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CHOOSING WHAT TO PROTECT WHEN ATTACKER 
RESOURCES AND ASSET VALUATIONS ARE UNCERTAIN 

The situation has been modelled where the attacker’s resources are unknown to the defender. 
Protecting assets presupposes that the defender has some information on the attacker’s resource capa-
bilities. An attacker targets one of two assets. The attacker’s resources and valuations of these assets 
are drawn probabilistically. We specify when the isoutility curves are upward sloping (the defender 
prefers to invest less in defense, thus leading to higher probabilities of success for attacks on both as-
sets) or downward sloping (e.g. when one asset has a low value or high unit defense cost). This stands 
in contrast to earlier research and results from the uncertainty regarding the level of the attacker’s re-
sources. We determine which asset the attacker targets depending on his type, unit attack costs, the 
contest intensity, and investment in defense. A two stage game is considered, where the defender 
moves first and the attacker moves second. When both assets are equivalent and are treated equiva-
lently by both players, an interior equilibrium exists when the contest intensity is low, and a corner 
equilibrium with no defense exists when the contest intensity is large and the attacker holds large re-
sources. Defense efforts are inverse U shaped in the attacker’s resources. 

Keywords: assets, defense, attack, game theory, uncertainty, resources, valuations, contest success 
function, optimization 

1. Introduction 

This paper’s contribution is to model the situation where the attacker’s resources 
are unknown to the defender. The attacker’s resources consist of money, property, 
competence, etc., which depend on skills, sex, age, cultural background, education, 
etc., all of which influence the attacker’s capabilities. Defense intelligence 
communities work diligently to assess an attacker’s capabilities, expressed in terms of 
resources and the attacker’s intents based on e.g. valuations of the assets. Attackers 
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usually camouflage both the amount and type of resources they possess (e.g. whether 
they have biological weapons), and how they value different assets they may attack. 
The paper addresses this challenge for defenders. We assume that the attacker’s 
resources and valuations of the two assets are known to the attacker but unknown to 
the defender. These three characteristics are drawn from probability distributions. The 
attacker has resources which are converted into an attack effort against one of the two 
assets, where the unit cost of such an attack depends on the nature of the asset, as well 
as on the attacker’s capabilities and mode of operation. Analogously, the defender has 
resources which are allocated to defend both assets, one asset, or neither asset, with 
appropriate unit costs. The efforts by the attacker and defender define the value of 
a contest success function for each asset, which determines the probability that an 
attacked asset is destroyed. 

An attack can be of any kind made on an asset valuable to the defender. More 
generally, we consider any situation involving two players having incompatible goals. 
One example is a terrorist attack. Terrorists attack assets of economic, human and 
symbolic value. An attacker may target iconic buildings, airline security, food and 
water supply, launch an anthrax attack on a targeted population, or a cyber attack by 
breaking into computing devices, computer networks, or the internet to steal, gain 
access to, or destroy something of value to a defender. Alternatively, the launch of 
a new consumer good may be considered as a type of attack. The defender may 
counteract such a threat by enhancing the quality or lowering the price of its own 
good, try to isolate the market targeted by the attacker, or lobby to impose constraints 
on the attacker. An attempt to flood a market by smuggling e.g. in containers, may 
also be considered as a form of attack. If there is more than one port for container 
freight, the defender (customs) needs to allocate defensive inspection resources to 
multiple ports. When conducting this resource allocation, the defender does not 
usually know either the attacker’s valuations of these multiple assets, or the resources 
available to the attacker. 

To position this paper within the literature and illustrate its contributions, first 
consider Bier et al.’s [4] paper which differs from the current paper in two ways. First, 
Bier et al. [4] assume that the probability of a successful attack against an asset 
depends only on the defense resources allocated to that asset. In contrast, this paper 
assumes that the probability of a successful attack against an asset depends on both the 
defense and attack resources allocated to that asset, as well as the contest intensity for 
that asset which expresses the effectiveness of the technology used. Second, Bier et al. 
[4] do not model the attack effort, i.e. the amount of resources allocated to an attack 
but assume that the attacker can be of n unknown types, one for each asset, which 
expresses the attacker’s valuation of each asset. In contrast, this paper models the 
attacker’s valuation of each asset, and additionally assumes that the attacker has 
specified resources to be directed at an asset, with varying unit attack costs dependent 
on the nature of each asset. 
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Second, Nikoofal and Zhuang [18] consider resource allocation for a defender 
encountering an attacker who has private information about the valuation of the 
targets. The defender knows that the attacker’s valuations belong to bounded 
distribution free intervals. The defender leaves no target undefended, in contrast to 
Bier et al. [4], and in contrast to Levitin and Hausken [16, 17] who consider false 
targets. Nikoofal and Zhuang [18] apply robust optimization and determine the impact 
of the defender’s assumptions regarding bounds on the unknown parameters and the 
attack effectiveness ratio on the robustness of the solution. 

Third, Powell [19] analyzes a sequential game where a defender allocates 
resources between two assets. The vulnerability of asset 1 is the defender’s private 
information. The defender moves first and thus may signal information about the 
vulnerability of a target to the uninformed attacker. In contrast, we assume that the 
defender is uninformed about the attacker’s resources and valuations of the assets. The 
defender moves first when facing an unknown threat, which is often realistic in 
practice. The attacker moves second, he has complete information but knows that the 
defender protects its assets while not knowing the attacker’s resources and valuations 
of the assets, which causes an interesting realistic dilemma. 

Fourth, Fey [7] considers a contest between two players who each have private 
information about the costs of their own efforts and choose their strategies simul- 
taneously. In contrast, we assume that the defender moves first and the attacker moves 
second. The defender knows neither the attacker’s resources nor the attacker’s 
valuations of the assets. We also consider two contests. Realistically, an attacker does 
not attack all the assets that the defender protects, so we assume that the attacker 
attacks one asset. 

Fifth, Wang and Zhuang [32] consider how to balance congestion and security 
when strategic players have private information. 

Further research has considered deception by the defender. Zhuang et al. [28] 
determine the balance between capital and expense for defensive investments. They 
show that defenders can achieve more cost effective security in a multiple stage game 
through secrecy and deception. In each stage, the defender may choose truthful 
disclosure, secrecy, or deception. The attacker updates his information after observing 
the defender’s signals and the result of a contest. Zhuang and Bier [30,31] determine 
why a defender might prefer secrecy or deception regarding her allocation of 
defensive resources, rather than disclosure, in a homeland security context. Bernhardt 
and Polborn [2] find that when a country values targets similarly, it should conceal 
defenses and distribute defense resources randomly. 

More generally, see Fey [7] and the references therein for research on incomplete 
information Tullock games with a contest success function (so called Tullock games), 
Sandler and Siqueira’s [23] review, and the references classified under “incomplete 
information” in Hausken and Levitin’s [13] review. 
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For related research not involving incomplete information, Kunreuther and Heal 
[15], Sandler and Lapan [22], and Frey and Luechinger [8] consider the defense of 
multiple assets which involve, for example, substitution effects. Arce and Sandler [1], 
Bier et al. [3], Hausken and Zhuang [14], and Powell [20] consider a strategic attacker. 
Shan and Zhuang [24] consider how a defender strikes a balance (tradeoff) between 
equity and efficiency. Zhuang and Bier [29] determine how a defender balances 
defense against terrorism and natural disasters. For research on Blotto games of 
allocative strategic mismatch, see Golman and Page [9]. Powell [21] shows that in the 
first move of a sequential Blotto game, the defender defends all sites, the attacker then 
attacks all sites that are not well defended and refrains from attacking sites that are 
well protected. The attacker can be deterred. In contrast, using Tullock’s [27] contest 
success function, Hausken [11] shows that the attacker can never be deterred in the 
Blotto game when both players have fixed resources but can be deterred when there 
are variable resources (i.e., no upper bounds exist on the amount of resources that can 
be used). 

This paper considers a goal oriented attacker, i.e. it assumes that the attacker is 
strategic. An alternative approach is to consider an opportunistic attacker who has no 
clearly predefined goal but adapts his actions depending on the arising opportunities. 
Comparing these two different kinds of attacker, Shan and Zhuang [25] analyze 
a defender facing an attacker who may be strategic (maximizes the defender’s 
expected loss) or non-strategic (attacks with an exogenously determined probability). 

We assume that the probability of a successful attack against an asset depends on 
both the defense and attack resources allocated to that asset. This is, first, a theoretical 
assumption common in the contest success literature [5] and the defense and attack 
literature [13] which is supported empirically (in parts of the same literature). Second, 
it is also supported by experience and common sense. For example, if an asset is de- 
fended and not attacked, it is preserved. Conversely, if an asset is not defended but it 
is attacked, the defender loses the asset. 

The rent seeking literature (see e.g. [5]) usually assumes competition for one so 
called rent, and some research generalizes to two rents or arbitrarily many rents. Many 
of the insights generated by considering two rents are confirmed by analyzing n rents, 
and some new insights from analyzing n rents pertain to the actual number of rents 
available. In this paper, we confine attention to two assets which reveals interesting 
insights depicted e.g. graphically along two dimensions. Analyzing more than two 
assets complicates the analysis and is suitable for future research. 

As is common in the systems defense and attack literature [13], we assume that 
the defender moves first and the attacker moves second. The reasoning is usually that 
the defender seeks to preserve the status quo, it may hold more resources than the 
attacker, and it designs a defense system in preparation for a possible future attack. 
The attacker, on the other hand, may seek to circumvent the status quo, may probe for 
weaknesses and in doing so may take the current defense system as given when 



Choosing what to protect 27

designing its optimal attack. The 9/11 attack may thus be perceived as the defender 
moving first and designing a defense with an exploitable weakness, and the attacker 
moving second with an overwhelming attack. An example of the opposite situation, 
not considered in this paper, is the attacker moving first with a surprise attack, and the 
defender moving second with an emergency response. Hausken et al. [12] compares 
three games where the defender moves first, the attacker moves first, or both players 
move simultaneously, respectively. 

The model assumes various parameters such as effort, cost, valuation of assets, 
etc. The empirical values of some of these parameters are available from various 
records such as governmental budget allocations, or can be established by inter- 
viewing experts in the appropriate areas or defectors from terrorist organizations. In 
the field of cyber security, Gordon and Loeb [10] have written a book oriented at 
practical applications seeking to establish the costs and benefits of managing 
cybersecurity resources. Model validation is left for future research. 

Section 2 presents a model with a description of the players, technology, stra- 
tegies, payoffs, sequential equilibrium, and an example of a cumulative distribution 
function used to define the defender’s prior assessment regarding the type of the 
attacker. Section 3 analyzes the model focusing on the attacker, the defender, and 
equilibrium, providing examples and graphical illustrations. Section 4 concludes with 
a brief summary and results. 

2. The model 

2.1. Notation 

si – defender’s effort for asset i, i = 1, 2 
ai – defender’s unit effort cost for asset i, i = 1, 2 
vi – defender’s valuation of asset i, i = 1, 2 
u(s1, s2, K)  – defender’s utility 
R  R  +  – attacker’s resources 
Si – attacker’s effort for asset i, i = 1, 2 
Ai – attacker’s unit effort cost for asset i, i = 1, 2 
Vi  Vi  +  – attacker’s valuation of asset i, i = 1, 2 
U(s1, s2, K)  – attacker’s utility 
F = FR,V1, V2  – cumulative distribution function describing the defender’s prior 
  assessment of the attacker’s type 
f = fR,V1,V2  – density function describing the defender’s prior assessment of the 
  attacker’s type 
K →{0,1/2,1}  – attacker’s type 
G(s1, s2, K)  – probability that the attacker attacks asset 1 
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qi(Si, si, mi)  – contest success function for asset i, i = 1, 2 
mi – parameter for the contest technology for asset i, i = 1, 2 
 – parameter for the isoutility condition 
 – parameter for the isocost condition 

2.2. The players 

The defender exerts effort si ≥ 0 at unit cost ai > 0 to defend asset i valued at vi > 0,  
i = 1, 2, where a1, a2, v1, v2 are common knowledge. 

Assumption 1. The attacker has resources R  R  + which are used to attack 
one of the assets valued at Vi  Vi  + with effort Si at unit cost Ai, where Ai is 
common knowledge. 

We assume that only one asset is attacked, since this is often common and realistic 
in practice, for example the 1995 bombing of the Alfred P. Murrah Federal Building in 
Oklahoma City. Even when multiple assets are attacked, such as in the 9/11 attack, 
these can be understood as an attack on one collection of assets, often of the same or 
similar nature, or belonging to one branch of government, as opposed to other 
collections of assets, e.g. belonging to different branches of government. The attacker 
might want to attack both targets1 but in practice this may lead to the attacker being 
detected and disabled if simultaneity is impossible. For example, if only the World 
Trade Center had been attacked using an airplane on September 11, 2001, it would 
have been much harder to attack, e.g. the Pentagon, in the same manner on September 
12, 2001, since substantial defense efforts (scrambling jets, etc.) would have been 
mounted to screen for exactly such attacks. Furthermore, the logistics of multiple 
simultaneous attacks in, for example, geographically dispersed locations requires 
additional coordination resources, which may not be available to the attacker. That is, 
we assume that one attack exhausts the attacker’s resources. 

The attacker’s resources R and valuations V1 and V2 are known to the attacker but 
unknown to the defender. Thus we have a game with incomplete information where 
the triple (R, V1, V2)  R × V1 × V2 = K describes the type of the attacker. This type is 
a random variable with cumulative distribution function F = FR,V1,V2 : K →{0, 1/2, 1} 
which is common knowledge, where f = fR,V1,V2 is the density function. K = 1 means an 
attack on asset 1, K = 0 means an attack on asset 2, and K = 1/2 means an attack on both 
assets. Thus FR,V1,V2 describes the defender’s prior assessment of the attacker’s type. 

Assumption 2. The cumulative distribution function F is twice continuously 
differentiable, with density f. 

 _________________________  

1For example, for a contest success function in ratio form attacking all assets is optimal. 
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The function F may attach high probability to values close to the defender’s 
valuations v1 and v2 but this variable’s support R can be a wide interval that include 
values far from v1 and v2. 

2.3. Technology 

Nature first draws the type of the attacker, i.e. draws values R, V1, V2 from F. This 
draw is observed by the attacker but not by the defender. The defender then chooses s1 
and s2 which are observed by the attacker. Finally, the attacker chooses one asset to 
attack. 

If asset i is attacked, then the attack effort is Si = R/Ai. The probability that asset i 
is destroyed, given that it is attacked, is determined by the contest success function 
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 and mi is a parameter describing the contest technology. 

Since the attacker’s resources are not fixed, as in the contest literature but is drawn 
from a probability density f, using Eq. (1), we determine the expected value of the 
contest success function. To generate analytical results, the most commonly used 
example of a contest success function is the ratio form [26, 27] 
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where 0 ≤ mi ≤ 1 is the contest intensity for asset i 2. 
The environment is symmetric if a1 = a2, A1 = A2, v1 = v2, m1 = m2, and FR,V1,V2  

= FR,V2,V1 for all (V1, V2)  2
 . 

 _________________________  

2The contest intensity mi = 0 gives an egalitarian distribution, where the players‘ efforts have no im-
pact on qi. When 0 < mi < 1, there is a disproportional advantage to investing less than one’s opponent,  
mi = 1 gives a proportional distribution, mi > 1 gives a disproportional advantage to investing more effort 
than one’s opponent (economies of scale), and mi =  gives a step function where the winner-takes-all. 
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2.4. Strategies and payoffs 

A pure strategy for the defender is given by a pair (s1, s2)  2
 . A pure strategy 

for the attacker is given by a choice K: 3
  × [0, 1]3 → {1, 0}, which specifies which 

asset to attack given the type (R, V1, V2)  3
  of the attacker and the observed efforts 

(s1, s2) of the defender. We let K(R, V1, V2, A1, A2, m1, m2, s1, s2) = 1 denote an attack 
on asset 1, K(R, V1, V2, A1, A2, m1, m2, s1, s2) = 0 denote an attack on asset 2, and  
K(R, V1, V2, A1, A2, m1, m2, s1, s2) = 1/2 denote attack on both assets. This means that K 
depends on the attacker’s parameters, the conflict technology parameters m1 and m2, 
the defender’s strategies s1 and s2 but not on the defender’s parameters a1, a2, v1, v2. 
We consider a two stage game of incomplete information where the defender chooses 
(s1, s2) in stage 1, and the attacker chooses K(R, V1, V2, A1, A2, m1, m2, s1, s2) in stage 2. 

The probability that the attacker attacks asset 1 is 
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The attacker’s ex ante expected utility, from the defender’s perspective of not 
knowing the attacker’s type, is V1q1 if asset 1 is attacked, and V2q2 if asset 2 is 
attacked, i.e. 
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 (4) 

The attacker’s expected utility from his own perspective can be calculated by 
substituting his type (R, V1, V2) into Eq. (4). The defender’s expected utility is 

1 2 1 1 1 1 2 2v v v q a s a s     if asset 1 is attacked, and 1 2 2 2 1 1 2 2v v v q a s a s     if asset 2 

is attacked, i.e. 

       1 2 1 2 1 2 1 1 1 2 2 2 1 1 2 2, , , , 1 , ,u s s K v v G s s K v q G s s K v q a s a s        (5) 
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2.5. Perfect Bayesian equilibrium 

Both players maximize their expected utilities. We determine a pure-strategy 
perfect Bayesian sequential equilibrium. 

Definition 1. An equilibrium is a pair of strategies * *
1 2( , )s s  and K*(R, V1, V2, A1, 

A2, m1, m2, s1, s2) such that 
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The consistency condition on beliefs is satisfied for this sequential equilibrium, 
since the attacker is the only player with private information, and the attacker chooses 
his strategy after the defender. 

2.6. Example of the cumulative distribution function F 

As an example, we assume that V1 and V2 are uniformly and independently 
distributed with support [0, ViM], i.e. 
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and that R is uniformly distributed, independently of V1 and V2, with support [0, RM], i.e. 
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3. Analyzing the model 

3.1. The attacker 

The attacker moves second with perfect information. We confine our attention to 
pure strategies3. 

 _________________________  

3We ignore cases with the measure zero where the inequality signs in Eq. (7) are replaced by equality 
signs, R = 0, V1 = 0, or V2 = 0. 
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Lemma 1. The strategy K* is optimal for the attacker if and only if, for all 
(s1, s2)  2

 , 
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Proof. This follows from comparing the two terms in the integrand in Eq. (4). The 
third line in Eq. (9) expresses the fact that the attacker is equally likely to attack both 
assets when indifferent regarding which asset to attack. 

To illustrate, first, if m1 = m2 = 1, then the attacker attacks asset 1 if 1 1 1
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 as illustrated in Fig. 1 

when s2 = 1. Since the assets are equally valuable to the attacker, the unit costs of 
attacking both assets are the same, and m2 = 1, the attacker makes its decision based 
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exclusively on its resources R, the contest intensity m1 of asset 1, and the defender’s 
defenses s1 and s2.  

Assume that s2 = 1. If s1 = 1, so that both assets are equally well defended, four 
cases are possible. First, the attacker attacks asset 1 if R > s1 and m1 > 1. The condition 
R > s1 means that the attack resources are greater than the defense effort, and the logic 
of the contest success function in Eq. (2) when the exponent satisfies m1 > 1 = m2 is 
that the attacker exploits its superiority by attacking asset 1. Second, when R > s1 and 
m1 < 1, having superior resources, the attacker prefers to exploit the higher contest 
intensity m2 = 1 and attacks asset 2. Third, when R < s1 and m1 > 1, having inferior 
resources, the attacker prefers to exploit the lower contest intensity m2 = 1 and attacks 
asset 2. Fourth, when R < s1 and m1 < 1, having inferior resources, the attacker prefers 
to exploit the lower contest intensity of asset 1 by attacking it. Fig. 1 illustrates these 
results, assuming that m2 = A1 = A2 = 1,V1 = V2,s2 = 1, for the more general case that 
the defense effort invested in asset 1 differs from s1 = 1. In the left panel the defender 
invests less effort in asset 1 than asset 2, s1 = 0.9. The attacker thus attacks asset 1 
when R = m1 = 1. However, when the attacker holds more resources and m1 is low, or 
the attacker holds less resources and m1 is high, then asset 2 is attacked. The dotted 
vertical line at R = s1 = 0.9 is the asymptote of the corresponding hyperbolic function. 
As s1 decreases towards zero, the upper left region and the lower right region shrink, 
so at the limit when s1 = 0, asset 1 is guaranteed to be attacked. In the right panel the 
defender invests higher defense effort in asset 1than asset 2, s1 = 1.1. Hence, 
conversely to the case above, the attacker attacks asset 2 when R = m1 = 1, and attacks 
asset 1 in the bottom left and upper right regions of the parameter space, with 
a vertical asymptote at R = s1 = 1.1. As s1 increases to 2, the two regions in which asset 1 
is attacked disappear and asset 2 is guaranteed to be attacked. 

 

Fig. 1. Which asset to attack when m2 = A1 = A2 = 1,V1 = V2, s2 = 1. 
 Left panel: s1 = 0.9, right panel: s1 = 1.1 
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3.2. The defender 

The defender chooses s1 and s2 in stage 1 to maximize its expected utility in (5), 
given the attacker’s optimal choice of K = K* in stage 2, i.e. 

  
2

1 2

1 2 1 2 1 2
( , )

( arg max , ( ), ) , ,
s s

s s u s Ks s s


  (10) 

where K = K(s1, s2) = K* is determined from (6). Using (5), the defender’s isoutility set is 

 

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1 2 1 2 1 2 1 1

1 2 2 2 1 1 2 2
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s s v v G s s K v q

G s s K v q a s a s 

  

    
 (11) 

The isocost curves {(s1, s2)  2
 : 1 1 2 2a s a s  = } are linear. The isobenefit 

curves (isoutility minus isocost) are convex. 

Lemma 2. The isoutility condition in (11) implicitly defines a function 2 2 1( , )s s s   

at s1 = 0, where 

 
1 2 2 1

2 1

21
1 2 2 2 2

2 2

( )
(0, )

( )

dG
v v q a

ds ds
dqdGds v v q v a

ds ds


  


  

 (12) 

An analogous result holds when s2 = 0. 

Proof. When s1 = 0 (the case s2 = 0 is analogous), the attacker attacks asset 1 
giving the defender utility v2 – a2s2 = , and thus a unique s2 = (v2 – )/a2. 
Differentiating (11)implicitlygives 

1 2 2
1 1 2 2 1 1 1 1 2 2 2 2

1 1 2 2 1

( ) ( ) (1 ) 0
dq dq dsdG dG

v q v q Gv a v q v q G v a
ds ds ds ds ds

 
         

 
 (13) 

Substituting s1 = 0, 2(0, , )G s K  = 0, and 1 1 1 1 1 1 1( , , ) ( ,0, )q S s m q S m  = 1 into (13) 

gives (12). QED. 
The right hand side of (12) can be positive or negative, giving upward or downward 

sloping isoutility curves when s1 = 0. From (12), 1/dG ds  < 0 and 2/dG ds  > 0. The 
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contest success function ratio, q2 in (12), is lower than one when s2 > 0, according to (2). 
Hence, the denominator in (12) is positive, e.g. when v1 = v2, and the numerator is 
positive, e.g. when v1 = v2 and a1 is small. This confirms that isoutility curves can be 
upward sloping. This means that increasing s1 from s1 = 0 causes the defender’s utility 
to fall unless accompanied by a higher s2. This results from the attacker’s substitution 
effect, whereby a higher s1 leads to an increased probability of an attack on asset 2, 
which thus requires more defense. Bier et al. ([4], p. 569) demonstrate that universally 
upward sloping isodamage curves near the axes (when the probability of an attack on 
one of the targets is small) occur when costs are ignored. This means that, in some 
cases, the defender prefers to waste resources rather than decrease the probability of 
the success of an attack on an asset. In contrast, Lemma 2 and (12) show that isoutility 
curves can be downward sloping near the axes, which is more common. 

This result about the slope of the isoutility curves differs from the conclusions 
from Bier et al.’s [4] model and is mainly due to two factors. First, this paper assumes 
probabilistic uncertainty about the attacker’s resources, in contrast to Bier et al. [4] 
who do not model the attacker’s resources. Second, this paper assumes that both the 
defense efforts and attack efforts effect the probability of a successful attack through 
a contest success function, whereas Bier et al. [4] do not consider such a function but 
consider defender’s resources indirectly through modeling how the defender deter- 
mines the probability of the success of an attack on each asset. 

 

Fig. 2. Isoutility curves for the defender when a1 = a2 = A1 = A2 = m1 = m2 = 1. 
RM = 2, v2 = 10. Left panel: v1 = 10, right panel: v1 = 0.5 

Many parameter combinations in this paper’s model can cause downward sloping 
isoutility curves near the axes. One example occurs when v1 is small compared with 
v2, which makes the denominator in (12) negative. Another example occurs when a1 is 
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large, which can make the numerator in (12) negative. The values of R, Ai, and mi also 
have an impact. 

Assuming that the cumulative distribution function F is given by (7) and (8) in the 
example in section 2.5, Fig. 2 shows the defender’s isoutility curves for two examples 
when a1 = a2 = A1 = A2 = m1 = m2 = 1, RM = 2, and v2 = 10. The graph in the left panel 
was obtained by considering a symmetric example where the value of asset 1 to the 
defender is v1 = 10. The graph in the right panel was obtained by considering an 
asymmetric example where v1 = 0.5. Curves with the increasing distance from the origin 
(s1 = 0, s2 = 0) have lower utilities. We consider the following four cases: (s1 > 0, s2 > 0), 
(s1 = 0, s2 > 0), (s1 > 0, s2 = 0) and (s1 = s2 = 0). First, for the symmetric example when 
s1 = s2, and for the asymmetric example when s2 is large, an increase in s1 is 
accompanied by a decrease in s2 to ensure the same utility. For the symmetric 
example, when just one of s1 and  s2 is small, the isoutility curves are upward sloping. 
For the asymmetric example, the isoutility curves are upward sloping only when s2 is 
small. Second, when s1 = 0, for the symmetric example the isoutility curves are 
upward sloping regardless of s2 but for the asymmetric example the isoutility curves 
are upward sloping when s2 is small, and downward sloping when s2 is large. The low 
value of asset 1 causes the substitution effect to be inoperative when s1 = 0 and s2 is 
large. Increasing investment in the defense of asset 1 from zero is costly for the 
defender when asset 1 has low value, and the defender decreases investment in its 
defense of asset 2 to earn the same utility. Third, when s2 = 0, in both examples the 
isoutility curves are upward sloping regardless of s1. For the asymmetric example this 
follows since, when s2 = 0, increased investment in the defense of asset 1 must be 
accompanied by increased investment in the defense of the more valuable asset 2, 
otherwise the attacker would become more likely to attack asset 2. Fourth, (s1 = s2 = 0) 
is a special case. For both examples, if both s1 and s2 increase at the same rate, the 
isoutility curves are downward sloping (as in the case 1 above), if s1 = 0 and s2 
increases we get the second case (where the isoutility curves are upward sloping), and 
if s2 = 0 and s1 increases, we get the third case (where the isoutility curves are upward 
sloping). 

3.3. Equilibrium 

Proposition 1. A pure equilibrium * * *
1 2( , , )s s K   exists. The attacker’s equilibrium 

strategy is pure. If there exists a mixed equilibrium strategy for the defender, then for 
any * *

1 2( , )s s in the mixture’s support, a pure equilibrium exists where the defender 

plays * *
1 2( , )s s  and receives the same utility as at the mixed equilibrium. 
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Proof. The attacker plays a pure strategy K* = K*(s1, s2) described by (9) in 
Lemma 1, as a best response to s1 and s2. Upper limits 1s  and 2 ,s for s1 and s2 

respectively, are chosen so that * *
1 2( , , )u s s K  < 0 and * *

1 2( , , )u s s K  < 0. The defender 

confines s1 and s2 to (s1, s2)  [0, 1s ]×[0, 2s ], since 1 1s s  or 22s s  would be 

suboptimal. Since *
1 2( , , )u s s K  is a continuous function of (s1, s2) on a compact set, 

an equilibrium defense strategy exists. The defender is indifferent between any pairs 
(s1, s2) in the support of an equilibrium mixture. QED. 

Differentiating (5), the first order conditions for an interior solution, where s1 > 0 
and s2 > 0, of the defender’s optimization problem are 
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1 1 2 2 1 1

1 1 1

2
1 1 2 2 2 2
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( ) (1 ) 0

dqdu dG
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dqdu dG
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     

      

 (14) 

The second order conditions are considered in the Appendix. 

Proposition 2a. In a symmetric environment, a pure unique equilibrium exists 
where s = s1 = s2. 2b. In a symmetric environment when m ≤ mT, where mT, mT ≥ 1, is 
a threshold value of the contest intensity, an interior equilibrium exists where 
lim 0.
R

s


  In a symmetric environment, when m > mT, an interior equilibrium exists 

when R < RT, where RT is a threshold resource value, and a corner equilibrium s = 0 
exists when R ≥ RT. 2c. For any v1 > 0, a lower limit g2(v1) > 0 exists such that asset 2 
is undefended at any equilibrium if v2 < g2(v1). Analogously, g1(v2) > 0 exists for v2 > 0 
such that asset 1 is undefended at any equilibrium if v1 < g1(v2). 

Proof. 2a. If the defender were to attach positive probability to s1 ≠ s2, the attacker 
would attack the asset which gives the highest probability of success, i.e. the asset with 
the lowest investment in defense effort. The defender can increase its expected utility by 
making the attacker indifferent regarding which asset to attack, i.e. setting s1 = s2. Ap-
plying the assumptions of symmetry into (14), i.e. setting ai = a, vi = v, Ai = A, Vi = V, 
and mi = m, gives 
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ds R
s

A






  
      

        

  (15) 

which has a unique solution s = s1 = s2 and q1 = q2 when G = 1/2. 

2b. Using symmetry and taking the limit as R→∞, (14) becomes 

 
1

2
lim lim

2

m

m

R R m
R m

R
vmsdu A

fdR a
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s
A




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Using L’Hopital’s rule gives 

 
1 1

lim lim
4

m

mR R
R m

vmsdu
fdR a

ds R
s

A




 


 
   
 

 . (17) 

when m = 1, 1 /4mvms   = /4,v  and equating (17) to zero gives an interior solution  

s > 0, where s decreases as R increases. The same follows as m increases marginally 
above 1. As m increases above mT, where mT ≥ 1, 1ms   becomes arbitrarily small. That 

is, 1

,
lim 0m

m R
s 

 
  when m > mT and mT ≥ 1. Substituting this into (17) gives 

lim 0 0
R

du
a

ds
   , i.e. a corner solution with s = 0. 

2c. From the first order condition for asset 2 in (14), 2/dG ds  > 0. For fixed v1 > 0, 

the term in brackets multiplied by 2/dG ds  can be made positive by decreasing v2. This 

gives an overall negative impact on 2/ .du ds The term with the coefficient (1 – G) is 

negative but its absolute value can be made arbitrarily close to zero by decreasing v2. 
The term with the coefficient a2 is negative. Thus a positive value v2 satisfying  
v2 < g2(v1) exists such that 2 0/ ,du ds  which means that no interior solution exists for 

s2 and thus s2 = 0. The proof for the threshold g1(v2) is analogous. 
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Example. Solving (15) for the example in section 2.5 under symmetry gives 
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which simplifies to 
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where Hypergeometric2F1 is the hypergeometric function. Figure 3 shows s, u and U 
as functions of RM with the reference (base) case being a = A = m = 1, v = 10,  
ViM = 20, denoted by shaded squares. When RM is small, due to the attacker’s inferior 
resources, the defender earns high utility close to 2v = 20, this utility is decreasing in 
RM, and the defender exerts modest effort. The attacker earns low utility, which is 
increasing in RM. As RM increases, s reaches a maximum at RM = 2.34, and thereafter it 
decreases as the defender grows weaker and finds it too costly to compete against an 
attacker with superior resources. The curve with shaded circles assumes a weaker 
attacker with v/a = 5 for the effort curve and v = 5 for the utility curves4, while the 
other parameter values are the same as in the reference case. The defender exerts 
lower effort and earns lower utility, while the attacker earns higher utility due to its 
higher valuation ViM = 20. The curve with shaded triangles assumes a weaker attacker 
with a three times greater unit attack cost A = 3. The defender’s effort s increases more 
slowly, reaching a maximum at RM = 7.01 (outside the plot), and thereafter decreases. 
The curve with shaded diamonds assumes a large contest intensity m = m1 = m2 = 5. 
When RM is low, the defender’s strength and attacker’s weakness are both amplified. 
The opposite occurs when RM is large, to the extent that the defender is deterred and 
does not defend when RM > 5.35. This gives the corner solution s = s1 = s2 = 0 as in 
Proposition 2b. The left panel in Fig. 2 illustrates an interior equilibrium s = s1 = s2  

 _________________________  

4Equation (18) shows that v and a only appear once (in the ratio v/a), and thus only this 
ratio matters in determining s, while v and a both independently effect u and U. 
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= 1.08. The right panel in Fig. 2 shows a corner equilibrium (s1, s2) = (0, 1.00), where 
asset 1 is undefended. 

 

Fig. 3. s, u and U as functions of RM with the baseline a = A = m = 1, v = 10, ViM = 20, 
and for cases where one of the values v, A, m is shifted 

We define 
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  (19) 

where 1  induces a partial order over distributions of the attacker’s resources based on 

first order stochastic dominance, and .i    Verbally, replacing F by F  means 

that the attacker gains resources. 

Lemma 3. Replacing F by F  as defined in (19), which means the attacker gains 
resources, may induce the defender to increase or decrease its efforts s1 and s2. 

Proof. Assuming a symmetric environment, we rewrite (15) as 
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Replacing F by F  can be accomplished in the case of a uniform distribution as in 
the example in section 2.5 by increasing RM, which amounts to integrating (20) for 
larger values of R. But we know from the inverse U shaped curves in Fig. 3 (left 
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panel) that a larger RM can cause a larger or smaller effort s dependent on whether the 
defender is weak or strong. QED. 

Lemma 3 means that a clear-cut reaction to an attacker with increased resources 
does not exist. First, a defender with low unit costs of defense and high valuations of 
the assets defends less due to its strength. Second, a defender with high unit costs of 
defense and low valuations of the assets also defends less but then due to weakness. 
Third, a defender with intermediate unit costs of defense and high valuations of the 
assets may invest strongly in defense, in contrast to points 1 and 2. A specific form of F 
has to be specified to determine when the defender increases or decreases its effort, as 
illustrated in Fig. 3. 

4. Conclusion 

Determining an attacker’s resource capabilities is essential for protecting assets. 
This paper analyzes an attacker attacking one of two assets. The attacker’s resources 
and valuations of the two assets are known to the attacker but unknown to the 
defender. These parameters constitute the attacker’s type, which is drawn from a three 
dimensional probability distribution. We specify how the attacker determines which 
asset to attack depending on his type, his unit attack costs, the contest intensity for 
each asset, and how well each asset is defended in a two stage game where the 
defender moves first and the attacker moves second. Bier et al. [4] show that 
isodamage curves are upward sloping near the axes, which means that the defender 
prefers to invest less in defense, thus resulting in higher probabilities of success for 
attacks on both assets. In contrast, we provide an analytical expression for a case 
where the isoutility curves are downward sloping. The latter occurs when one asset 
has a low value or a high unit defense cost. The difference between these results 
follows since we account for uncertainty regarding the attacker’s resources and model 
investment in both defense and attack. Both defense efforts and attack efforts 
influence the probability of a successful attack. We show that a pure equilibrium 
exists. In a symmetric environment, which means that both assets are equivalent and 
are treated equivalently by both players, an interior equilibrium exists when the 
contest intensity is not too large, and a corner equilibrium with no defense exists when 
the contest intensity is large and the attacker holds plentiful resources. We specify the 
conditions under which an asset remains undefended. Increasing the attacker’s 
resources can cause greater or smaller investment in defense effort depending on 
whether the defender defends due to weakness or strength. 
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Appendix. 
Second order conditions 
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in general, so we consider a symmetric environment where (A1) becomes 
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 (A2) 

Since /dG ds  < 0, the first term is negative. The second term is negative when 
( 1)( / ) ( 1)m mm R A m s   , which is satisfied when m ≤ 1. 
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