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Ellipsometry is a powerful tool for studying the optical properties of multilayer structures. All
the information extracted from an ellipsometer is found in two angles called the ellipsometric
parameters ψ and Δ. The transfer matrix approach is usually used to find the reflectance,
transmittance, and ellipsometric parameters of planar multilayer structures. In this work,
an equivalent model based on the bi-characteristic-impedance transmission line (BCITL) is
employed to model planar multilayer structures. We here apply the BCITL formalism to
investigate the reflectance of electromagnetic waves from an isotropic multilayer structure.
Moreover, the ellipsometric parameters ψ and Δ for any number of layers are calculated using
the BCITL approach. The properties of a Bragg reflector are also presented. 

Keywords: bi-characteristic-impedance transmission line, reflectance, Bragg reflector, ellipsometry. 

1. Introduction 

Planar multilayer structures have received an increasing interest from physicists and
engineers due to a wide range of possible applications in electromagnetics; e.g., in
the areas of optics, remote sensing, and geophysics [1–5]. The transfer matrix for-
malism employing the layer and interface matrices is usually used to solve problems
related to planar multilayer structures [6]. Another efficient approach called the poly-
nomial one has been applied for treatment of stratified isotropic and anisotropic planar
structures [7–9]. In this technique, the reflectance and the transmittance of stratified
structures are written in a compact form using the so-called elementary symmetric
functions that are extensively used in the mathematical theory of polynomials. These
problems can also be solved by modeling these structures using multi-section transmis-
sion lines with appropriate characteristic impedances and propagation constants, where
each transmission line possesses the same length as of the corresponding layer [5, 10]. 
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Ellipsometry has been extensively used for material and thin film characterization
[11–19]. It measures the changes in the state of polarization of light upon reflection
or transmission from a sample. The first generations of ellipsometers were single wave-
length instruments. With the emergence of spectroscopic ellipsometry, the ellipsometry
technique became of high importance to wide research areas from semiconductors to
organic materials. Recent developments in spectroscopic ellipsometry have further
allowed the real-time characterization of film growth and evaluation of optical
anisotropy. The ellipsometric results are usually presented in terms of two parameters
ψ and Δ given by 

(1)

where r p and r s are the complex Fresnel reflection coefficients for p- and s-polarized
light, respectively. 

In this article, the bi-characteristic impedance transmission line (BCITL) approach
is employed to model stratified planar structures. Generally, BCITLs are lossy, and
possess different characteristic impedances  of waves propagating in opposite
directions. It should be pointed out that BCITLs can be practically implemented using
finite lossy periodically loaded transmission lines, and a graphical tool, known as
a generalized T-chart, has been recently developed for solving problems associated
with BCITLs [5]. We here apply the BCITL approach for the study of reflectance of
electromagnetic waves from isotropic multilayer structure. The results are compared
with those obtained from the well-known matrix formalism. The properties of a Bragg
reflector are also investigated. The ellipsometric parameters ψ  and Δ for any number
of layers are calculated using the BCITL approach. 

2. Theory
2.1. Matrix formalism 

The addition of a multiple reflection approach is generally used to treat reflection and
transmission from a multilayer structure comprising a few number of layers. This
approach becomes impractical when treating oblique incidence by a multilayer
structure of large number of layers between semi-infinite ambient and substrate media.
In such a case, the transfer matrix approach is more effective. In the following, we put
forward the matrix formalism in brief although it is presented in details in Refs. [6–9]
but it should be mentioned here for the sake of clarity. 

A multilayer structure consisting of a stack of m parallel, linear, homogeneous,
and isotropic layers is sandwiched between two semi-infinite ambient (0) and substrate
(m + 1) media as shown in Fig. 1. The j-th medium has lj and nj as a thickness and
a refractive index, respectively. The j-th interface located at zj separates the two media
of refractive indices nj and nj + 1. An incident wave in medium 0 (the ambient) generates
a resultant reflected wave in the same medium and a resultant transmitted wave in

ρ ψ( )tan iΔ( )exp r p

r s------------= =

Z0b
±
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medium m + 1 (the substrate). The total field inside any layer consists of two
waves: a forward-traveling wave denoted by “+”, and a backward-traveling wave
denoted by “–”. The total field is usually written as 

(2)

Considering the fields between the two parallel planes at z' and z", one can write 

(3)

where M is the transformation matrix between the planes at z' and z". 
By choosing z' and z" to lie immediately on the opposite sides of an interface,

located at zj between layers j and j + 1, Eq. (3) becomes 

(4)

where δ  is an infinitely small distance, α = p or s indicating the state of polarization,
and  is called the interface matrix which is given by 

(5)

where rj, j + 1 and tj, j + 1 are Fresnel reflection and transmission coefficients at the j, j + 1
interface. 

On the other hand, if z' and z" are chosen inside the j-th layer at its boundaries,
Eq. (3) becomes 

(6)

x

z

z = 0 z = z1 z = z2

Ambient
n0

Layer 2
n2

...

θ0

l1

Layer 1
n1

l2

θ1 θ2

Fig. 1. Oblique incidence on a planar multilayer structure.
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where [φ j] is called the layer matrix which is given by 

(7)

where ϕj = knj cos(θj lj) with k = ω /c is the free space wave number and θj is the re-
fraction angle in the j-th layer.

The M-matrix for the whole structure can be expressed as a product of the interface
and layer matrices that describe the effects of the individual interfaces and layers of
the entire stratified structure, taken in proper order, as follows 

(8)

For the last interface we have  so that the reflection and transmission
coefficients of the whole system are given by 

(9)

The reflectance of the structure is given by 

(10)

whereas the transmittance is given by T = (1 – R ) provided that no absorbance is
present. 

2.2. Bi-characteristic impedance transmission line (BCITL) 

Planar multilayer structure shown in Fig. 1 can be treated by modeling it using
multi-section transmission lines. The equivalent multi-section model of Fig. 1 is
depicted in Fig. 2, where β j is the propagation constant and Zj is the characteristic
impedance of each transmission line and they are given by 

(11)

(12)

where ηj is the intrinsic impedance of the j-th layer. The multi-section transmission
line is assumed to be terminated in surface impedance of ZS at z = zN. It should be
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pointed out that for the lossy case, the propagation constant βj is a complex number.
If the angle θj is real and the refractive index nj of the j-th layer is given by nj = nr + jni ,
then the real part of βj is simply given by Re(βj) = knrcos(θj), whereas the imaginary
part is given by Im(βj) = knicos(θj). In most cases, θj is a complex angle and in this
case the real and imaginary parts of βj are more complicated. 

In transmission line analysis, impedance, admittance, scattering and ABCD matrices
are usually used. Impedance and admittance matrices describe the relationship between
the total voltages and currents defined at the terminal ports or interferences of arbitrary
N-port multi-section transmission lines. The scattering matrix gives an alternative
characterization of N-port multi-section transmission lines in terms of incident and
reflected waves. ABCD matrix is known as a transmission matrix [20]. The ABCD
matrix of a section of transmission line with length l, characteristic impedance Z0, and
propagation constant β is given by 

(13)

For the cascading N-section transmission lines, the total ABCD matrix parameters
are given by 

(14)
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Fig. 2. Multi-section transmission line model.
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Fig. 3. Transmission line BCITL model.
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The multi-section model shown in Fig. 2 can be treated effectively using
the BCITL model shown in Fig. 3 where  and βb are the characteristic impedance
and the propagation constant of the equivalent structure, respectively. Γin, b and Zin, b
represent the total input reflection coefficient and the input impedance, respectively.

 and βb and can be determined from the total ABCD matrix of the cascading
N-section transmission line of the total length lT as [21]

(15)

and

cos(βb lT) = A = D (16)

It should be pointed out here that the two transmission line models shown in Figs. 2
and 3 are equivalent; i.e., their total transmission matrices are identical [5]. This can
be shown using the theory of two-port network [20]. It is also worth to mention that
the BCITL model is equivalent to the multi-section model at the input and output
terminals only; i.e., at z = 0 and z = zN , respectively. This is due to the fact that
the multi-section transmission line in Fig. 2 is globally viewed as a two-port network
in constructing the BCITL model. 

It is straightforward to show that the total input reflection coefficient Γin, b can be
written in terms of the input impedance Zin, b as [21]

(17)

where 

(18)

and

(19)
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and

(21)

where ΓL, b is the load reflection coefficient associated with the BCITL and is defined
at z = zN. In Eq. (17), the plus and minus signs correspond to the perpendicular and
parallel polarizations, respectively. The minus sign comes from the fact that the total
input reflection coefficient is associated with the current, instead of the voltage, for
the parallel polarization. 

3. Results and discussion 
We first investigate the behavior of the characteristic impedance , the propagation
constant βb, and the total input reflection coefficient Γin, b with the angle of inci-
dence. We consider a three-layer structure having the parameters, l1 = 1000 nm, l2 =
= 1200 nm, l3 = 1400 nm, μr, 1 = μr, 2 = μr, 3 = 1, n1 = 1.50 – 0.01i, n2 = 1.57 – 0.01i,
n3 = 1.59 – 0.01i, and Zs = 50 Ω. The structure is assumed to be illuminated with
a He-Ne laser beam (λ = 632.8 nm) at an incidence angle θ0 which can be varied
from 0 to 90°. The parameters | |, , βb, and | | are then calculated and
plotted versus θ0 for s- and p-polarizations as shown in Figs. 4 and 5, respectively. As
can be seen from the figures,  and  are generally complex and different from
each other because the structure is assumed to be lossy. Moreover,  is polariza-
tion dependent. The propagation constant βb is also complex and has a significant
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dependence on the incidence angle. Moreover, the magnitude of the total input
reflection coefficient varies considerably with θ0 and with the type of the light
polarization. 

To demonstrate the validity of the BCITL approach, we consider a planar multilayer
dielectric coating designed as a Bragg reflector. Bragg reflectors are composed of
multiple thin layers of dielectric material, typically deposited on a substrate of glass.
Through proper choice of the thickness and refractive indices of the dielectric layers,
it is possible to design an optical coating with specified reflectance at different light
wavelengths. Moreover, Bragg reflectors can be used to fabricate ultra-high reflec-
tivity mirrors over a narrow range of wavelengths. Alternatively, they can be made to
reflect a broad spectrum of light. Bragg reflectors have found a wide range of
applications such as laser thin-film beam-splitters, cavity end mirrors, and hot and cold
mirrors. The function of operation of Bragg reflectors is based on the interference of
light reflected from the stack of dielectric layers. The Bragg reflector usually consists
of identical alternating layers of high and low refractive indices. The optical
thicknesses are typically chosen to be quarter-wavelength long at some center
wavelength λ0, that is, nHlH = nLlL = λ0 /4, where nH and nL are the indices of refraction
of the high- and low-index layers, respectively, lH and lL are the thicknesses of
the high- and low-index layers, respectively. The standard arrangement is to have
an odd number of layers, with the high index layer being the first and last layer [22]. 

The numerical calculations are conducted for a system of odd number of layers of
quarter-wavelength layers. The design wavelength of the Bragg reflector is centered
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at 550 nm since our calculations were done in the spectral range from 350–850 nm.
We also consider TiO2 and MgF2 as high-index and low-index dielectrics, respectively,
and the substrate is glass. The optical parameters of these materials were obtained
from the handbook of optical constants of solids [23]. TiO2 and MgF2 are found to
have the refractive index ranges 4.005–2.78 and 1.387–1.375, respectively, in the spec-
tral range 350–850 nm. The calculated total input reflection coefficient Γin, b for s- and
p-polarizations using the BCITL for 7 layer-quarter-wavelength Bragg reflector at
θ0 = 20° is shown in Fig. 6. The figure also shows the total reflectance calculated using
the matrix approach, Eq. (10), and using the BCITL using R:

It is found that the equivalent BCITL model provides identical results, for both s- and
p-polarizations, as those obtained from the propagation matrix approach. 

Moreover, we investigate the behavior of the reflectance from the Brag reflector
for the cases of 3, 7, and 15 layers using the BCITL approach as shown in Fig. 7.
As the number of layers increase, the reflectance rises and becomes flatter within
the bandwidth Δλ. Also it has sharper edges and tends to 100%. This is a consequence
of the periodic nature of the Bragg reflector. 

To study the ellipsometric parameters ψ  and Δ for the 3, 7, and 15 layer Bragg
reflector, we consider θ0 = 70° since most of the ellipsometric devices are operated at
this incidence angle. The importance of ψ  and Δ comes from the fact that once they
are determined during a measurement at a given wavelength, one can invert Fresnel
equations to extract the optical parameters of a bulk sample. For a multilayer structure
one must perform a spectroscopic ellipsometric scan over a certain spectrum to
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determine the thickness, the refractive index, and the extinction factor for each layer.
Figures 8 and 9 show respectively ψ  and Δ for the 3, 7, and 15 layer Bragg reflector
in the spectral range 350–850 nm. As the figures reveal, ψ  ranges between 1°–47°
whereas Δ ranges between 0–358°. Both of them change considerably with the number
of layers constituting the Bragg reflector. As can be seen from Fig. 8, the behavior
of ψ  with the wavelength for the 3, 7, and 15 layer Bragg reflector is very close to that
of the reflectance. As the number of layers increases, ψ  rises and becomes flatter
within some bandwidth. Also it has sharper edges and tends to 45° which means
the complex Fresnel reflection coefficients for p- and s-polarized lights have equal
magnitudes. In the spectral regions λ < 410 nm and λ > 575 nm, the ellipsometric
parameter ψ  oscillates between 0 and 45°. 
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Fig. 7. Calculated reflectance R of 3, 7, and 15 layer-quarter-wavelength Bragg reflectors at θ0 = 20°
using the BCITL approach.
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Fig. 8. The ellipsometric parameter ψ  of 3, 7, and 15 layer-quarter-wavelength Bragg reflectors at
θ0 = 70° in the spectral range of 350–850 nm using the BCITL approach.
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Finally, it is very significant to use the BCITL to study the influence of
the refractive index ratio nL/nH on the reflectance spectrum. Reflectance spectrum
of different refractive index ratios of 15 layer-quarter-wavelength Bragg reflector at
θ0 = 0° (normal incidence) is depicted in Fig. 10. The refractive index ratio nL/nH is
1.5/2, 1.5/2.5, 1.5/3, and 1.5/3.5. This ratio has a great influence on the bandwidth
and the sharpness of reflectance curves. From Fig. 10 we can conclude that
the increase in the ratio nL/nH leads to the widening of the bandwidth. For example,
for nL/nH = 1.5/2 the bandwidth is about 130 nm whereas for nL/nH = 1.5/3.5 it is about
330 nm. Another important effect that can be seen from the figure is the sharpness of
the band edges. The band edges become sharper when the ratio increases. An inter-
esting feature can be seen from Fig. 10 which is the asymmetry of these spectra
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Fig. 9. The ellipsometric parameter Δ of 3, 7, and 15 layer-quarter-wavelength Bragg reflectors at θ0 = 70°
in the spectral range of 350–850 nm using the BCITL approach.
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around the central wavelength. The curves are shifted to the left with decreasing
the ratio nL/nH. The symmetry can be observed when the magnitude of the x-axis is
wave number instead of wavelength as shown in Fig. 11. 

4. Conclusions
A simple method based on an equivalent model of the bi-characteristic-impedance
transmission line is proposed to model planar multilayer structures. The ellipsometric
parameters ψ  and Δ and the reflectance for any number of Bragg reflector layers have
been studied in details using this simple approach. The results obtained are identical
with those extracted from the propagation matrix approach. 
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