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A structure of a solar concentrating reflector is designed in this paper to improve the usage of solar
energy. For the dark image which is the result of the secondary mirror in the new type of the
Cassegrain solar concentrating system, a double pyramid system is used to improve this phenom-
enon. By eliminating the dark image, the system enhanced the concentration ratio and the working
efficiency. Meanwhile, both the primary and secondary mirrors are shaped into a square section
in order to get a better match with a square photovoltaic receiver. While the length of the primary
mirror is 89 m and the block ratio is 20%, the concentration ratio is equal to 118.86. 
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1. Introduction

With the rapid development of industry, the usage of new energy resources becomes
more and more important, and it has attracted many researchers’ attention in the past
forty years. Among the existing new energy sources, solar energy has attracted more
interest than other because of its advantages such as abundant, inexhaustible, free,
widely spread. And therefore the study of a solar concentrating reflector is of a great
value in improving the efficiency of solar system [1–4].

In recent decades, innovative structures of the solar concentrating reflector have
been proposed. The reflector comprises two mirrors: primary and secondary [5]. Gen-
erally, the primary mirror is designed as a parabolic surface, and the design of the sec-
ondary has many options. This structure greatly improves the concentration ratio and
thus possesses an obvious advantage over refractive lens concentrators in the capability
of concentrating [6]. Among these options put forward by researchers, Cassegrain re-
flectors have attracted more attention due to their good performance. With the wide
spread use of it, its shortcomings are gradually being discovered, and attract attention
of many researchers, who try to eliminate them [7–10]. When light is reflected by the
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secondary mirror, a dark image can be generated on the photovoltaic (PV) receiver
because of the imaging characteristics. This means the PV receiver cannot receive light
uniformly and reduces the service life of the solar concentration system [11, 12].
Research on this phenomenon is necessary. Also, since the emerging light shape is
a circle, different from the shape of the PV receiver, a waste exists and the light received
is not uniform as well. Shaping light into a square beam is important to enhance the
utilization of the PV receiver [13, 14].

In this study, a new type of solar concentrating optical system is proposed to eliminate
the dark image caused by the secondary mirror based on the Cassegrain concentrating
reflector structure. A new method is also put forward to obtain square-shape emerging
light to enhance utilization efficiency of the square PV receiver. The work is based on
ray tracing, and a mathematical model is built through some amount of derivation and
calculation. Finally, the accuracy is verified by simulation using MATLAB.

2. Design of the solar concentrating reflector

The structure of the Cassegrain solar concentration system is shown in Fig. 1. Assume
that the incident sunlight is parallel, as it is shown in Fig. 1, and the primary mirror of
the general Cassegrain solar concentration system reflects the incident sunlight on the
secondary mirror, then the secondary mirror will reflect the light in parallel because
of the same focal point they have while the incident sunlight is parallel. Then the dark
image will be generated which is shown in the picture. Generally, there is a divergence
of  ±0.27°, which will influence the emerging ray as well. And the circle beam cannot
achieve the best utilization of the PV receiver. In order to eliminate the dark area and
get square beam, we do some improvements on the structure. In this paper, the surfaces

Fig. 1. Structure of Cassegrain-type solar concentration system.
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for both the primary mirror and the secondary mirror of the system are designed as
a one-dimensional photonic crystal structure, which is made of  SiO2 and TiO2 media.
The thicknesses of  SiO2 and TiO2 are 0.1714 and 0.0878 μm, respectively, and the total
reflection wavelength range is 0.3611 to 1.660 μm, which can reach a high total re-
flection in the range from visible light to near infrared wavelength [15].

2.1. Generating the hollow square beam

In this paper, we get a square beam by using a square aperture mirror, and both of them
are parabolic mirrors because of their advantages such as eliminating the spherical ab-
erration and simple calculation. The two-dimensional practical structure diagram is
shown in Fig. 1, similar to the traditional one. Both of the reflectors are formed by ro-
tating the generatrix around the symmetry x-axis, which is toward the sun. The equa-
tions of the primary mirror can be expressed as

(1)

where p is the distance between the focal point D(–0.5p, 0) and the alignment.
Suppose the coordinates of point A (–0.5l 2/p, l ) and point B(–l1, 0), where 2l and

l1 represent the length of the primary mirror and the distance between the central point
of the secondary mirror and the primary mirror.

As the secondary mirror shares the same focal point D (–0.5p, 0) with the primary
mirror, we have the two-dimensional curve equation of the secondary mirror as

(2)

According to the geometrical knowledge, we know that the line AC (see Fig. 1)
satisfying

(3)

By Equations (2) and (3) we get that

(4)

which is the y-axis coordinate of point C, and also the half of the length of the secondary
mirror. Then we have the block ratio N

(5)
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From Eq. (5), the positions of the two mirrors can be determined when the block
ratio N is known. Similarly, the x-axis coordinate of point F can be obtained 

(6)

which is half of the length of the hollow beam. Equation (6) shows that while the values
of p and l1 are fixed, the length of the hollow beam varies directly as the length of the
secondary mirror. Figure 2 is the three-dimensional structure diagram of the reflectors
with a square cross-section, which is a rotated symmetrical about x-axis, and the three
-dimensional equation can be expressed as x = 0.5( y2 + z2) /p. 

In Figure 2, A1, B1, C1 and D1 are the points of the inscribed square of the aperture
of the reflector. Assume the diameter is  and then a is the distance between the
edge of the cross-section and the origin point O (0, 0). So the curves can be expressed as

x = 2p (a2 + y2) for –a < y < a, x = a (7a)

x = 2p (z2 + a2) for –a < x < a, y = a (7b)

x = 2p (a2 + y2) for –a < y < a, x = –a (7c)

x = 2p (z2 + a2) for –a < x < a, y = –a (7d)

By the above equations we can get the square cross-section easily, which is more
convenient for lining the reflectors in array.

The simulations of a solar concentration system based on the calculations above
are shown in Fig. 3.

Figure 3a is the ray tracing of a solar concentration reflector in a square cross-sec-
tion. Figures 3b and 3c present the emerging light in the condition of parallel incident
light and incident light with the divergence of 0.27°, respectively. From Fig. 3 we can
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Fig. 2. Square cross-section of a rotating parabolic reflector.
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see that light passing through the solar concentration reflector in Fig. 3a is shaped into
a square hollow beam with uniform distribution, which is shown in Fig. 3b. Figure 3c
shows that while there is a divergence of 0.27°, the uniformity is a little lower than the
condition of parallel incident light and the shape is a little irregular than the former
condition.
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Fig. 3. Simulation of the solar concentration system (see text for explanation).
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2.2. Transform hollow beam into solid beam

As is known from the characteristics of the pyramid, light shot on the pyramid vertical
to its bottom will have a beam splitting due to the refraction. Then, the two beams of
light which are central axis-symmetric for the pyramid will be combined into one beam
because of the optical reversibility. In order to obtain parallel emerging light in the
direction same with incident light, we put another pyramid under the first one, making
their bottoms coincide perfectly. In this paper, the double pyramid is put above the
PV receiver to get the solid beam, and is made of K9 glass (n = 1.51) which is coated
with multispectral antireflection coatings [16].

The structure of the solar concentration system with a double pyramid is shown in
Fig. 4. The annular beam generated by the reflection of the secondary mirror falls on
the double pyramid system, changes into a solid one and is received by the PV receiver.
Figure 5 shows the trace of light passing through the double pyramid system in two-di-
mensions. In Fig. 5, the double pyramid system is shown as a side view.
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Fig. 4. Structure of the solar concentration system with a double pyramid.

Fig. 5. Trace of light passing through a double pyramid system.
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As the coordinate shown in Fig. 5, A(0, –h tan(0.5θ ), B(h, 0), C(0, h tan(0.5θ ), and
D(–h, 0) are the vertices of a double pyramid, which h and θ  are the height and dip
angle of one of the pyramids, respectively. So the expression of line EB is 

y = –x tan(0.5θ ) – h tan(0.5θ ) (8)

The edge of the beam crosses the surface of the pyramid at point E. The y-axis of  E
is –0.5L2 (L2 is the width of the hollow beam), and by Eq. (8) we can get the coordinate
of point E([L2 /(2tan(0.5θ ) – h], –0.5L2). The slop k1 of line EB is 

(9)

In Figure 5, θ0 and θ1 are the incident angle and refraction angle, respectively. By
geometry θ2 =  θ0 –  θ1 = 0.5π –  0.5θ – θ1. Therefore, k1 also can be expressed as

(10)

Based on the law of refraction, 

(11)

where n0 and n1 represent the refractive indexes of air and the material of the pyramid.
Substituting Eq. (11) into Eq. (10), we can get 

(12)

By Eqs. (9) and (12) the relationship between L2 and θ  is 
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The curve in Fig. 6a shows the relationship between L2 and θ , and the pyramid can
be determined when L2 is known. Because the equations of line AD and line CB are

yAD = –x tan(0.5θ ) – h tan(0.5θ ) (14a)

yCB = –x tan(0.5θ ) + h tan(0.5θ ) (14b)

and the y-axis of point F and G are known, the x-axis of them can be got. Then we
have the slop of line FG

(15)

where L1 and R are the width of the internal hollow of the beam and the width of the
solid beam emerged, respectively. Line FG is parallel with line EB, thus, kFG = k1. By
Eqs. (12) and (15), we have the relationship between R and L1 

(16)

which is shown in Fig. 6b.
Figure 6a is the relationship between the dip angle of the pyramid θ  and the width

of the hollow beam L2, and Fig. 6b is the relationship between the width of the internal
hollow L1 and the width of the emerging beam R. In Fig. 6a, we set h = 0.37 m and
from the relationship which is shown in the picture we can see that the width of the hollow
beam L2 is firstly ascended and then descended with the increase of the dip angle of
the pyramid θ , and achieves the peak at 1.241 rad (71.082°). Therefore, θ = 0.991 rad
(56.786°) is chosen in Eq. (16) in order to avoid the total reflection of the pyramid,
and, similarly, h = 0.37 m. As it is shown in Fig. 6b, the width of the emerging beam R

0.4

0.3

0.2

0.1

0.0
0 1 2 3 4

L1 [m]θ [rad]

R
 [m

]

a
0.4

0.3

0.2

0.1

0.0
0.40.30.20.10.0

b

L 2
 [m

]

Fig. 6. Results of calculation (see text for explanation).
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is decreased with the rise in the width of the internal hollow L1. The concentration
ratio (CR) is

(17)

–0.2

0.0

0.1

1.4

1.2

1.0

0.8

0.6

0.2

0.0

[W
m

–2
/W

m
–2

]

Z 
[m

]

Y [m]

a

b

Fig. 7. Simulation of the double pyramid system (see text for explanation). 
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Assume the block ratio N is 20%, and set l = 0.447 m, according to Eqs. (5), (6),
(13) and (17) the concentration ratio CR is 118.86. This high concentration mainly due
to the elimination of the central shadow. And the uniformity, which is an important
property of the solar concentration system, is also improved. The simulations of the
double system in the conditions of parallel incident sunlight and incident sunlight with
a divergence of 0.27° are shown in Fig. 7.

Figure 7a is the ray tracing of the double pyramid system, and Figs. 7b and 7c are
the emerging ray in conditions of parallel incident sunlight and incident sunlight with
a divergence of 0.27°, respectively. As it is shown in Fig. 7a, the double pyramid sys-
tem transforms the hollow beam from the concentrating system into a solid beam
(shown in Figs. 7b and 7c). It indicates that the uniformity is good while the incident
sunlight is parallel from Fig. 7b. While there is a divergence of 0.27° of sunlight, the
uniformity is lower than when it is parallel, and the shape of an emerging ray is also
more irregular than it is parallel. The aim of this work has been achieved, the concen-
tration ratio is increased.

3. Conclusions

This study designed a complete solar concentration system. Using the ray tracing and
the mathematical method, the paper shows the way of generating square beams which
improves the limitation of the traditional solar concentration system of a Cassegrain
-type. As its square-cross-section, this kind of solar concentrating reflectors can be ar-
ranged in array easily. The dark image is eliminated and the concentration ratio is in-
creased at the same time, which improves the utilization of a PV receiver effectively.
The service life of the PV receiver is also enhanced due to the uniform incident light
on it. Therefore, the cost of the concentration system is reduced. And while the length
of the primary mirror 89 m and the block ratio is 20%, concentration ratio is equal to
118.86. Based on numerous calculations, the feasibility is proved by simulation. 
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