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RANK BASED TESTS FOR TESTING THE CONSTANCY 
OF THE REGRESSION COEFFICIENTS  

AGAINST RANDOM WALK ALTERNATIVES 

A class of approximately locally most powerful type tests based on ranks of residuals is suggest-
ed for testing the hypothesis that the regression coefficient is constant in a standard regression model 
against the alternatives that a random walk process generates the successive regression coefficients. 
We derive the asymptotic null distribution of such a rank test. This distribution can be described as 
a generalization of the asymptotic distribution of the Cramer-von Mises test statistic. However, this 
distribution is quite complex and involves eigen values and eigen functions of a known positive 
definite kernel, as well as the unknown density function of the error term. It is then natural to apply 
bootstrap procedures. Extending a result due to Shorack in [25], we have shown that the weighted 
empirical process of residuals can be bootstrapped, which solves the problem of finding the null dis-
tribution of a rank test statistic. A simulation study is reported in order to judge performance of the 
suggested test statistic and the bootstrap procedure. 

Keywords: bootstrap, random coefficient regression models, random walk alternative models, rank tests, 
weighted empirical and rank processes 

1. Introduction 

Consider the regression model 

 : 1, 2, ...t t tY x tβ ε= + =   (1) 

where { : 1, 2, ...t tε = } forms a sequence of independently and identically distributed 
(iid) random variables having a location-scale family of density (1/σ ε) f ((ε − με)/σ ε) 
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with με = E(εt) = 0 and 2
1 1( ) ( ) < , (.)tE h hεε σ= ∞  being a nonnegative function of σ ε. 

The assumption that the regression coefficient β  remains constant over time may not 
be true always. Stochastic variation of the parameter β  over time can be of various 
types. A number of varying parameter models have been proposed in the literature. 
[28, 18] give a brief survey of some of these models. One of the important modes of 
variation that has been extensively discussed in the literature is where the regression 
coefficients {β t} vary according to a random walk process. To be more specific, con-
sider the model 

 1  ,    + , 1,  2,  ...t t t t t t tY x u tβ ε β β −= + = =  (2) 

where {ut} is a sequence of iid random variables having a location-scale family of densi-
ty (1/σ u)f ((u − μu)/σ u) with μu = E(ut) = 0, 2( )tE u  = h2(σ u), h2(.) being a non-negative 
function of σ u such that 0 < h2(σ u) < ∞, and 2( )tE u = 0 whenever σ u = 0. Further, β 0 = 
β  is assumed to be nonrandom. The two sequences of random variables viz., {β t} and 
{εt} are assumed to be independent. This model describes a situation, wherein there is 
a gradual and smooth change in the regression parameter from a time unit to the next. 
Model (2) belongs to the class of state space models which have been widely discussed 
in the literature. Note that when σ u = 0, model (2) reduces to model (1). 

A natural problem of interest is to test whether variation of the (random) regres-
sion coefficients {β t} is significant. In other words, we would like to test the hypothe-
sis H0: σ u = 0 against the alternatives H1: σ u > 0. These types of tests are generally 
known as specification tests, whose history dates back to the works of Ramsey in [23] 
and Hausman in [8]. For simplifying the notation, while constructing the test statistic, 
we denote the variance of ut as 2

uσ  instead of h2(σ u). 
Assuming that εt and ut follow normal distributions, a number of tests have been 

suggested by various authors. It was Cooley and Prescott who first looked into this 
problem we refer [5, 6] for further references. LaMotte and McWhorter [13] have 
constructed an exact test for this hypothesis. Nyblom and Makelainen [19] have ob-
tained a locally most powerful invariant test. The asymptotic null distribution theory 
of the locally most powerful invariant test is somewhat complicated: they handled 
a special case when all xt’s are identically equal to one. Nabeya and Tanaka [16] have 
shown that the limiting null distribution of the locally best invariant test statistic is 
closely related to that of Cramer–von Mises statistics, and it heavily depends on the 
values of the regressors xt, t = 1, 2, ... Even though, their test statistics is developed 
under the assumption of normality of εt and ut, the limiting distribution theory does not 
require this assumption. Nabeya [15] has considered the limiting distribution under 
various sequences of alternatives that converge to the null. Also see [10, 17] for some 
of the related references. Another closely related reference is that of Shively [24], who 
develops an exact test for the same problem under the assumption of normality by 
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specifying the value of σ u/σ ε under the alternative. Rajarshi and Ramanathan [21] 
developed a test procedure for testing the constancy of a parameter of a Markov se-
quence against the alternatives that the parameter varies over time according in a ran-
dom walk manner. 

All the above mentioned tests and the corresponding distribution theories have 
been developed under the assumptions of normality. In this paper, we develop a rank 
test procedure for the above mentioned problem. We suggest a class of rank tests 
(which, in some cases, may be approximately locally most powerful rank tests) and 
derive their null distribution. 

In Section 2, we derive a class of rank tests for testing H0: 2
uσ = 0 against H1: 2

uσ > 0. 
The asymptotic null distribution of a rank test is obtained in Section 3. Since the dis-
tribution of the test statistic is extremely complicated, we suggest that the test statistic 
can be bootstrapped. Discussion of validity of the suggested bootstrap procedure 
forms Section 4. An extensive simulation study is carried out in Section 5 to check the 
performance of these tests. Some concluding remarks are given in Section 6. All the 
proofs have been deferred to Section 7. 

2. A class of rank tests 

The locally most powerful invariant test for the hypothesis H0: 2
uσ = 0 against H1: 

2
uσ > 0 in the context of model (2) has been discussed by Nyblom and Makelainen [19] 

and Nabeya and Tanaka [16]. 
Let ε = (ε1, ε2, ..., εT ) be the error vector, DX and AT are T × T matrices, defined by  

 ( )1 2diag , , ..., and min ( , )X T Tx x x i j= =D A  (3) 

Let rt be the least squares residual, t =1, 2, ..., T. If εt and ut are normally distribut-
ed, the locally most powerful invariant test is given by 

 ( )
ˆ ˆX T XS

c T
′

= ε D A D ε  (4)  

where ( )1 2ˆ , , ..., Tr r r ′=ε  and c(T ) is an appropriate scaling factor. 
To derive the locally most powerful rank test for H0, for the time being, we assume 

that β  is known. Let  f  be the probability density function of ε1 and F be the correspond-
ing distribution function. It is assumed that the distribution of ε1 belongs to a location-scale 
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family of distributions, with location 0 and scale σ ε. Let Tβ = (β 1, β 2, ..., β T )′. The joint 
probability density function of y = (y1, y2, ..., yT )′ under H1, L1(y) (say), is given by 

 ( ) ( ) ( )1
1

T

T

i i i TR
i

L f y x dGβ
=

= −∏∫y β   

where G is the joint distribution function of .Tβ  Expanding ( )
1

T

i i i
i

f y xβ
=

−∏  around 

( )
1

T

i i
i

f y xβ
=

−∏  by the multivariate Taylor series expansion, we have 

 
( ) ( ) ( ) ( )2 2 2

2
1 0 2

1 1 1

ln1 min ,
2 2

i

T T T
u u

i j i j i
ui j i

f uL L i j x x h h ix
u ε

σ σ Δ
== = =

⎫⎧ ⎧ ⎫∂ ⎪= + + +⎨ ⎬ ⎬⎨ ∂⎩ ⎭ ⎪⎩ ⎭
∑∑ ∑y y  (5) 

where L0(y) is the joint probability density function of y under H0, ( ) ( )ln
i

f uh u
u

∂=
∂

at 

u = εi and Δ is the reminder term. 
Under the usual regularity conditions on the probability density function f, along 

with the assumption that E|(β i − β ) (β j − β )(β k − β )| < ∞ for all i, j and k, it can be 

shown that 2 0p

u

Δ
σ
∂ ⎯⎯→

∂
 as 2 0p

uσ ⎯⎯→ (cf. [29]). Further, assuming that the scaling 

factor c(T ) exists such that 

 
( ){ }

( )2
2

2
1

1 ln const
i

T
P

i
ui

f uix
uTc T ε==

⎧ ⎫∂ ⎯⎯→⎨ ⎬
∂⎩ ⎭∑  (6) 

this term can be ignored while constructing the test statistics (cf. Remark 3.1). Thus, 

 ( ) ( ) ( )
2

1 0
1 1

1 min ,
2

T T
u

i j i j
i j

L L i j x x h h
σ

= =

⎧ ⎫
≅ +⎨ ⎬

⎩ ⎭
∑∑y y   (7) 

Let R = (R1, R2, ..., RT)′, where Ri is the rank of εi = yi
  − βxi among ε1, ε2, ..., εT. Let 

α be a permutation of {1, 2, ..., T}. Now we consider 

 [ ] ( ) ( )
( ){ }1 1

j j

P L d
αε ε=

= = ∫R α ε ε  (8) 

Upon using (7) and (8) and also the standard approximation 
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 ( )( )
( )( )

1

1

1

1

i

i

if Ff TE
f if F

T

ε
ε

−

−

⎛ ⎞⎛ ⎞′ ⎜ ⎟⎜ ⎟′ +⎝ ⎠⎝ ⎠≅
⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

  

(cf. [2], p. 189), we have 

 

( ) ( ) ( ){ } ( ){ }1 1
2

1

10 1 1 1

ln min , i j

u

T T

R Ri j i ju F u FTi j T

P i j x x h u h u
u σ

− −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ = ⎜ ⎟+⎝ ⎠= = = +⎝ ⎠

⎧ ⎫∂ =
≅ ×⎨ ⎬

∂⎩ ⎭ ∑∑R α  (9)  

Let φ be a score generating function which is assumed to be the Riemann 
integrable over [0, 1]. We do not assume that β  is estimated by the least squares esti-
mator. In general, let β̂ be any estimator of β . Exact conditions on the estimation 
procedure of β  will be specified in Section 3. Consider the vector 

 ( )1 2, , ..., ,
1

i
T i T

R
V V V V

T
φ φ⎧ ⎫⎛ ⎞′= = −⎨ ⎬⎜ ⎟+⎝ ⎠⎩ ⎭

V   (10) 

Ri being the rank of ri among r1, r2, ..., rT, and Tφ = 
1

1 .
1

T
i

i

R
T T

φ
=

⎛ ⎞
⎜ ⎟+⎝ ⎠∑  Based on (9), we 

propose the class of rank tests ST(φ) defined by  

 ( )
1 1

( ) min ,
1 1

T T
ji

T i j T T X T X
i j

RR
S i j x x

T T
φ φ φ φ φ

= =

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ′= − − =⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭
∑∑ V D A D V  (11) 

where φ has been conveniently suppressed in the matrix notation on the right hand 
side. It would be shown in the next section that ST(φ)/{Tc(t)} converges in distribution 
to a random variable which justifies (6) and subsequently (7). For example, if the error 
distribution is logistic, φ(u) is given by (2u − 1) (see [2], p. 189). 

3. Asymptotic null distribution 

Throughout this section, we assume that the null hypothesis holds. All probability 
statements would refer to the probability distribution of {yt}, as defined in (1). Let  

c1, c2, ..., cT be constants and let γ (c) = γ (c1, c2, ..., cT) = 
1/ 2

2

1

.
T

t
t

c
−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑   
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We assume throughout that ( ){ }2 2

1 1
max 0 as , 0,  and 

T

t t
t T t

c T cγ
≤ ≤ =

⎡ ⎤ → → ∞ =⎣ ⎦ ∑c

( ){ }2 2

1
max 0 as .t

t T
x Tγ

≤ ≤

⎡ ⎤ → → ∞⎣ ⎦x  Define the weighted rank process RT(t) by  

 ( ) ( )
( )1

1
, 0 1

i

T

T i R T t
i

R t c I tγ ⎡ ≤ + ⎤⎣ ⎦
=

= < ≤∑c  (12) 

(cf. [26], p. 90), where Ri is the rank of ri among r1, r2, ..., rT with ri = ˆ
i iy xβ− and I[·] 

denotes the indicator function. Towards deriving the asymptotic distribution of the test 
statistic under H0, we need the following:  

Lemma 3.1. Let W denote a Brownian bridge. Let β̂  be an estimator of β such that 

(i) {γ (x)} −1 ˆ( )β β− = Op(1),  
(ii) there exists a function g such that 

( ) ( ) ( )
1

1

1 0

ˆ 0
T

P
i i

i

c x g F dW
ε

γ β β
σ

−

=

⎧ ⎫⎧ ⎫⎧ ⎫⎛ ⎞ ⎪ ⎪⎪ ⎪− − ⎯⎯→⎨ ⎬⎨⎨ ⎬ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

∑ ∫
c  

where g is a continuous function such that g(F −1) is square integrable with respect to 
the Lebesgue measure, 

(iii) the functions f and y f (y) are absolutely continuous on R and 
(iv) f ·F −1 and F −1f ·F −1 are absolutely continuous on [0, 1]. 

Suppose that the density f is bounded. Then under H0 

( ) ( )
1

1 1

0

· 0P
TR W f F g F dW− −⎧ ⎫⎪ ⎪− + ⎯⎯→⎨ ⎬

⎪ ⎪⎩ ⎭
∫  

where f·F −1 denotes f (F −1(u)). 
It is clear from the above lemma that the weighted rank process RT converges 

weakly to a Gaussian process. Hereafter, we denote this Gaussian process by X.  

Lemma 3.2. Let ψ (t) be a continuous, real valued function on [0, 1] such that 

( ) ( )
21 1

2 2 2

0 0

, 0t dt t dtτ ψ ψ τ
⎧ ⎫⎪ ⎪= − < < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫  
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Further, let φ be a left continuous, square integrable function of bounded variation. 
Then under H0 and under the assumptions of Lemma 3.1 

( )1/2 2 2

1
0,

T

i
i

iL T V N
T

ψ σ τ−

=

⎧ ⎫⎛ ⎞ →⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑  

where σ 2 = ( ) ( )
1

0

Var t d tφ
⎛ ⎞
⎜ ⎟
⎝ ⎠
∫ X  and L denotes a probability law. 

We note that σ 2 in the above lemma depends on the score function φ and the un-
known density f.  

Lemma 3.3. Let ψ1(t), ψ2(t), ..., ψn(t) be continuous real valued functions on  
[0, 1] such that 

( ) ( )
1

0
k l klt t dtψ ψ δ=∫ (Kronecker’s delta) 

Then, under the assumptions of Lemma 3.2 and under H0 

( )1/2 2

1 1, 2, ...,

0,
T

j i n
i j n

iL T V N
T

ψ σ−

= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪ →⎜ ⎟⎨ ⎬⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
∑ σ  

where the ( j, k)-th element of nσ is given by 

( ) ( )
1 1

0 0
jk jk j kt dt t dtτ δ ψ ψ

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪= − ⎨ ⎬⎨ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∫ ∫  

Lemma 3.4. Let HT be a T × T real symmetric matrix such that |HT(i,  j)| ≤ δ for i, j  
= 1, 2, ..., T. If φ is a bounded function, then 

1
TE K

T
δ⎛ ⎞′ ≤⎜ ⎟

⎝ ⎠
V H V  

where K is a constant free of T. 
Now let K(s, t) be a continuous symmetric function (or kernel) defined on  

[0, 1] × [0, 1] (that is, K(s, t) = K(t, s) for all t and s) and suppose that it is positive 
definite, in the sense that 
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 ( ) ( ) ( )
1 1

0 0

, 0K s t s t ds dtψ ψ >∫ ∫  (13) 

for all continuous functions defined on [0, 1]. Then the kernel K(s, t) can be decom-
posed in the form 

 ( ) ( ) ( )
1

, , 0 , 1j j j
j

K s t s t s tλ ψ ψ
∞

=

= ≤ ≤∑   (14) 

where 0 < λ1 ≤ λ2 ≤ ... are eigen values and ψ1(t), ψ2(t), ... are the corresponding eigen 
functions of the kernel K(s, t), defined by the relationship 

 ( ) ( ) ( )
1

0

s , , 0    1K s t ds t tψ λψ= ≤ ≤∫   (15) 

By Mercer’s theorem ([26], p. 208), the series (14) converges uniformly and abso-

lutely in (s, t) ⊂ [0, 1] × [0, 1]. Also, 
1

.i
i

λ
∞

=

< ∞∑  

With this background, we prove the first of our main results.  

Theorem 3.1. Let ( )( )1 .T X T Xc T −=B D A D Consider a kernel K(s, t) defined on  
[0, 1] × [0, 1], which is of the type described through (13)–(15), such that 

 ( )
,

lim max , , 0TT i j

i jB i j K
T T→∞

⎛ ⎞− =⎜ ⎟
⎝ ⎠

 (16) 

Then, under the assumptions of Lemmas 3.1–3.3 along with the additional as-
sumption that the score generating function φ is bounded 

 
( )( )

( ){ }
2

1

T
i i

i

L S
L Z

Tc T
φ

λ
∞

=

⎛ ⎞→ ⎜ ⎟
⎝ ⎠
∑  (17) 

where λi’s are the eigen values associated with the kernel K(s, t) and { } 1i i
Z ∞

=
is 

a Gaussian sequence with E(Zi) = 0 for each i and Σn as the variance-covariance matrix 
of (Z1, Z2, ..., Zn) for each n.  

Remark 3.1. The condition (16) has been verified by Nabeya and Tanaka [16] and 
Nabeya [15] for various choices of regressors. The condition (6) is naturally satisfied 
in situations discussed by them along with the additional assumptions 
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( )

1

2
2

2
1

lnVar and i
u i

f u
u ε

λ
∞

= =

⎧ ⎫∂⎪ ⎪ < ∞ < ∞⎨ ⎬∂⎪ ⎪⎩ ⎭
∑   

In view of the fact that { } ( ) ( )2 , ,i Tix c T B i i=  it can be shown that (6) converges to 

( ) ( )
1

12

2
0

ln , ,
u

f uE K t t dt
u ε=

⎧ ⎫∂⎪ ⎪
⎨ ⎬∂⎪ ⎪⎩ ⎭

∫ in probability 

since the variance of the left hand side of (7) is approximately            

( ) ( ){ }
1

12
2

2
0

1 lnVar ,
u

f u K t t dt
T u ε=

⎧ ⎫∂⎪ ⎪
⎨ ⎬∂⎪ ⎪⎩ ⎭

∫  

for large values of T. 

Remark 3.2. Since ( )
21

2 2 2 2 2

0

( ) 1 ,l l lE Z t dtσ τ σ ψ σ
⎧ ⎫⎡ ⎤⎪ ⎪

= = − ≤⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫ for all l =1, 2, ... 

and 
1

,i
i

λ
∞

=

< ∞∑  it is clear that the random variable on the right hand side of (17) is 

a proper random variable. Further, it is trivial to establish the existence of a Gaussian 
sequence {Zi}, as described in Theorem 3.1.  

Remark 3.3. In case the eigen functions ψ(t) are such that ( )
1

0

0,t dtψ =∫  it fol-

lows from Lemma 3.3 that the random variables Z1, Z2, ..., Zn are iid. However, 
since the variance of Zi’s depends on the unknown density f, even asymptotically 
the statistic ST(φ) is not distribution free. It may be possible to estimate 

( ) ( )
1

2

0

Var t d tσ φ
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∫ X by estimating the density function f. Since we adopt a boot-

strap procedure to estimate the null distribution of ST(φ), we do not pursue this further. 

Remark 3.4. It has been shown [22] that the weighted empirical process of square 
of the residuals converges weakly to a Brownian bridge, when the distribution of ε1 is 
symmetric around zero. Consequently, the weighted empirical rank process of the 
squares of the residuals also converges weakly to a Brownian bridge. Hence, 

( ) ( )
1

2

0

Var t dW tσ φ
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∫ is completely known and a statistic of the type ST(φ) based 
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on the ranks of the squares can be shown to be asymptotically distribution free. How-

ever, if ( )
1

0

0,t dtψ ≠∫ one needs to compute the eigen functions of the kernel K(s, t).  

Remark 3.5. It may be possible to explore the relationship of the suggested rank 
statistic to a generalized U-statistics. In such a case, there are several results available 
in the literature, which may be useful in proving the asymptotics (see [11, 14]). How-
ever we are not pursuing in that direction here. 

In practice, applying the test statistic ST(φ) faces some difficulties. Firstly, one 
needs to compute the eigen values and eigen functions of the kernel K(s, t). Even if 
these are available, the actual cut-off point cannot be computed since the test statistic 
is not asymptotically distribution free. Bootstrap procedures naturally come very 
handy in situations of this type [4, 5]. In the next section, we describe a bootstrap pro-
cedure and establish its validity. 

4. Bootstrapping rank tests 

Applications of bootstrap procedures in hypothesis testing and computation of the 
p-value have been discussed by many authors. We refer to [1, 3, 7, 9] for more details. 
It is pointed out therein that for bootstrapping the test statistic, bootstrap observations 
should be drawn from the model specified by the null hypothesis. We describe below 
such a bootstrap procedure together with its validity. It is assumed throughout that the 
model (1) holds. 

Let r  be the mean of the residuals ri’s and let ( ).i ir r r′ = − Let b(T)= hT −1/5, where 
h is an appropriate constant and k be a suitable kernel (cf. [27], Chapter 3). Let 

 ( ) ( ){ }
( )

( ) ( ) ( )
1

1ˆ ˆˆ,
xT

i
T T T

i

k x r
f x F x f u du

b TTb T = −∞

′−
= =∑ ∫  (18) 

be the estimates of f and F, respectively. Properties of T̂f  and T̂F are described below 
in the following lemma.  

Lemma 4.1. Let f and k satisfy the following conditions: 
C1: f is uniformly continuous on R and the kernel k satisfies the following condi-

tions. 
C2: f and yf (y) are absolutely continuous on R. 
C3: f · F −1 and F −1f · F −1 are absolutely continuous on [0, 1]. 
C4: k is bounded and of bounded variation on R. 
C5: k is a uniformly continuous function. 
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Then, we have the following. 
1. ˆ 0,Tf f− → in probability, and 

2. { ˆ ˆ is absolutely continuous  is absolutely continuousT TP f yf⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∩  
1ˆ ˆ· is absolutely continuous  T Tf F −⎡ ⎤⎣ ⎦∩  

}1 1ˆˆ ˆ· is absolutely continuous 1 as T T TF f F T− −⎡ ⎤ → → ∞⎣ ⎦∩  

To bootstrap the test statistics 
{ }

( )
,

( )
TS

Tc T
φ we proceed as follows. Given the data 

(x1, y1), (x2, y2), ..., (xT, yT), let * * *
1 2, , ..., Tε ε ε be iid random variables with distribution 

function ˆ .TF  Let 

 * *ˆ , 1, 2, ...,i i iy x i Tβ ε= + =  (19) 

Let  

* * *
1 1 2 2{( , ), ( , ), ..., ( , )}T Tx y x y x y   

form a bootstrap sample. Let *β̂  be the estimator of β based on a bootstrap sample. It 

is understood that *β̂  is computed from a bootstrap sample by the same procedure by 

which β̂ was computed from the data. Let 

 * * * * *ˆ ˆ ˆ( ) , 1, 2, ...,i i i i ir y x x i Tβ ε β β= − = − − =  (20) 

be residuals of a bootstrap sample. Let ci’s be constants satisfying the condition de-
scribed in the beginning of Section 3. Consider the weighted empirical process of re-
siduals and its bootstrap version: 
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 (21) 

Let P* denote the conditional probability distribution of *
1 1( , ),x y *

2 2( , ), ...,x y *( , )T Tx y  
given the data. 
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We are now in a position to state our second main result, which finally leads to the 
asymptotic validity of the above bootstrap procedure for estimation of the null distri-
bution of rank statistics (11).  

Theorem 4.1. Suppose that the conditions of Lemma 4.1 are satisfied. Then there 
exists a Brownian bridge W1 such that for every ε > 0 

( )
1

* * 1
1 1

0

( ) 0P
TP Z W F f g F dW ε−

⎡ ⎤⎧ ⎫⎪ ⎪− + > ⎯⎯→⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

∫  

The above result implies that the distribution of ZT can be consistently estimated 
by the above bootstrap procedure. This further implies that the weighted rank process 
(12) can also be bootstrapped. Now, one proves an analogue of Theorem 3.1 for 

{ }
*S ( ) .
( )

T

Tc T
φ⎡ ⎤

⎢ ⎥
⎣ ⎦

 Therefore, the cut-off point of ST(φ) (for a given level of significance) or 

the p-value can be consistently estimated by the bootstrap procedure for a large T. 
Further improvement over the estimation of the p-value may be obtained by nested 
bootstrap procedure, cf. Section 4 of [9]. 

5. Simulation study 

In this section, we report an extensive simulation study to judge the performance 
of the suggested rank test and the bootstrap procedure. For various choices of distribu-
tions of the error term (ε) such as logistic, normal and Laplace, we have generated 
samples of size 50, 100 and 250. The number of bootstrap replications and the number 
of simulations were fixed at 1000. The location and scale parameters were taken as 0 
and 1 for all these distributions. We have simulated data under the null and alternative 
hypothesis from specified distributions. The critical point was found using the boot-
strap procedure explained in Section 4. Normal kernel is used for the estimation of the 
density function in (18) with the bandwidth chosen as ˆmin{ , IQR /1.05},h εσ= where 
ˆεσ  is the usual estimator of the Var(ε) and IQR is the inter-quartile range of residuals. 

The predictor x is generated from uniform (0,10). A Wilcoxon type score function is 
used in our computations. Table 1 shows that the suggested rank test maintains its 
level at 1%, 5% and 10% nominal levels for all three sample sizes as well as under all 
the three different choices of distributions for ε. In Table 2, we provide the power 
computations of the suggested rank test. It may be noted that the rank test is quite 
powerful, when u is distributed as normal, logistic and Laplace. 
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Table 1. Levels of significance of the rank test 

n ε ∼ Logistic ε ∼ Normal ε ∼ Laplace 

1% 5% 10% 1% 5% 10% 1% 5% 10% 
50 0.008 0.043 0.088 0.007 0.035 0.078 0.010 0.047 0.094 

100 0.008 0.051 0.102 0.010 0.045 0.082 0.011 0.046 0.096 
250 0.011 0.051 0.097 0.009 0.044 0.085 0.010 0.047 0.095 

Table 2. Power of the rank test 

n ε ~ Logistic ε ~ Normal ε ~ Laplace 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

u ~ Normal(0, 1) 
50 0.754 0.879 0.939 0.759 0.887 0.970 0.772 0.892 0.937 

100 0.916 0.972 0.983 0.923 0.971 0.985 0.886 0.956 0.976 
250 0.987 0.994 0.999 0.990 1.000 1.000 0.980 0.994 0.998 

u ~ Logistic(0, 1) 
50 0.748 0.858 0.919 0.761 0.888 0.924 0.778 0.892 0.934 

100 0.910 0.970 0.993 0.920 0.973 0.990 0.915 0.966 0.991 
250 0.995 1.000 1.000 0.980 0.996 1.000 0.993 0.999 1.000 

u ~ Laplace(0, 1) 
50 0.727 0.859 0.926 0.754 0.874 0.916 0.767 0.876 0.934 

100 0.918 0.972 0.989 0.918 0.968 0.982 0.908 0.964 0.983 
250 0.981 0.988 1 0.990 1 1 0.992 0.999 1.000 

Table 3. Comparison of empirical levels of significance  

n 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

ε ~ Logistic ε ~ Normal ε ~ Laplace 
Rank test 

50 0.011 0.049 0.117 0.013 0.052 0.095 0.011 0.058 0.100 
100 0.009 0.058 0.108 0.004 0.039 0.084 0.004 0.039 0.108 
250 0.009 0.052 0.102 0.011 0.053 0.104 0.006 0.050 0.103 

LBI test 
50 0.006 0.044 0.105 0.006 0.040 0.088 0.004 0.043 0.107 

100 0.009 0.044 0.099 0.005 0.035 0.077 0.002 0.031 0.074 
250 0.009 0.440 0.085 0.007 0.048 0.093 0.003 0.042 0.089 

ε ~ Cauchy(0, 1) ε ~ t(2) ε ~ Std. χ2(4) 
Rank test 

50 0.013 0.056 0.115 0.016 0.056 0.107 0.009 0.049 0.099 
100 0.008 0.046 0.099 0.009 0.051 0.099 0.018 0.054 0.104 
250 0.011 0.039 0.094 0.009 0.047 0.088 0.007 0.038 0.082 

LBI test 
50 0.002 0.031 0.082 0.005 0.046 0.114 0.004 0.036 0.081 

100 0.006 0.034 0.103 0.007 0.038 0.089 0.008 0.045 0.087 
250 0.006 0.046 0.095 0.008 0.031 0.081 0.002 0.034 0.083 
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A comparison between two tests, that is, the rank test suggested in this paper and 
the LBI test suggested by Nabeya and Tanaka [16] is provided in Tables 3 and 4. 
Here, we consider x = t, as given in model (19) by Nabeya [15]. It may be noted that 
the performance of the rank test is quite good as compared to the best parametric test. 

In order to stress the fact that our procedure does not require second order moment 
assumptions, as opposed to that of Nabeya and Tanaka [16], we have included in Ta-
bles 3 and 4 the computations pertaining to the distributions such as Cauchy (heavy 
tailed), t-distribution with 2 degrees of freedom (moment assumption violated) and 
standardized chi-square with 4 degrees of freedom (skewed). From Table 3 we see that 
under all these distributional choices of ε, the suggested rank test maintains its nomi-
nal level much better than the LBI test. Also from Table 4, we may note that the sug-
gested rank test is quite powerful when compared to the LBI test. 

Table 4. Comparison of power when u is Normal(0, 1) 

n 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

ε ~ Logistic ε ~ Normal ε ~ Laplace 
Rank test 

50 0.770 0.832 0.898 0.757 0.842 0.904 0.759 0.878 0.969 
100 0.874 0.943 0.973 0.883 0.949 0.966 0.856 0.941 0.988 
250 0.979 0.992 0.995 0.976 0.933 0.997 0.902 0.965 0.997 

LBI test 
50 0.770 0.829 0.891 0.756 0.841 0.896 0.763 0.856 0.898 

100 0.859 0.936 0.966 0.878 0.941 0.968 0.870 0.939 0.965 
250 0.966 0.990 0.994 0.972 0.994 0.995 0.959 0.992 0.996 

ε ~ Cauchy(0,1) ε ~ t(2) ε ~ Std. χ2(4) 
Rank test 

50 0.718 0.801 0.868 0.760 0.839 0.897 0.757 0.855 0.905 
100 0.863 0.923 0.949 0.879 0.949 0.971 0.887 0.942 0.966 
250 0.977 0.995 0.997 0.977 0.997 1.000 0.978 0.996 0.998 

LBI test 
50 0.455 0.564 0.628 0.747 0.843 0.896 0.761 0.851 0.908 

100 0.666 0.75 0.805 0.873 0.942 0.964 0.872 0.933 0.965 
250 0.935 0.962 0.973 0.968 0.992 1.000 0.968 0.991 0.998 

 
From a practical point of view, it would be interesting to investigate the perfor-

mance of the rank tests for situations in which the regression coefficient changes at 
a very slower rate. Therefore, we have considered similar kind power comparisons of 
these two tests when Var(ut) < Var(εt). These are given in Table 5. Here also, we ob-
serve that the performance of the rank test is quite good. It may be specifically noted 
that when ε follows the Cauchy distribution, LBI test perform very badly in terms of 
its power for smaller sample sizes. 
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Table 5. Comparison of power when u is Normal(0, 0.5) 

n 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

ε ~ Logistic ε ~ Normal ε ~ Laplace 
Rank test 

0 0.489 0.623 0.699 0.743 0.824 0.889 0.745 0.829 0.880 
100 0.866 0.945 0.972 0.875 0.944 0.973 0.515 0.640 0.718 
250 0.489 0.991 0.999 0.973 0.990 0.997 0.971 0.993 0.999 

LBI test 
50 0.441 0.593 0.687 0.740 0.823 0.882 0.735 0.829 0.876 
100 0.860 0.936 0.962 0.870 0.944 0.970 0.440 0.570 0.642 
250 0.959 0.987 0.994 0.957 0.989 0.994 0.967 0.989 0.998 

 ε ~ Cauchy(0, 1) ε ~ t(2) ε ~ Std. χ2(4) 
Rank test 

50 0.656 0.759 0.807 0.721 0.806 0.877 0.755 0.842 0.891 
100 0.847 0.916 0.952 0.793 0.880 0.914 0.864 0.937 0.959 
250 0.971 0.992 0.998 0.984 0.997 0.999 0.97 0.992 0.999 

LBI test 
50 0.311 0.420 0.487 0.690 0.771 0.848 0.753 0.842 0.893 
100 0.597 0.687 0.739 0.712 0.814 0.867 0.854 0.929 0.959 
250 0.881 0.931 0.951 0.975 0.991 0.995 0.962 0.983 0.991 

 
Now, we investigate the power of these two tests when Var(ut) > Var(εt). From 

Table 6, we can see that under this set up also, rank test perform quite well. 

Table 6. Comparison of power when u is Normal(0, 1.5) 

n 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

ε ~ Logistic ε ~ Normal ε ~ Laplace 
Rank test 

50 0.754 0.835 0.901 0.762 0.852 0.917 0.668 0.775 0.830 
100 0.892 0.952 0.970 0.884 0.946 0.975 0.866 0.943 0.966 
250 0.961 0.993 0.997 0.973 0.989 0.997 0.975 0.995 0.998 

LBI test 
50 0.754 0.838 0.899 0.760 0.843 0.907 0.649 0.766 0.809 

100 0.874 0.941 0.970 0.875 0.945 0.970 0.857 0.929 0.966 
250 0.956 0.987 0.996 0.956 0.989 0.994 0.964 0.991 0.998 

ε ~ Cauchy(0, 1) ε ~ t(2) ε ~ Std. χ2(4) 
Rank test 

50 0.457 0.587 0.673 0.744 0.828 0.874 0.765 0.853 0.902 
100 0.845 0.92 0.951 0.888 0.949 0.965 0.892 0.957 0.975 
250 0.975 0.994 0.999 0.974 0.991 0.997 0.976 0.994 0.997 

LBI test 
50 0.121 0.223 0.305 0.685 0.797 0.849 0.767 0.851 0.904 

100 0.697 0.79 0.834 0.877 0.940 0.960 0.864 0.946 0.971 
250 0.896 0.94 0.959 0.969 0.991 0.997 0.971 0.991 0.997 
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In most of the cases, bootstrap offers a better approximation to the sampling dis-
tribution of a pivotal/test statistics as compared to the conventional procedures (such 
as normal approximation). In this case, the asymptotic distribution is an infinite linear 
combination of independent chi-squares, both the weights and variances of normal 
random variables being unknown. It is thus very reassuring to see that the bootstrap 
works and offers a very handy tool. 

6. Concluding remarks 

We have approached this testing problem nonparametrically to enhance its scope of 
application. The major advantage of our procedure is that we do not require second or-
der moment assumptions on the innovation density as opposed to a stringent moment 
requirement assumption made by Nabeya and Tanaka [16]. On the other hand, the major 
drawback of this procedure is that it is not distribution free. However, the suggested 
bootstrap turned out to be performing reasonably well for the problem at hand. 

The locally most powerful rank test may be derived based on the ranks of a trans-
formed variable ω, ω = H′(y − β xi), where H is an appropriate transformation, as dis-
cussed in [16]. Perhaps, this may lead to a distribution free asymptotics and hence will 
emphasize the reasons for resorting to rank tests. This is being investigated currently. 

7. Proofs 

This section gives proofs for all lemmas and theorems stated in Sections 3 and 4. 

Proof of Lemma 3.1. (Theorem 2 of p.198 [26]). 

Proof of Lemma 3.2. Let 
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where RT(t) is as defined in (12) with ( ) .i T
ic
T

ψ ψ ψ⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 Thus, as a consequence 

of Lemma 3.1 and the fact that T−1/2[γ(c(ψ)]−1 → τ 
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Proof of Lemma 3.3. Consider ψ(t) = a1ψ1(t) + a2ψ2(t) + ... + anψn(t) for any real 
a1, a2, ..., an. Applying Lemma 3.2 to ψ , we have 
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∫  in view of the orthogonality of ψ i’s i =1, 2, ..., n. 

Proof of Lemma 3.4. The proof is straightforward and hence omitted. 

Proof of Theorem 3.1. This proof follows techniques in Nabeya and Tanaka [16]. 
In view of Lemma 3.4 and the assumption (16), it is enough to consider the case  
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By Lemma 3.3, for each fixed n 
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An application of Lemma 3.4 completes the proof. 

Proof of Lemma 4.1. 1. Let  
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where d|k| denotes the total variation measure of the function k. By Theorem 2.1.1 of 
[20, p. 35], it follows that 0Tg f− →  uniformly. Thus, 1 follows. 
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which can be made smaller than ε in view of part 1. Since this is true for a subse-
quence of every subsequence, the proof is complete.  

Proof of Theorem 4.1. We follow a short proof of validity of bootstrap given in 
[25] (also found in [12]). Let *{ }iξ  be a sequence of iid uniform (0, 1) random vari-

ables. Define ( )* 1 *ˆ
i T iFξ ξ−= and for 0 ≤ x ≤ 1, 
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It is well known that there exists a probability space and a Brownian bridge W 
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By expanding ( )( )*ˆ ˆ
T̂ iF x xβ β+ −  around ( )

T̂F x and using the uniform continuity 

of ˆ ,Tf  it follows that T2 →  0, in P* – probability. Now, note that 
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The second term of (23) converges to zero in probability, in view of the fact that 
ˆ 0TF F− → in probability. For the first term, one may repeat the arguments in Sec-

tion 4.5 of [26]; in particular, the process *b
TZ  defined by 
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can be shown to satisfy that ( )*
1

ˆ 0b
T TŻ W F− →  in P* – probability, uniformly in 

|b| ≤ B, 0 ≤ B < ∞ (cf. Theorem 2 of [26], p. 186). 
Further, under the conditions of the theorem, ( )*ˆ ˆβ β− satisfies ( ){ } ( )1 *ˆ ˆγ β β−
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⎡ ⎤ →⎣ ⎦x  as T →∞, the result follows, in view of the assump-

tion (2) of Lemma 4.1 and the consistency of ˆ.σ  

Acknowledgements 

Authors thank the Associate Editor for some of the valuable suggestions. Chanchala Ghadge would 
like to acknowledge the financial support from the University Grants Commission, India, in the form of 
a Senior Research Fellowship. 

References 

[1] CHERNICK M., Bootstrap Methods: A Practitioner’s Guide, Wiley, New York, 2007. 
[2] COX D.R., HINKLEY D.V., Theoretical Statistics, Chapman and Hall, London, 1974. 
[3] DAVISON A.C., HINKLEY D.V., Bootstrap Methods and Their Application, Cambridge Series in Sta-

tistical and Probabilistic Mathematics, No. 1, 1999. 
[4] DELICADO F., ROMO J., Goodness-of-fit tests in random coeffient regression models, Annals of the 

Institute of Statistical Mathematics, 1999, 51, 125–148. 
[5] DELICADO F., ROMO J., Random coefficient regressions: Parametric goodness-of-fit tests, Journal of 

Statistical Planning and Inference, 2004, 119 (2), 377–400. 
[6] GARBADE K., Two methods for examining the stability of regression coefficients, Journal of Ameri-

can Statistical Association, 1977, 72, 54–63. 
[7] HALL P., WILSON S.R., Two guidelines for bootstrap hypothesis testing, Biometrics, 1991, 47, 757–762. 
[8] HAUSMAN J.A., Specification tests in econometrics, Econometrica, 1978, 46 (6), 1251–1271. 
[9] HINKLEY D.V., Bootstrap significance tests, Bulletin of the International Statistical Institute, Pro-

ceedings of the 47th Session, 1989, 53, 65–74. 
[10] JANDHYALA V.K., MACNEILL I.B., On testing for the constancy of regression coefficients under ran-

dom walk and change-point alternatives, Econometric Theory, 1992, 8 (4), 501–517. 
[11] KOROLJUK V.S., BOROVISKICH Y.V., Theory of Statistics, [in:] Mathematics and its application, 

Vol. 273, Kluwer Academic Publishers Group, Dordrecht, 1994. 
[12] LAHIRI S.N., Resampling methods for dependent data, Springer, New York, 2003. 



Constancy of the regression coefficients against random walk alternatives 55

[13] LAMOTTE, L.R., MCWHORTER A., An exact test for the presence of random walk coefficients in 
a linear model, Journal of American Statistical Association, 1978, 73, 816–820. 

[14] LEE A.J., U-Statistics Theory and Practice, Dekker, New York, 1990. 
[15] NABEYA S., Asymptotic distributions of the test statistics for the constancy of regression coefficients under 

a sequence of random walk alternatives, Journal of the Japan Statistical Society, 1989, 19, 13–33. 
[16] NABEYA S., TANAKA K., Asymptotic theory of a test for the constancy of regression coefficients 

against the random walk alternative, Annals of Statistics, 1988, 16, 218–235. 
[17] NABEYA S., TANAKA K., Acknowledgment of priority, The Annals of Statistics, 1994, 22 (1), 563. 
[18] NEWBOLD P., BOS T., Stochastic Parameter Regression Models, Series: Quantitative Applications in 

Social Sciences, A Sage University Paper No. 51, 1985. 
[19] NYBLOM S., MAAKELAAINEN T., Comparison of tests for the presence of random walk coefficients in 

a simple linear model, Journal of American Statistical Association, 1983, 78, 856–864. 
[20] PRAKASA RAO B.L.S., Nonparametric Functional Estimation, Academic Press, New York, 1983. 
[21] RAJARSHI M.B., RAMANATHAN T.V., Testing constancy of a Markovian parameter against random 

walk alternatives, Journal of Indian Statistical Association, 2000, 38, 23–44. 
[22] RAMANATHAN T.V., RAJARSHI M.B., Rank tests for testing randomness of a regression coefficient in 

a linear regression model, Metrika, 1992, 39, 113–124. 
[23] RAMSEY J.B., Tests for specification errors in classical linear least squares regression analysis, 

Journal of the Royal Statistical Society B, 1969, 31 (2), 350–371. 
[24] SHIVELY T.S., An exact test for a stochastic coefficient in a time series regression model, Journal of 

Time Series Analysis, 1988, 9, 81–88. 
[25] SHORACK G.R., Bootstrapping robust regression, Communications in Statistics: Theory and Meth-

ods, 1982, 11, 961–972. 
[26] SHORACK G., WELLNER J.A., Empirical Processes with Applications to Statistics, Wiley, New York, 

1986. 
[27] SILVERMAN B.W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 

1996. 
[28] SWAMY P.A.V.B., Statistical Inference in Random Coeffcient Regression Model, Lecture Notes, 

Springer, 1971. 
[29] ZELTERMAN D., CHEN C., Homogeneity tests against central mixture alternatives, Journal of Ameri-

can Statistical Association, 1988, 83, 179–182. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


