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A COST ALLOCATION FRAMEWORK FOR LP AND GLP GAMES

Cost allocation problems within the GLPG class of games (Generalized Linear Programming Games)
are considered in this paper. We assume that a group of agents participate in a common project and each
agent defines his requirements for his expected benefit resulting from the project. Then, the joint cost of
the project must be allocated amongst the agents in order to satisfy a set of required properties
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1. Introduction

The joint cost allocation problem appears in a situation where a group of agents
participate in a common project, e.g. production of certain goods. Each agent defines
his requirements for his expected benefit resulting from the project, which is usually
called the agent’s “demand”. The total cost (joint cost) of the project depends on the
agents' demands, that is, it is a function of these demands. We assume that this func-
tion is known. A nontrivial case appears if the joint cost is not equal to the sum of
observed costs for each agent’s demand considered separately. Then the following
question arises: how should the joint cost be covered by the agents? Thus, the aim is to
compute an appropriate allocation of joint costs to each individual agent. Throughout
the paper we focus on the cost allocation problem, however this problem can be
equivalently formulated as a profit share problem.

In practice, the cost allocation problem emerges e.g. in the joint production of
goods [3], [14], [21], [25], [29], [31], [33], electricity (costs of grid usage, grid exten-
sion, generator start-ups, allocation of certificates) [22], [23], [34], [41], [42], network
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issues [5], [11], [12], [38], [39], [40], accounting [45], public utilities [1], [24], and
other situations. Literature surveys can be found in [43], [46].

The main contribution of this article is the provision of a general and efficient al-
gorithmic framework for computing exact cost allocations for a class of path-
generated cost allocations in generalized linear programming games (GLPG).

Our approach is more general than the one closest to our work and given by
SAMET et al. in [30]. Moreover, it does not benefit from any specific problem
structure, in opposition to the algorithm given by SAMET et al. [30]. Our finding is
new since previous articles considered specific problems, where the joint cost is
usually sampled along some paths, which results in both – excessive computational
efforts and approximation. For example, see fixed-cost allocations in power systems
[41], allocation of firm-energy rights [6], production games, inventory games [4]
and others.

2. Definition of the problem

Let us denote the set of agents by }...,,2,1{ M=M , where M is the number of
agents, and denote the vector of the agents’ real demands by Md ℜ∈ . The real de-
mands are the requirements reported by agents that should be satisfied. Moreover,
some other potential requirements, that agents could have submitted, will be consid-
ered internally during computations of the allocation. We call these the demands.
A joint cost function ℜ→ℜMC :  transforms the M-dimensional vector of the agents’
demands into a real number – the joint cost of the project.  The natural assumption is
that there are no joint costs when there are no demands, that is, 0)0...,,0( =C .

For a given instance of a problem ),( Cd , the aim is to find a cost allocation
)...,,( 1 Mxx  of value )(dC  to agents ,...,,1 M  where xm is the cost allocated to agent

m, M∈m . However, usually we are interested in a more general approach of finding
the cost allocation method (rule). Formally, the cost allocation method is a function

M
MxxdC ℜ∈= )...,,(),( 1φ  which, for a given joint cost function C and demand vector

d , divides the joint cost )(dC  into individual costs xm for each agent M∈m . We
also assume that the allocation must satisfy the budget-balance condition, that is, the
sum of the values allocated to agents must be exactly equal to the joint cost:

∑
∈

=
Mm

m dCx )( .

Many versions of the cost allocation problem for joint projects have been exten-
sively studied in the literature. A number of approaches have been proposed for some
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specific problems that are based on designing a procedure or mechanism – e.g. an
arbitration rule, an auction or a competitive market mechanism – which produces the
complete set of cost allocations [13]. Another possible approach to cost allocation is
strictly normative, where game-theoretic methods of cost allocation play an important
role [20], [46]. Cost allocation problems can be modeled as a cooperative game with
transferable utility. Agents are considered to be players of such a game (we will use
the terms “players” and “agents” interchangeably). Agents cooperate to perform
a common project. However, each agent might completely or partially withdraw from
the common project.

The agents’ potential decisions form the feasible set of players’ demands D. Each
configuration of demands from the space of feasible demands D forms a potential sce-
nario of the agents’ decisions for which the related potential joint cost is known or can
be computed. We denote a single potential scenario by d. We also use the same nota-
tion for the real demands – d .

In the simplest formulations, only discrete scenarios from d;0  are considered
during the computations. This means that agent m can only choose to participate in the
common project at level md  or not to participate. Such a discrete scenario d is called
a game coalition (abbreviated to coalition). In this case, the demand space D consists
of M2  points.

In more general formulations of the cost allocation problem, agent m may choose
the level of his participation to be anywhere between 0 and md , so the space of sce-
narios ><≡ d;0D  is continuous. However, even in this case, many of the known
allocation rules are based only on a subset of scenarios called coalitions.

Since the real decisions of the players are known and equal to d , the game is
somehow artificial. The agents’ decisions are known, but not the rules of the game.
Finding an allocation rule means finding the rules of the game such that the decision
vector d  is an equilibrium point of the game.

The most important game-theoretic allocation methods are the Shapley value [35],
the core [10], [36], the nucleolus [32], the separable cost remaining benefits method
(SCRB) [15], AUMANN–SHAPLEY pricing [2], and Ramsey pricing [28].

The Shapley value for agent m is a weighted average of the increase in costs after
adding agent m to all the possible coalitions without m. To calculate the Shapley val-
ues, the costs for all coalitions must be computed (the number of coalitions is M2 ) –
thus this approach could involve huge computational effort. The SCRB method is
based on calculating the marginal costs for agent m. Initially, the SCRB method allo-
cates to each agent m his marginal cost. Then, the remaining joint cost (positive or
negative) not covered by the already allocated marginal costs is further allocated to
agents in proportion to the so called remaining benefits, computed for each agent. The
SCRB method considers coalitions of 1, 1−M  and M agents.
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An important notion in cooperative game theory is the core, which specifies a set
of solutions of primary importance. The core is a set of allocations such that there is
no subcoalition, which can attain lower costs for its members than the grand coalition
related to d . However, in many practical situations the cost function C is usually non-
concave (and not subadditive) and therefore the core is empty [36]. The nucleolus is
a solution which is the “central” point in the core in some sense.

Other methods of cost allocation popular in the economics literature are AUMANN–
SHAPLEY [2] and RAMSEY [28] pricing. Using the Aumann–Shapley pricing method,
the cost xm of agent m represents the average marginal cost along the ray from 0 to d :

∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
=

d

m
m dt

d
tdCx

0

)( . The function C must have continuous partial derivatives in the

considered domain. Using the Ramsey pricing method, cost carriers are treated as new
commodities and the cost of producing a bundle of commodities is allocated to each
commodity. The demand for a bundle of goods depends on the allocated costs (and
prices). In this case, the prices of all products are determined to maximize total con-
sumer surplus over all the products minus the costs of production.

For some specific classes of problems certain cost allocation rules (that satisfy
some desired properties of the allocation) have been proved to be the best. Usually
some additional assumptions, like the subadditivity of the cost function C, are needed
to achieve satisfactory allocation rules. There is still a number of open problems for
which we do not know satisfactory allocation rules. We recall some examples in the
following sections.

The framework formulated in this paper is appropriate for the allocation problem
defined in this section under the assumption that it can be modeled as a non-atomic
cooperative game with transferable utility (TU-game) with the joint cost function for-
mulated as a linear programme. Within this framework, various allocation rules can be
stated, meeting a given set of expectations related to allocation rules.

3. Path-generated allocations

A family of path-generated methods is a natural generalization of the Aumann-
Shapley approach. Methods within this family compute the share of costs borne by
agent m as the integral of the m-th partial derivative along a so called “path” in the
demand space D.

Definition 1. For a given d , a path function γ is a mapping
DD ∈×∞∈ )(],0[: tt γγ a , where
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1. )(tγ  is continuous and nondecreasing,
2. 0)0( =γ ,
3. and there exists 0ˆ >t  such that for all dttt =≥ )(,ˆ γ .
We denote the set of all paths by Γ . Any path from Γ  links points 0 and d  in D.

Definition 2. A path-generated allocation )...,,( 1
γγ
Mxx  imputed by path γ  is de-

fined by

∫
∞

=

∂=
0

)())((
t

mm tdtCx
m

γγγ (1)

Besides the Aumann–Shapley value, also the SHAPLEY–SHUBIK value [37] and se-
rial cost sharing are examples of path-generated allocation rules. Path-generated meth-
ods have been formally studied by FRIEDMAN and MOULIN [7], [8]. The concept of
such paths has simultaneously appeared in the works of Kaleta and Toczyłowski in the
context of applications to electrical energy markets [16], [18]. They have considered
a more general framework, which covers not only known paths like Aumann–Shapley
and serial cost sharing, but also various paths based on local and global information
[19].

4. Generalized linear programming games

The class of so called linear programming games (LPG) has been considered since
the earliest works of SHAPLEY and SHUBIK [37], OWEN [27], and later work of
GAMBLE and PAZGAL [9]. In such games the task of calculating the joint cost for
a given demand scenario is formulated as a linear programming model with each con-
straint associated with one of the agents. Each agent defines a subset of the constraints
in a linear programme, where this subset describes his requirements (agent demand
balancing equations). One constraint of the linear programme is chosen by at most one
agent.

Classically, this class of games is limited by two assumptions: 1) only two states
are considered for each agent – their real or zero demands, 2) the corresponding vari-
ables in the agent demand balancing equations are set to 0 if an agent has demand
equal to 0. Using this formulation, a scenario is defined by the coalition of agents to-
gether with their real demands.

In this paper we consider a generalized linear programming game (GLPG) by re-
laxing the above assumptions. We assume that the joint cost C(d) for an assumed de-
mand scenario ],0[...],0[],0[,0 11 Mddddd ×××==∈D  can be calculated by solving
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the linear programming problem PP: }0,,];[:{min , ≥=+ sydbsAyyc TT
sy , where

y represents the internal decisions related to the common project and s denotes surplus
variables. The constraints can be divided into two subsets: the first subset is related to
the logic of the problem, with right hand side b. The second subset M∈= mdd m ),(  is
related to the agents’ demands from the set D and is indexed by the elements of M.

One example of a GLPG – the transportation problem – has been studied by
SAMET et al. [30]. In general, a cost function C(d) based on linear programming is not
differentiable. Even so, Samet et al. have shown that the structure of the problem al-
lows us to calculate the Aumann–Shapley allocation. They provided an algorithm for
determining the Aumann–Shapley allocation based on parametric programming for the
transportation problem. However, this derivation uses the special structure of the
transportation problem.

The model of the problem of balancing the Single Commodity Infrastructure Mar-
ket (SCIM) is another important example of a game with a possibly empty core and
non-subadditive characteristic function C(d). This model is related to the problem of
balancing an infrastructure market in which a group of suppliers and buyers compete
in an organized manner. However, in opposition to pure exchange, free trade is limited
by the infrastructure, e.g. a power grid, transportation network, or telecommunication
network, where the feasible market balance is determined by a linear optimization
problem. Some additional conditions must be included into the market balance, which
appear in the model as additional constraints on resources. These additional infra-
structure constraints affect the fairness conditions and make the economic benefits
lower. The decrease in benefits resulting from infrastructure constraints is a joint cost
of imperfect infrastructure. This joint cost can be allocated to each constraint on the
infrastructure, which is essential for cost sharing by market players. Such allocation
problems have become more and more important during the last decade, due to world-
wide market liberalization and decentralization processes in many infrastructure sec-
tors, including electrical energy, telecommunication, rail, water, urban transport and
others. For example, balancing real-time electrical energy markets must take into ac-
count the fact that electrical power is transmitted along a transmission network ac-
cording to Kirchhoff’s laws. Sometimes the security of supply may require a minimum
must-run level of power generation at a given node of the network. Hence, for
a power supplier located at this node, some of his offers may have to be accepted irre-
spectively of the offered prices or costs. Acceptance of non-competitive offers may
lead to the rejection of other, more competitive generators.  Hence, the resulting addi-
tional cost of system usage must be allocated to the market players. As the SCIM
game is non-convex, its core is usually empty. At present, no known allocation rule
could be acknowledged as a satisfactory solution. There is still a need for further in-
vestigations into new path-based allocation methods. For a formal model of the SCIM
problem and numerical example see [17].
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5. Agents’ demand space

We recall that for any D∈d , the joint cost can be calculated by solving the linear
programming model PP:

ycdC T
sy ,min)( = (2)

subject to:

];[ dbsAy =+ , (3)

0, ≥sy , (4)

where y is a vector of internal decisions related to the common project, s denotes sur-
plus variables, b is the right hand side of the constraints modeling the problem’s logic,
and d is the vector of the agents’ demands. Problem DP

];[max)( , dbdC T
z ππ= (5)

subject to:

czAT =−π , (6)

0, ≥zπ (7)

is the dual problem to (5)–(7), where the π  are the dual variables in (6) and z denotes
the vector of slack variables for the constraints in the dual space. Apart from the repre-
sentation of the problem PP in the primal and dual spaces, parametric analysis can be
defined over the agents’ demand space D. Any scenario D∈d  defines the right hand
side (RHS) of the linear programme PP. Movement in the space D∈d  is equivalent to
parametric analysis of the problem PP(d) under a perturbation of the right hand side.
Below, we analyze some properties of the function C(d) under perturbations of d.

Let us assume that for a given d we have obtained an optimal basic solution of the
problem (5)–(7). Therefore, the linear programme can be represented in canonical
form with the matrix A = (B, N) partitioned into a basic matrix B and nonbasic matrix
N. Similarly, the vectors of variables ),( T

N
T
B

T yyy =  and parameters ),( T
N

T
B

T ccc =  are
partitioned into their basic and nonbasic components. The optimal value of the objec-
tive function, C(d), equals

];[1 dbBcC T
B

−= , (8)

where B is the basic matrix which is active for the optimal basic solution
),( T

N
T
B

T yyy =  with 0=Ny  and
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];[1 dbByB
−= . (9)

In the space D the optimal value of the objective function D∈ddC ),(  is nonlin-
ear, since the optimal canonical partition and the optimal base B are active only in
some region and may change if d changes sufficiently. However, in some neighbor-
hood of a given point d the optimal base is fixed and the formula (8) induces a hyper-
plane in the space 1+ℜM  of vectors (C, d). For certain boundary values of d, the opti-
mal basis matrix B for the problem (5)–(7) may change and a new base induces
another hyperplane in the space 1+ℜM . The intersection of these two hyperplanes pro-
jected into the space Mℜ  of parameters d forms a hyperplane that separates the adja-
cent regions in which these two bases are active.

In general, the space of RHS parameters Mℜ⊆D  can be divided into polyhedral
regions, convex closed polyhedral sets, which we call cells and denote by C. In each
cell C there is at least one active basis matrix B that satisfies (8), (9). The faces of
a cell C overlap with some hyperplanes that separate the cell C from other cells – adja-
cent regions in which other bases are active. A cell in the parameter space is called
non-degenerate if it contains an inner point.

Inside a non-degenerate cell it is possible to move in some neighborhood in any di-
rection without changing the basis. Let us consider a degenerate cell which is the in-
tersection of l, Ml ≤≤2 , adjacent non-degenerate cells. This degenerate cell has

11−+M  degrees of freedom. For the function C(d) there are l different linear de-
scriptions of the form (11). From the global point of view of joint costs, each descrip-
tion is equivalent, however each determines a different cost allocation for the individ-
ual constraints.

Let us consider the intersection of l, 12 +≤≤ Ml  adjacent non-degenerate cells
and the corresponding bases lkBk ...,,1, = . If the intersection is nonempty, it consti-
tutes a degenerate cell with 11−+M  degrees of freedom. Degenerate cells lie in cer-
tain subspaces of the parameter space, e.g. in faces, edges, or vertices. In a degenerate
cell all the related bases are equivalent1. This is a case of primal degeneracy, where
l – 1 basic variables are degenerate and equal to zero. The admissible points in a de-
generate cell C are multiply equivalently defined and must satisfy the following
l constraints

1,...,1];[1 == − kdbBy kB (10)

where l – 1 degenerate basic variables must be equal to zero. Moreover, for any
C∈];[ db  there are l multiple, equivalent definitions of the objective function

                                                     
1 Two bases are equivalent if the optimal values of the decision variables are identical, but the parti-

tions of variables into basic and nonbasic are different.
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lkdbC k ...,,1];[ ==π (11)

with dual variables 1−= k
T
B

k Bc
k

π .
The nonlinear function C(d) is given by the maximum from the set of hyperplanes

that correspond to all the optimal bases locally active in various regions of the pa-
rameter space. Consequently, C(d) is a concave piecewise linear function – it is strictly
linear in the domain in which one base is active. At the kinks of C(d), or equivalently
at the points where the description of the function (8) changes, the function C(d) is
given by the intersection of two or more hyperplanes.

The global parametric analysis of a linear programming problem can be repre-
sented in both the primal and dual spaces, but also in the RHS parameter space. All
these representations are strongly related. In particular, local movement in the pa-
rameter space (inside a non-degenerate cell) leaves the optimal basis in the primal
space unchanged, as well as the description of the objective function C(d) by the op-
timal dual variables, see (11). On the other hand, movement along degenerate cells,
such as faces or edges, is related to multiple representations for many equivalent
bases. Each representation (11) provides a different cost allocation for a given set of
constraints.

6. Algorithmic framework
for path-generated cost allocations

The algorithmic framework that we have developed is designed to compute the
cost allocation for a GLPG problem for any path in D. However, we will now show
that any path in D can be transformed into an equivalent path built of linear segments.
The following lemma holds:

Lemma 1. Let id  and 1+id  be in the same cell C. Each subpath from id  to 1+id
that belongs completely to the cell C determines the same cost allocation to each
agent.

Proof. The set of primal and dual solutions related to the cell C is constant. At each
point of the cell the solution )ˆ,ˆ( sy  remains the same, therefore the partial derivative

mπ  with respect to constraint m is the same. If we shift from point id  to 1+id , the
shift in the m-th direction is equal to i

m
i
m

i
m ddd −=Δ +1 . Generally, along any subpath

from i
md  to 1+i

md , the m-th coordinate of the current point is shifted in one direction by
i
md+δ  and in the opposite direction by i

md−δ . It is obvious that i
m

i
m

i
m ddd Δ=− −+ δδ .
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Since the subpath belongs entirely to the cell C, the dual prices are constant and the
allocation is equal to i

mm
i
m

i
mm

i
mm

i
mm ddddd Δ=−=− −+−+ *)(*** πδδπδπδπ . ■

Since each cell C is convex, from Lemma 1 we have the following:

Corollary 1. Any subpath from id  to 1+id  completely belonging to a cell gives the
same cost allocation and

1. Any such subpath can be replaced by a straight subpath – the shortest path be-
tween id  and 1+id ,

2. From the result described in point 1, one need consider only straight segments
);( 1+ii dd  of subpaths.

Additionally, the whole path linking points 0 and d  can be transformed into
a path built of I linear segments, where I is the number of different cells between
0 and d . The local direction iγ , which defines the shortest way from point id  to 1+id
is related to segment Ii ...,,1∈ . This path can be described by a set of local directions
for all the cells crossed )...,,,( 10 Iγγγγ = .

In consequence, we can divide the cost analysis into I iterations. In iteration i
exactly one cell C is crossed. Fig. 1 shows a block diagram of the algorithm. First,
the initial point 0d  is set to 0, and the iteration counter is cleared. The next three
blocks are related to crossing a single cell (one iteration). This procedure is repeated
I times, until the end point d  is reached. In each iteration the local direction iγ
is chosen for analysis. We will not focus on this block now, since it is related to
a concrete allocation rule and needs to be specified the rule designer. In each itera-
tion, two main steps are performed: 1) moving to the next cell along the given path;
2) computing the partial derivatives for the segment determined in step 1. When
point d  is reached, then the algorithm computes the allocation according to Defini-
tion 2.

Lemma 2. Let us assume that consecutive moves in the space C performed by the
algorithm depicted in Fig. 1 constitute a path linking points 0 and d . The algorithm
terminates after a finite number of iterations.

The proof comes from the observation that any path, which is nondecreasing by
definition, crosses a countable number of cells.

The dual problem DP to the PP task is as follows: :];[max , dbT
z ππ

0,, ≥=− zczAT ππ . At the i-th iteration the current point D∈id  and optimal solu-
tion of the pair PPi and DPi, denoted by )ˆ;ˆ;ˆ;ˆ( iiii zsy π , are known, where PPi and DPi

are defined at point id .
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STEP 1
Compute the maximal step ρi along the 
path γ such the new point di+1=di+ρi*γ i

belongs to the border of the current cell 

STEP 2
Compute directional 
derivatives along the 

segment (di;di+1)

d, d0=0, i=0

d is not reached
i:=i+1

Compute allocation from 
directional derivatives , e.g. 
by integrating derivatives 

along the path γ

d is reached

di

di+1

ρi

di

di+1

γ

γ

Choose direction γi

Fig. 1. Block diagram of the algorithm

6.1. Step 1 – Reaching the opposite border of the current cell

At step 1, to compute the point on the border of the current cell reached by moving
along the path iγ , we use the notion of range of compatibility. At a given point id
there may be a number of equivalent bases. At point id  base B is compatible with
direction iγ  (and iγ  is compatible with B), if B remains optimal for iiid γα+  for
some 0>iα . The compatibility range of base B in direction iγ  is

}foroptimalis:sup{);( iiiiii dBB γααγρ += . The range of the compatibility of base
B can be determined from the canonical form of the linear programme by finding
which is the first basic variable to achieve its upper or lower bound when iα  increases
from 0.

Now, let us assume that we have fixed the direction iγ  at point id . The point id
and direction iγ  define a cell in which each base compatible with iγ  is active. To
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determine the boundary point iρ  of that cell, the optimization subproblem of finding
),( iid γρ  must be solved. In the other words, we must find the maximum range of iα

in direction iγ  without leaving the current cell. Notice that the boundary of the cell is
reached at a point induced by the minimum compatibility range );( ii B γρ  of all bases B
compatible with iγ  at point id . This range of compatibility );( ii B γρ  can be calcu-
lated directly by solving the following problem RCi )ˆ,ˆ,,( iiii zd πγ , where iπ̂  and iẑ
give the solution of the dual problem at the point id .

Problem RCi )ˆ,ˆ,,( iiii zd πγ :

ργρρ ρ,,max),( sy
iii d == (12)

subject to
TiidbsAy ];[ ργ+=+ , (13)

0ˆ)( =iTi zy , (14)

0ˆ)( =iTis π , (15)

0, ≥ii sy . (16)

The constraints (14) and (15) represent complementarity conditions. These condi-
tions ensure that the boundary of the cell will not be crossed moving in direction iγ .
Increasing α  beyond this boundary would result in a base change in the primal space,
which would not be complementary to the fixed dual solution ii ẑ,π̂ . The new point

1+id  is equal to iiii dd γγρ ),(+ .

6.2. Step 2 – computing the derivatives

Two consecutive points, let us say id , 1+id , belong to a common cell. If both
points id  and 1+id  are in the same non-degenerate cell and at least one of them is in
inside the cell, then the solution to the dual is unique along the path and the points
inside the cell located on the path satisfy exactly one equation (11) for some k. The
derivative i

m
i
m

i
m dtC πγ ˆ));(( =∂ , which reflects the local unit cost, is constant along

the segment i arises directly from (11) and is equal to i
mπ  for the m-th agent.
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Moreover, the additive properties of the costs associated with the constraints come
from the form of (11).

If points id  and 1+id  are in the same degenerate cell C which is the intersection
of l non-degenerate cells, 12 +≤≤ Ml , then, while crossing the path from id  to

1+id , any one of the M +1 – l bases active in the cell can be chosen. For an arbitrary
basis k, the equation (11) defines an arbitrary cost allocation of C according to the
individuals’ constraints, where the allocated costs sum up to the joint cost revealed
by segment i.

Since in such a degenerate case there are M + 1 – l active bases related to the cell,
we may consider M + 1 – l different allocations according to the dual prices appearing
in (11). These allocations are not equivalent. Also, notice that if we choose an arbi-
trary base and allocate the costs according to this base, we shall allocate zero costs to
the active constraints (for which the surplus variables are basic variables equal to 0, so
their dual prices are 0).

If the move in the m-th direction immediately leads to entering another cell, then
the derivative with respect to constraint m can be calculated as a one-sided derivative
of the function C(d) in this direction. Therefore, the i

mπ  can be determined from Mills
theorem [26] as the maximal dual price of ki

m
,π  for all the bases k = 1, ..., l by solving

the following:

Subproblem DD )ˆ,ˆ( iim
i sy :

i
mz

i
m ii ππ π ,maxˆ = (17)

subject to

czA iiT =+π , (18)

0ˆ)( =iTi yz , (19)

0ˆ)( =iTi sπ , (20)

0, ≥ii zπ . (21)

where iŷ  and iŝ  give the primal solution at any interior point of the cell crossed in the

i-th iteration, e.g. for the midpoint )(5.0 1++= iii ddd . The constraints (19) and (20)
reflect the complementary conditions, which restrict the admissible solution space of
problem DD to solutions corresponding to the current cell.
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6.3. Integrating the local cost

After I iterations, the vector of steps )...,,( 0 Iρρ  and matrix of derivatives ]ˆ[ i
mπ

have been computed. The cost allocation can then be calculated directly from defi-
nition (1). However, the budget-balance condition will only be satisfied when the
directional derivatives are additive, that is to say, when the following condition is
satisfied:

∑
∈

∂=
M

));((ˆ
m

iii
m dtC γπ (22)

for each segment Ii ...,,0∈ , i.e. when the number of points from degenerate cells
along the path γ  is countable. The cost γ

mx  assigned to the m-th agent using path γ  is
calculated as the integral of the m-th partial derivative along the path γ :

∑
=

=
I

i

i
m

ii
mmx

0

ˆ γρπγ . (23)

If condition (22) is not satisfied, then directly applying definition (1) will result in
over-allocation – the sum of the allocated values will be greater than the total cost

)(dC . To satisfy the budget-balance condition, the partial costs from segment i should

be appropriately scaled, i.e. by a factor equal to )),((
ˆ

ˆ

M

i
mi

mm

i
m dtC γ
π

π
∂

∑ ∈

.

The choice of the path in the agents’ demand space is crucial to the quality of
the method of allocation. The framework described above does not define such
a path, which gives us some freedom to optimize the outcomes. Since any path can
be used, this allows us to specify various cost allocation algorithms. In [19] we
have described various groups of rules for choosing directions for the parametric
analysis.

7. Numerical example

As a case study, we consider an example of an SCIM problem on the electrical
energy market. All the individuals’ demand constraints resulting from a given net-
work of electrical energy generators lead to a joint cost, which has to be shared by
each constraint. One type of such a constraint may be active during the winter,
where the power generated in each power plant cannot be reduced below a mini-
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mum level. For instance, such constraints must be considered by the Polish Trans-
mission System Operator (TSO) on the real-time balancing market due to security
reasons. There are 20 generators and each of them submits 5 sale offers in staircase
form. We assume that groups of generators are located within the network as given
in Fig. 2. There are inequality constraints for the levels of power at the network
nodes. We consider 10 constraints on the minimum level of generation and 15 con-
straints on the maximum level of generation. Demand is non-elastic and equal to
4500 MWh. To balance the market we use the SCIM model. The randomly gener-
ated sale offers are presented in Table 1. The values 5...,,1,max =nyn  in the table are
the maximum volumes for each offer 1, ..., 5 for a given generator and correspond to

maxp  in the original SCIM. The prices nc  for each offer correspond to s parameters
in the SCIM model.

The total cost of balancing demand with the amount of energy produced in the un-
constrained case with no demands from the agents is equal to $ 420 509. Under the
given constraints, the total cost of producing this energy increases by $ 9 935 to
$ 430 444. Thus the joint cost of all the resource constraints is $ 9 935.

P1

P2

P3

P7

P8

P4 P5 P6

P9 P10

P13

P14

P15

P19

P18

P16

P17

P20P12

P11

Fig. 2. Network topology
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Table 1. Producers’ offers (5 offers per generator)

Generator max
1y c1

max
2y c2

max
3y c3

max
4y c4

max
5y c5

P1 120 82 40 115 40 132 40 133 40 146
P2 55 75 20 94 50 122 20 123 15 132
P3 200 110 30 120 30 125 60 132 30 148
P4 125 92 15 93 10 114 10 131 5 138
P5 120 73 40 87 50 92 90 132 50 140
P6 200 100 15 119 25 135 30 137 20 137
P7 110 109 30 115 40 125 40 128 10 148
P8 60 73 18 81 22 83 100 142 40 143
P9 150 76 100 77 50 86 25 93 25 147
P10 60 71 40 84 50 100 50 119 10 129
P11 70 72 50 86 50 114 50 137 30 147
P12 180 79 10 83 40 108 25 135 25 141
P13 150 87 20 94 70 98 40 128 30 144
P14 160 77 40 115 50 116 20 144 80 149
P15 190 91 30 115 30 123 25 128 5 139
P16 120 110 20 122 50 134 90 143 30 144
P17 130 76 35 95 35 96 75 134 55 149
P18 130 82 70 85 5 89 5 101 10 126
P19 160 72 10 76 20 111 50 126 110 149
P20 200 75 100 83 100 107 15 145 15 146

We use the parametric analysis described above with a path leading from the origi-
nal RHS of the constrained problem to the first point of the relaxed problem where the
joint cost is reduced to 0.

To set the local direction we applied the following rule: The local analysis direc-
tion iγ  at point id  is to be set dynamically in each iteration of the algorithm as a vector
with ones in the positions corresponding to active constraints and zeroes in the other
positions. When entering a new cell at point id , the set of active constraints can be de-
rived as follows. The constraint corresponding to demand m is considered active if and
only if 0>mπ  for the problem DDi. The new direction vector iγ  can be obtained by
setting 1=i

mγ  for the active constraints and setting 0=i
mγ  for the remaining constraints.

Table 2 presents the results. For comparison, we calculated the decrease of joint
costs in two cases: mx  is the decrease in costs after adding constraint m to the model
without resource constraints, mx  is the decrease in costs after relaxing constraint m in
the original model under all the resource constraints. mx  is the result of analysis in the
RHS parameter space.

The first direction of analysis was determined by 7 active constraints and 14 non-
active constraints. After 14 iterations this direction changed – other constraints were
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reflected in the local direction. After the next 8 iterations the algorithm terminated.
The algorithm applied using this rule for determining the direction of analysis allo-

cates the costs mostly to active constraints (for which 0≥mx ) but also to some nonac-
tive constraints which might be easily activated after the relaxation of other con-
straints. It can be observed that, in some cases, when a constraint is nonactive in the
constrained model, but would disqualify any optimal solution for the unconstrained
model ( 0≥mx ), no costs are allocated. The reason for this is that it may be quite un-
likely that such a constraint is activated when others are relaxed, although it is possi-
ble. In other cases the allocated costs vary between mx  and mx , which is a reasonable
feature. The allocated costs are clearly related to the impact of the individual con-
straints on the joint cost of balancing.

Since we are not investigating the allocation rule here, but are testing our frame-
work, we have chosen an example rule which explores the demand space extensively.
The most important result from this case study is that our algorithm needs relatively
few iterations (22) to find the allocations according to the chosen rule.

Table 2. Description of constraints and cost allocation

Constraint No. Generators in constraints Type RHS mx mx mx

1 P1, P2, P3 ≥ 660 5 1365 1478.5
3 P7, P8 ≥ 320 0 2400 1716.7
7 P16, P17, P18, P19 ≥ 820 40 0 0.0
8 P20 ≥ 410 130 940 566.7
9 P16, P17 ≥ 600 2585 3060 3094.1
14 P9, P10 ≤ 520 95 0 0.0
16 P13, P14, P15 ≤ 735 305 125 155.3
20 P18, P19 ≤ 410 300 0 0.0
21 P7, P8, P9, P10 ≤ 700 1415 0 951.2
22 P1, P2, P3, P7, P8, P9, P10 ≤ 1330 650 1380 1218.0
24 P16, P17, P18, P19, P20 ≤ 1360 0 1265 754.5
25 P4, P5, P6, P9, P10 ≤ 1050 740 0 0.0

8. Summary

The GLPG class of cost games covers important cost allocation problems, includ-
ing production games (based on the transportation problem), the Single Commodity
Infrastructure Market game, and others. To the best of our knowledge, no general al-
gorithm for the efficient computation of path-generated cost allocations for linear pro-
gramming-based games (LPG and GLPG) has been developed before. In this paper we
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have formulated a procedure which is general in the meaning that it covers all possible
paths. Thus it is applicable not only to well-known methods like Aumann–Shapley,
but also to all potentially new path-based concepts. This procedure is based on the
sensitivity analysis of a linear programme for determining the joint cost. However, the
degeneracy and ambiguity of dual prices is a key problem during the cost analysis.
According to the corollary formulated in this paper, each path of analysis has certain
properties. We have applied these properties to formulate two optimization subprob-
lems designed to: (i) compute consecutive steps along the path, and (ii) determine the
local marginal costs. We have illustrated our approach using a numerical example of
a transmission network cost allocation for electric power systems. Our results can be
directly applied to examples of GPLG studied in the literature, where only approxi-
mate solutions are usually applied.
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Metaalgorytm alokacji kosztów dla gier LP i GLP

Rozważono zagadnienie alokacji kosztów w ramach klasy problemów modelowanych jako GLPG
(Generalized Linear Programming Games) – uogólnione gry kooperatywne bazujące na zadaniach pro-
gramowania liniowego. Zakładamy, że grupa agentów uczestniczy we wspólnym przedsięwzięciu,
a każdy agent określa pewne wymagania związane z jego uczestnictwem. Wówczas pojawia się problem
podziału łącznych kosztów realizacji przedsięwzięcia na każdego z uczestniczących agentów przy za-
pewnieniu zdefiniowanych ograniczeń tych agentów.

W artykule sformułowano ogólny szkielet algorytmu do wyznaczania alokacji łącznych kosztów,
oparty na klasie metod alokacji generowanych przez tzw. ścieżki. Proponowane podejście jest uogólnie-
niem pewnych ważnych mechanizmów alokacji, bazujących na teorii gier kooperatywnych, w tym na
wycenie Aummana–Shapleya. Zgodnie z naszą wiedzą dotychczas nie został opracowany żaden wydajny
algorytm umożliwiający wyznaczanie alokacji dla problemów modelowanych jako gry kooperatywne
bazujące na programowaniu liniowym (LPG i GLPG). Spotykane w literaturze podejścia polegają na
obliczeniach niedokładnych przy jednocześnie wymaganym większym nakładzie obliczeniowym.

Słowa kluczowe: alokacja kosztów, gry kooperatywne, gra bazująca na programowaniu liniowym
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