to see a trend, often called a baseline

measurement (the first A). For the purpose of the study of adaptive complex

systems, a baseline is a system design that satisfies the user functional

requirements. The baseline may or may not be implemented and deployed

when the measurements are taken. The measurements take advantage of

metrics for computing structural complexity of software (Maciaszek and

Liong 2003; Maciaszek 2006b).

The baseline is the starting point to which a treatment is applied. The

change due to treatment is measured leading to the first B of the A-B design

(known as the treatment measurement step). For adaptive complex systems,

the treatments take the form of architectural principles, engineering patterns,

etc. The subject is then left alone for a period of time. In our case of the

subject being an enterprise or e-business system, the time is allowed for

changes and extensions to the system.

The next step is the withdrawal of treatment (the second A of the A-B-A

design). The purpose is to determine if the subject returns to original

behavior or if the behavioral changes due to the first treatment continue.

Accordingly, the second baseline measurement is taken to see the effects of

withdrawing the positive reinforcer on behavior. In the case of software,

withdrawal of treatment signifies a likely deterioration of system structure

and behavior due to maintenance activities and due to normal iterative and

incremental evolution of the system‟s required functionality. At this step, we

can observe if the treatment applied for the A-B design is robust, extensible,

well-understood and accepted by developers, etc.

The second B in the A-B-A-B design is the re-introduction of treatment.

The treatment is once again applied and the second treatment measurement

is taken to establish the effects of spontaneous recovery. In the case of

human-made systems, the “spontaneous recovery” should rather be called a

“controlled recovery”, as it has to do with applying even more rigorous

L. A. MACIASZEK

154

architectural and engineering measures and with applying stricter controls to

ensure that the subject is brought again to good health.

It is interesting to note that single subject experimental design

corresponds nicely with the software development practice of round-trip

engineering (Maciaszek 2005b). The A-B-A-B design is compatible with the

first cycle of round-trip engineering, in which forward engineering stage

accomplishes the A-B design, the reverse engineering establishes the second

baseline measurement and the next forward engineering push re-introduces

the treatment and completes the A-B-A-B design. Continuing round-trip

engineering activities may be seen as more complex variants of single

subject methods, such as an A-B-A-B-A-B-A-B design.

The case study relates to a simple application called “Foreign Exchange

Calculator” (FEC). The application consists of just two web pages (Figures 6 and

7). The first page enables the user to enter the amount of money to be converted,

to select from combo boxes the “from” and “to” currencies, and then to press

Calculate or a similar button. The second page shows the results of the calculation.

Figure 6. The FEC web application – entry page.

Source: author‟s own

Figure 7. The FEC web application – result page.

Source: author‟s own

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

155

The method used is the A-B design. The A design establishes a baseline

measurement for the subject. The baseline could be any implementation that

delivers the FEC functionality. It is expected that the implementation will have

symptoms of a disease in the A design, for otherwise no treatment of the B

design would be necessary (a healthy subject does not need a treatment).

Let us assume that the processing logic in the baseline FEC application is

as in the UML sequence diagram in Figure 8. A Request web page accepts

user input, instantiates a Calculator object and asks it to calculate() the

exchange amount. To be able to do the calculation, Calculator needs to

getRate() from the database. This task is performed by a Query object. After

obtaining the exchange rate, Calculator instantiates a Bean object and sets its

content with data ready for display in a Result web page. Calculator

instantiates a Result object and passes to it the reference to Bean. This

enables Result to get Bean‟s data and render it to the screen. A user‟s request

to startOver() results in passing the control back to the Request web page.

: Calculatorcalculator

: Requestrequest

: Resultresult

: Queryquery

: Beanbean5:

setBeanData()6:

haveBean(Bean)8:

getRate()4:

3:

7:

calculate()2:

1:

getBeanData()9:

startOver()10:

Figure 8. Sequence diagram for the A design (FEC).

Source: author‟s own

Figure 9 is a class dependency diagram for the sequence diagram in

Figure 8. The diagram shows that all classes have been allocated to the same

package (as could be expected in the case of an ad-hoc design without an

L. A. MACIASZEK

156

architectural vision). The diagram also shows a worrying cyclic dependency

between Request, Calculator and Result.

FECpackage

CalculatorRequest

Result

Bean

Query

Figure 9. Class dependency diagram for the A design (FEC).

Source: author‟s own

Without any guidelines and restrictions from a meta-architecture, there are

many possible A designs. Also, the A design in Figures 8 and 9 is not influenced

by any technology and may not even be technologically-viable. For the particular

case in Figure 8, the actual number of origin/destination communication links,

which defines the actual cumulative measure of class dependencies, is 6.

However, the actual measure cannot be used as an indicator of software

complexity and software adaptiveness (as they are measured based on

potential, not actual, dependencies). The A design is a network structure for

which the cumulative class dependency CCD is given by Equation 1:

204*5)1(nnCCDAdesign

FEC Equation 1

where

n is the number of objects (nodes in the graph) and

CCDnet
is a cumulative class dependency in a fully connected network (assuming that

objects refer to classes).

The first B design provides a treatment measurement for the subject. The

treatment applies the architectural framework onto the design and it chooses the

technology that conforms as closely as possible to the architectural framework.

The FEC is a web based application that significantly depends on the applied

programming environment and the related technology. The technology has some

impact on how the architectural principles can be applied.

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

157

In an ideal scenario, a Presentation object would submit a user‟s request,

together with any data entered by the user, to Controller. This makes

Presentation depend on Controller. Controller would instantiate Bean objects

and would maintain their state (thus, changes of the Bean‟s definition affect its

Controller; hence, Controller depends on the Bean). Once the Controller

completes its computation, it could return (to the original Presentation object)

a reference to the Bean object. Presentation could then instantiate another

object to display the Bean data. That new Presentation object will get the data

from the Bean object (thus Presentation depends on Bean) and render them.

Being a simple application, FEC requires only two classes (JSP pages, to

be precise) in the Presentation subsystem, one Controller class, one Bean

class, and one Resource class. There is no need for any Entity objects

because no memory caching of exchange rates is necessary or desirable.

We will discuss two possible B designs – the first using basic

JSP/servlet/JavaBean technology, the second using Jakarta Struts. The

processing logic for the basic solution is documented in the sequence

diagram in Figure 10. The design uses the Class Naming Principle (CNP)

according to which each class name is prefixed with the first letter of the

package/subsystem name (hence, e.g., PInput to indicate that the class

belongs to the Presentation package/subsystem).

<<servlet>>

: CCalculatorcCalculator

: MMediatormMediator

<<JSP>>

: PRequestpRequest

<<JSP>>

: PResultpResult

: RQueryrQuery

<<JavaBean>>

: BBeanbBean

know s

JSPs

w here

forw ard

to

servlet

chosen

from

w eb.xml

2:

getRate()3:

6:

setBeanData()7:

forw ardTo8:

forw ardTo11:

4:

getRate()5:

calculate()1:

getBeanData()9:

startOver()10:

Figure 10. Sequence diagram for the B design using basic technology (FEC).

Source: author‟s own

L. A. MACIASZEK

158

The narrative for the sequence diagram in Figure 10 is as follows.

PRequest.jsp sends a post (or get) request to the servlet identified for it in the

web.xml configuration file – the CCalculator class in our case. CCalculator asks

MMediator to getRate() and MMediator delegates this request to RQuery.

RQuery gets the exchange rate from the database and the rate value is returned

all the way back to CCalculator. CCalculator can now instantiate and populate a

BBean object. CCalculator also knows (declares) a JSP page (PResult in our

case) to which the response information should go to. PResult can then access

the BBean data to render it in the web browser. Finally, CCalculator gets any

startOver() messages from PResult and directs them to PRequest.

Setting response information, and other “details” such as accessing and using

the user‟s session and fetching request details in the first place, are the

responsibility of the web container. In effect, CCalculator merely communicates

to the web container that PResult will need to obtain response details and that

the control needs to go back to PRequest when the user wants to start over.

Figure 11 is a class dependency diagram for the sequence diagram in Figure

10. The diagram shows that the FEC design does not comply with the PCBMER

framework because of the upward (and cyclic) dependencies between Presentation

and Controller. These undesired dependencies are due to the shortcomings of the

basic technology used. Fortunately, these shortcomings are addressed by various

more powerful technological frameworks. One such framework is Jakarta Struts.

Presentation

<<JSP>>

PRequest
<<JSP>>

PResult

Mediator

MMediator

Bean

<<JavaBean>>

BBean

Resource

RQuery

Controller

<<servlet>>

CCalculator

Figure 11. Class dependency diagram for the B design using basic technology (FEC).

Source: author‟s own

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

159

Figure 12 represents a PCBMER-compliant Struts design for FEC. Struts

provides a brokerage service between Presentation and Controller, which

effectively replaces «architecture-managed» dependencies by «technology-

managed» dependencies (Maciaszek 2006b). While the former category of

dependencies is controlled by developers, the latter is not. All application

software depends on system software, but these are dependencies that cannot

be really managed by application developers. These are meta-level

technology-managed dependencies. Application developers need to

understand them and trust that technology suppliers have control over their

software and guarantee no ripple effects on the application code due to

changes and upgrades of their system software.

Bean

<<form>>

BRequest

<<form>>

BResult

Presentation

<<JSP>>

PRequest

<<JSP>>

PResult

Controller

<<action>>

CCalculator

Mediator

MMediator

Resource

RQuery

<<component>>

Struts<<technology-managed>>

<<technology-managed>>

Figure 12. Class dependency diagram for the B design using Struts technology (FEC).

Source: author‟s own

L. A. MACIASZEK

160

The design in Figure 12 conforms to the holonic assumptions present in

the PCBMER architecture (Figures 1 and 2). The design represents a non-

linear holarchy of layers such that a layer can depend on more than one layer

and it can provide services to more than one layer. Graph-theoretically, the

holarchy is a DAG (Directed Acyclic Graph) network in which the nodes are

ordered (parent and child) and there are no cycles (no path returns to the

same node).

Let the layers be l1, l2 … ln. For any layer li, let:

 size(li) be the number of objects in li

 l
’
I be the number of parents of li

 pj(li) be the j
th
 parent of li

Then, the cumulative class dependency CCD for a PCBMER holarchy as

in Figure 12 is calculated according to Equation 2:

)))(()((
2

)1)(()(
'

111

i

l

j

ji

n

i

n

i

ii
PCBMER lpsizelsize

lsizelsize
CCD

i

Equation 2

Specifically for the FEC design that uses the Struts technology in Figure

12, the CCD formula of Equation 2 evaluates to 12, as in Equation 3:

1282CCDBdesignA

FEC Equation 3

The first constituent value 2 relates to potential dependencies within

layers, which are equal 0 for Controller and 1 for Presentation and Bean

(even though there are no actual dependencies in Presentation and Bean).

The second constituent value 8 consists of 4 possible dependencies from

Presentation to Bean, 2 possible dependencies from Controller to Bean, 1

dependency from Controller to Mediator and 1 dependency from Mediator to

Resource.

The CCD (treatment measurement) for the A-B design improves by a

factor of two the CCD (baseline measurement) of the A design despite

introducing extra bean classes into the design. To know if the applied

treatment is long-lasting and to know if the complexity measure is not going

to deteriorate once we allow time for changes and extensions to the system,

we could continue with the next step in single subject experimental design,

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

161

known as the withdrawal of treatment, which calculates the second baseline

measurement for the subject resulting in the A-B-A design. Then we could

continue into the A-B-A-B design, etc. However, the simplicity of the FEC

example does not warrant further “treatments”.

Measuring adaptiveness of designs and programs cannot be done

manually. Maciaszek and Liong (2003) describe a tool, called DQ (Design

Quantifier), which is able to analyze any Java program, establish its

conformance with a chosen adaptive meta-architecture, compute a complete

set of dependency metrics, and visualize the computed values in UML class

diagrams.

Although not supported by DQ, tools like DQ should be able to visualize

dependencies by producing call graphs. Ideally, a call graph could be a

variant of a UML sequence diagram. A call graph can be used for the change

impact analysis and to answer “what-if” questions such as “which methods

are affected if a particular method is modified?”

6. SUMMARY

Research reported in this paper extends our work on adaptive complex

systems in a number of important directions. Firstly, it is our most

comprehensive attempt so far to align the development of adaptive complex

systems with the holonic structures of matter. Secondly, the paper goes

beyond software development and addresses also software integration and

interoperability (by adding „S‟ (services) to the adHOCS acronym). Thirdly,

the paper describes how software technologies can contribute to fulfilling

adHOCS properties of arborization, reticulation, fixed rules and flexible

strategies. Fourthly, the paper illustrates with a case study how the adHOCS‟

PCBMER meta-architecture reduces software complexity and brings about

adaptive software. Fifthly, the paper introduces an improved formula (Equation

2) for computing CCD in PCBMER holarchies without so called hub objects in

layers on which more complex layers depend (Maciaszek, 2006b)

Acknowledgement

The author thanks Dr Abhaya Nayak for helpful discussions concerning the PCBMER

metrics and his help in formulating Equation 2.

L. A. MACIASZEK

162

REFERENCES

Alur D., Crupi J. and Malks D., Core J2EE Patterns: Best Practices and Design Strategies,

2/e, p. 528, Prentice Hall, 2003.

Babiceanu R. F., Chen, F. F., Development and Applications of Holonic Manufacturing

Systems: a Survey, “Journal of Intelligent Manufacturing”, 17, pp. 111-131, 2006.

BFSkinner: A Brief Survey of Operant Behavior, http://www.bfskinner.org/briefsurvey.html,

2006 (last accessed March 2007).

Capra F., The Turning Point. Science, Society, and the Rising Culture, p. 516, Flamingo,

1982.

Ferber J., Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison

Wesley, 1999.

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns. Elements of Reusable Object-

Oriented Software, pp. 396, Addison-Wesley, 1995.

Ganek A. G., Corbi T. A., The Dawning of the Autonomic Computing Era, “IBM Systems

Journal”, Vol. 42, No. 1, pp. 5-18, 2003.

Harrison W., Skinner Wasn’t a Software Engineer, “IEEE Software”, May/June,, pp.5-7,

2005.

Heffner, C. L., Research Methods, “AllPsych Online”, http://allpsych.com/researchmethods/index.html,

2004 (last accessed March 2007).

Hirschfeld R., Hanenberg S., Open Aspects, “Computer Languages, Systems & Structures”,

32, pp. 87-108, 2005.

Jennings N. R., On Agent-Based Software Engineering, “Artificial Intelligence”, 117, pp.

277-296, 2000.

Johnson R., Hoeller J., Expert One-On-One. J2EE Development without EJB, Wrox, p. 552,

2004.

Kiczales G. et al, Aspect-Oriented Programming, Proc. European Conf. on Object-Oriented

Programming (ECOOP 97), LNCS 1242, pp. 220-242, Springer, 1997.

Koestler A.: Bricks to Babel, p. 697, Random House, 1980.

Koestler A., Janus. A Summing Up, p. 354, Hutchinson of London, 1978.

Koestler A., The Ghost in the Machine, p. 384, Hutchinson, 1967.

Krasner G. E., Pope S. T., A Cookbook for Using the Model View Controller User Interface

Paradigm in Smalltalk-80, “J. Object-Oriented Prog.”, pp.26-49, Aug-Sept, 1988.

Maciaszek L. A., Database Design and Implementation, pp. 384, Prentice-Hall, 1990.

Maciaszek L. A., Development and Integration of Adaptive Complex Enterprise and E-

business Systems, Pearson Education (2007) (in preparation).

Maciaszek L.A., Adaptive Integration of Enterprise and B2B Applications, Proceedings of

International Conference on Software and Data Technologies (ICSOFT 2006), Setubal,

Portugal, Sept 11-14, INSTICC, 2006 a, pp.IS-3–IS-12. (keynote paper; to appear also in

a book by Springer).

Maciaszek L. A., From Hubs Via Holons to an Adaptive Meta-Architecture – the “AD-HOC”

Approach, in: IFIP International Federation for Information Processing, Volume 227,

AN INVESTIGATION OF SOFTWARE HOLONS – THE adHOCS APROACH

163

Software Engineering Techniques: Design for Quality, ed. K. Sacha, Boston: Springer,

2006b, pp.1-13. (keynote paper at the IFIP Working Conf. on Soft. Eng. Techniques SET

2006, Warsaw, Poland, Oct. 17-20).

Maciaszek L. A., Requirements Analysis and System Design, 2/e, p. 504, Addison-Wesley,

Harlow England, 2005a.

Maciaszek L. A., Roundtrip Architectural Modeling, “Second Asia-Pacific Conference on

Conceptual Modelling (APCCM2005)”, Newcastle, Australia, January 30 – February 4,

2005, eds. S. Hartmann and M.Stumper, Australian Computer Science Communications,

Vol. 27, No. 6, 2005b, pp. 17-23 (invited paper).

Maciaszek L. A., Requirements Analysis and Systems Design, 3/e, Addison-Wesley, Harlow

England, 2007 (to appear in June 2007).

Maciaszek L. A., Dampney C. N. G., Getta J. R., Behavioural Object Clustering, Future

Databases'92, Proc. 2nd Far-East Workshop on Future Database Systems, Kyoto, Japan,

eds. Q. Chen, Y. Kambayashi, R. Sacks-Davis, pp. 186-193, World Scientific, 1992a.

Maciaszek L. A., De Troyer O. M. F, Getta J. R., Bosdriesz J, Generalization versus

Aggregation in Object Application Development the “AD-HOC” Approach, Proc. 7th

Australasian Conf. on Inf. Syst. ACIS‟96., Hobart, Tasmania, Australia, pp. 431-442,

1996a.

Maciaszek L. A., Getta J. R., Bosdriesz J., Restraining Complexity in Object System

Development the "AD-HOC" Approach, Proc. 5th Int. Conf. on Inf. Syst. Development

ISD‟96, Gdansk, Poland, pp. 425-435, 1996b.

Maciaszek L. A., Getta J. R., Dampney C. N. G., From Data Flows to Object Clusters, Proc.

3rd Int. Conf. on Information Systems Developers Workbench, Sopot, Poland, pp. 349-

364, 1992b.

Maciaszek L. A., Liong B. L., Designing Measurably-Supportable Systems, Advanced

Information Technologies for Management, Research Papers No 986, ed. by E.

Niedzielska, H. Dudycz, M. Dyczkowski, pp.120-149, Wroclaw University of Economics,

2003.

Maciaszek L. A., Liong B. L., Practical Software Engineering, A Case-Study Approach, p.

864, Addison-Wesley, Harlow England, 2005.

Martin R. C., Agile Software Development, Principles, Patterns, and Practices, p. 529,

Prentice-Hall, 2003.

McReynolds L. V., Thompson C. K., Flexibility of single-subject experimental designs. Part

I: Review of the basics of single-subject designs, “J Speech Hear Disord.”, 51(3), pp. 194-

203, 1986.

Mitchell M., Complex Systems: Network Thinking, “Artificial Intelligence”, 170, pp. 1194-

1212, 2006.

Murphy G., Schwanninger C., Aspect-Oriented Programming, “IEEE Soft.”, January-

February, pp. 20-23, 2006.

Pichler F., On the Construction of A. Koestler’s Holarchical Networks, “EMCSR” April 25-28,

www.cast.uni-linz.ac.at/Department/Publications/Pubs2000/PIEMCSR2000.doc, 2000, 10p. (last

accessed March 2007).

L. A. MACIASZEK

164

Roy-Faderman A. et al., Oracle JDeveloper 10g Handbook, p. 802, McGraw-Hill/Osborne,

2004.

Silberschatz A., Korth H. F., Sudershan S., Database System Concepts, 5th ed., pp. 1142,

McGraw-Hill, 2006.

Smith J. M., Smith D. C. P., Database Abstractions: Aggregation and Generalization, “ACM

Trans. Database Syst.”, 2, pp. 105-133, 1977.

Teorey T. J., Wei G., Bolton D. L., Koenig J. A., ER Model Clustering As an Aid for User

Communication and Documentation in Database Design, “Comm. ACM”, 8, pp. 975-

987, 1989.

Tharumarajah A., Wells A. J., Nemes L., Comparison of the Bionic, Fractal and Holonic

Manufacturing System Concepts, “Int. J. Comp. Integr. Manufact.”, 3, pp. 217-226, 1996.

The Alpbach Symposium: The Alpbach Symposium 1968. Beyond Reductionism. New

Perspectives in Life Sciences, ed. A. Koestler and J.R. Smythies, Hutchinson, p. 438,

1969.

Wilber K., Sex, Ecology, Spirituality: The Spirit of Evolution, Shambhala Publ. Inc., Boston,

MA, 1995.

Received: March 2007

