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Based on the extended Huygens–Fresnel principle, variations in generalized Stokes parameters of
stochastic anisotropic electromagnetic beams propagating through modified non-Kolmogorov
atmospheric turbulence have been analyzed. The changes in generalized Stokes parameters
with different turbulence parameters and source parameters were analyzed first. After that,
the distributions of the spectral degrees of cross-polarization (SDCP) of isotropic beams and
anisotropic beams were simulated. The results show that the profiles of distribution of SDCP of
these two kinds of beams are very different in the near field, and will fluctuate through
the propagation in atmospheric turbulence, but at last, when the propagation distance is long
enough, the difference in the source makes a slight difference in the final profiles of SDCP in
the output plane. They mainly depended on the turbulence perturbation, and in the weak turbulence,
the profiles of final distribution show more flatter features.
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parameters.

1. Introduction
The concept of cross-polarization of stochastic electromagnetic beam-like fields was
first introduced by ELLIS and DOGARIU where the parameters are called the mutual
degree of cross-polarization (MDCP) [1] and the quantity introduced in Volkov’s paper
is called the spectral degree of cross-polarization (SDCP) [2] which represent the cor-
relation between the intensity fluctuations in terms of the degree of coherence and of
the other two-point correlation properties of the beam. Recently, LI and PU have studied
the degrees of cross-polarization of electromagentic beams propagation in turbulence
media and uniaxial crystals [3, 4]. PU has found that the behavior of this quantity, not
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being similar to the behavior of the spectral degree of coherence or the ordinary degree
of polarization, has been affected by all the parameters of the source. After the concept
of a partially coherent Gaussian pulse was introduced [5], the spectrally partially
coherent properties of such pulsed beams and the propagation of SDCP of stochastic
electromagnetic pulsed beams in free space have been studied by DING and
LAJUNEN [6–8]. Very recently, the statistic properties of stochastic anisotropic electro-
magnetic beams propagation in the atmosphere and oceanic water have been studied
by DU and ZHOU [9, 10]. They have found that the changes in the degree of polarizaiton
of anisotropic beams are different from those of isotropic beams, because they have
no self-reconstructed properties. On the other hand, atmospheric turbulence is one of
the most important turbulences which has a significantly degrading impact on the qual-
ity of imaging and laser communication systems. The classical Kolmogorov turbulence
spectral model failed to predict the result of recent experiments in certain portions of
the atmosphere. The propagation of light beams through the turbulence in portions of
the troposphere and stratosphere may obey non-Kolmogorov statistics [11]. XUE et al.
generalized the modified turbulence spectral model in non-Kolmogorov atmosphere
turbulence which considers the finite turbulence in inner and outer scales and has
a general spectral power law value in the range of 3 to 5, instead of the standard power
low value of 11/3 [12]. CUI et al. obtained the long exposure turbulence modulation
transfer function (MTF) based on this model [13]. 

To our best knowledge, the influence of turbulence perturbation on the evolution
of SDCP of stochastic beams is not clearly pointed out in the articles we mentioned
above, there are a few reports about the propagation properties of the electromagnetic
beams traveling through modified non-Kolmogorov turbulence. In this paper, we use
generalized Stokes parameters of anisotropic stochastic electromagnetic beams to cal-
culate the SDCP of anisotropic beams propagation through modified non-Kolmogorov
turbulence. The results are illustrated by numerical examples. Basing on these results,
we have discussed the changes in SDCP distributions under different turbulence
conditions and source parameters. The behaviors of SDCP of such beams propagating
in turbulence media were summarized at last. 

2. Anisotropic electromagnetic beams 
and modified non-Kolmogorov turbulence model

The elements of the cross-spectral density matrix (CSDM) for a random, statistically
stationary electromagnetic beam generated by the Gaussian source are given by:

(1)

where the coefficients Ai, Aj, Bij and variances σi , σj  and δij  are both independent of
the position but dependent on the frequency;  and  are two points on the source
plane. The degree of polarization is the same at every point across the source plane if
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σi = σj , but if σi ≠ σj , the source is not uniformly polarized. For convenience, Eq. (1)
can be rewritten as: 

(2)

where  and 

while    

The CSDM of stochastic beams propagation through turbulence can be derived by
the extended Huygens–Fresnel principle:

(3)

where ρ1, ρ2 are two observation points on the output plane, z is the propagation
distance and k = 2π /λ is the wave number of the beam. The last term describes the cor-
relation function of the complex phase perturbed by random medium, the subscript m
denotes the average over medium realization, and it takes the form:

(4)
where J0 stands for the 0th order Bessel function. Under the approximation which was
used in [14], Eq. (4) is simplified to: 
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where  denotes the intensity of the turbulence atmosphere which
can only be determined by the spatial power spectrum of the refractive index
fluctuations. 

In the last decade, several researchers studied the propagation properties of beams
traveling through non-Kolmogorov turbulence. Toselli has researched the long-term
beam spread, scintillation index, probability of fait and mean bit error date as a varia-
tion of the spectrum exponent of non-Kolmogorov turbulence [15]. GERÇEKCIOLU and
BAYKAL scrutinized the behavior of intensity fluctuations of a flatted-topped beam in
non-Kolmogorov weak turbulence [16]. CUI et al. investigated the influence of power
law on the irradiance scintillation of a Gaussian-beam wave [17]. KOROTOKOVA and
SHCHEPAKINA revealed the dependence of spectral shifts and switches in optical stochas-
tic beams propagating through non-Kolmogorov media on the slope of the power spec-
trum of fluctuations in the refractive index [18]. The temporal power spectrum of the ir-
radiance and the AOA fluctuations of plane and spherical waves in non-Kolmogorov
turbulence whose power law varies from 3 to 4 were derived by DU et al. [19]. 

The general modified atmospheric spectrum is a turbulence spectral model which
considers the influence of finite, inner and outer scales. For non-Kolmogorov
turbulence, it has the form:

(6a)

(6b)

where κ0 = C0/L0, κl = c(α )/l0, c(α ) is the scaling constant, L0, l0 are the out scale and
the inner scale of turbulence. The intensity of modified non-Kolmogorov turbulence
can be obtained by the numerical integral method of Matlab 2011a. Figure 1 shows
a typical distribution of the intensity of the turbulence with power law. At first,
T  increases when the power law increases, and gets the maximum value at α = 3.11,
then it will decrease when the power law increases. For the homogeneous and isotropic
turbulence, the power law α  varies from 3 to 4 when Markov’s approximation is used.

From Equations (1)–(6), the cross-spectral density matrix of the output plane of
the beam propagating through turbulence can be obtained by a tedious integral, what
has been done in the previous work [5, 6]
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where 

and   is 4×4 unitary matrix, and I is 2×2 unitary
matrix; Det is the determinant of a matrix. 

It can be deduced form Eq. (7) that the anisotropic electromagnetic beam in
the output plane in turbulence media denpends on the parameters of the source,
the perturbation of turbulence, and the propagation distance.

3. Generalized Stokes parameters and polarization properties

The polarization properties of an electromagnetic beam at a point in space can be
determined by using Stokes parameters which have been generalized from one-point
quantities to two-point counterparts recently [20]. They contained not only polarization
properties but also coherence properties of beams [21] and can be measured by Young’s
interference experiment [22, 23]. The changes in generalized Stokes parameters in
the optical system or random media are also an interesting problem which has attracted
a lot of attention [24, 25]. The four parameters can be expressed as follows:

i = 0, 1, 2, 3 (8)
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Fig. 1. The variation of T with power law α, other parameters are L0 = 10 m, l0 = 1 mm, Cn
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where W is the Pauli spin matrices, σ0 is the unit matrix:

Substituting Eq. (7) into Eq. (8),we can get the changes in four generalized Stokes
parameters of anisotropic beams propagation through turbulence media. Figure 2 illus-
trates the changes in normalized Stokes parameters of two pairs of points on the output
plane of anisotropic beams traveling through turbulence with different power law α ,
other turbulence parameters are the same as those which we used in Fig. 1. The pa-
rameters of the source which we used in this paper are: Ax = 3, Ay = 1, Bxx = Byy = 1,
Bxy = 0.2exp(iπ/6), Byx = 0.2exp(–iπ/6), δxx = δyy = 1.5 mm, δxy = δyx = 2 mm, and
λ = 632.8 nm.
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Fig. 2. Changes in normalized generalized Stokes parameters with the propagation distance of an aniso-
tropic electromagnetic beam in turbulence. Two spatial points in the output plane are: ρ1 = (0, 0),
ρ2 = (0, 0) (a, d, g); ρ1 = (0.002, 0), ρ2 = (0, 0) (b, e, h); ρ1 = (0.003, 0), ρ2 = (0, 0) (c, f, i).
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In Fig. 2, the changes in normalized Stokes parameters in modified non-Kolmogorov
turbulence have been illustrated. The pink line expressed the changes in s1. The blue
line expressed the changes in s2, the green line expressed the changes in s3. Different
line types show the change in the parameters under different power laws of turbulence:
the solid line shows the changes in generalized Stokes parameters under the power law
of α = 3.11, the dashed line is under the power law of α = 3.4, the dash-dotted line is
under the power law of α = 3.7, the dotted line shows the changes in Stokes parameters
in free space (T = 0). In Figures 2a–2c σx and σy are assumed to be equal σx =
= σy = 0.2 mm, and we find that as the propagation distance increases, s1 is stable for
different pairs of spatial points on the output plane, and s3 will fluctuate due to
turbulence perturbation and these fluctuations will be different from each other under
different turbulence power laws. These variations are also different from each pair of
points. In Figures 2d–2i we show the changes in the parameters of the beams generated
by anisotropic sources, i.e., the sources with σx = 0.2 mm, σy = 0.3 mm for Figs. 2d–2f,
and σx = 0.2 mm, σy = 0.5 mm for Figs. 2g–2i.

In these situations, s1 shows more fluctuation features as the deviation of spot beam
width increases (Δ = σx – σy). The variations of other parameters are less influenced
by the deviation Δ. However, the turbulence perturbation affects the changes in s2 and
s3 much more than the changes in s1 in Figs. 2a–2f. In Figures 2g and 2h, the intensity
of turbulence influences the change in s1 obviously, but in Fig. 2i, the changes in
s1 are less influenced by the turbulence. From numerical simulation results, we can
summarize the characteristics of generalized Stokes parameters of stochastic beams:
for isotropic beams, s1 will hold a constant during the propagation whether in
turbulence or free space, s2 and s3 will change in different turbulence conditions
through the propagation. The trends of these changes depend on the positions of
the two points in the output plane. For anisotropic beams, s1 will fluctuate during
the propagation; these fluctuations are influenced by the turbulence. We noticed that
in Fig. 2d–2f, the changes in s2 and s3 are similar to the changes in the same parameters
in Figs. 2a–2c, but in Figs. 2g–2i, the changes in these two parameters are different.
It means that the changes in s2 and s3 will be similar to each other if the deviation Δ
is small, but there is a significant difference between them when Δ increases to a certain
extent.

From the discussion by VOLKOV et al. [2], the relationship of generalized Stokes
parameters and SDCP is:

(9)

If ρ1 = ρ2 = ρ, SDCP is equal to the degree of polarization (DOP) of the beam. In
Fig. 2a, we can notice that s2 and s3 will reach the initial value if the propagation
distance is long enough, s1 will be a constant, so it can be deduced that DOP of
the isotropic beam will return to its initial value when the beam propagates sufficiently
long distance; the phenomenon is the so-called polarization self-reconstruction. But
for an anisotropic beam, or for two-points SDCP cases like those presented in other
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figures in Fig. 2a, there is no such property. In order to study the evolution of transverse
SDCP through turbulence, Fig. 3 is organized to show the two-dimensional distribu-
tion of SDCP of stochastic beams with the same source parameters setting as in Fig. 2.
We can see that the central values of SDCP of the isotropic beam are much greater
than circumference values at the propagation distance of z = 0.1 km, but for the aniso-
tropic beam, the center and four corners (±0.01, ±0.01, 0, 0) of the values are greater
than the remaining value of the area.

If the propagation distance is long enough, the profile of the distribution of
transverse SDCP of the isotropic beam and the anisotropic beam will be the same.
The SDCP values in the surrounding region will increase as the propagation distance
increases, the final SDCP distribution profile is almost the same for the isotropic beam
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and the anisotropic beam, they only differ in quantity. The four corners of the SDPC
will get to the maximum value at z = 3 km. The power law of turbulence is assumed
as α = 3.11, it means the perturbation is relatively strong in this situation. 

In order to obtain how the turbulence perturbation affects the changes in SDCP,
we show the variation of SDCP at different propagation distances with the difference
power law of modified non-Kolmogorov turbulence in Fig. 4. These figures illustrate
that the influence of atmospheric turbulence on the distribution of SDCP becomes
obvious as the propagation distance increases. From Figs. 4a–4c to Figs. 4g–4i, we
can see that the profile of transverse SDCP fluctuates much more in strong turbulence
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than that in weak turbulence and free space during the propagation. The final profiles
of SDCP of the isotropic and anisotropic beam in weaker turbulence also show more
flat features than those in stronger turbulence.

4. Conclusions

In summary, the evolution of generalized Stokes parameters of stochastic beams
propagation in modified non-Kolmogorov atmospheric turbulence was investigated,
and the changes in SDCP of the beams were carried out directly on the basis of these
parameters. The source parameters were chosen as an isotropic case and anisotropic
case. Our results indicated that the profiles of distribution of SDCP of these two kinds
of stochastic beams are different in the near filed, as the propagation distance increases.
The influence of turbulence becomes obvious on the variations of the distribution, at
last, the difference in the profiles of the distribution of SDCP between the isotropic
beam and the anisotropic beam will disappear if the propagation distance is long
enough. The difference in the sources only determine the quantity of final SDCP of
the beam but the profiles of the distribution of SDCP mainly determine the turbulence
perturbation. The research may be helpful for the application in optical communi-
cation, in imaging or remote sensing systems in the atmosphere.
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