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Spectral images provide richer information than colorimetric images. A high-dimensional spectral
data presents a challenge for efficient spectral reconstruction. In conventional reconstruction
methods it is very difficult to obtain good spectral and colorimetric accuracy simultaneously. In
this paper, a segmented principal component analysis (SPCA) method and a weighted segmented
principal component analysis (wSPCA) method are proposed for efficient reconstruction of spec-
tral color information. The methods require, firstly, partitioning the complete spectrum of wave-
lengths into two subgroups, considering the sensitivity of human visual system. Then the classical
principal component analysis (PCA) carried out each subgroup of data separately. The results in-
dicated that the spectral and colorimetric accuracy of the SPCA and wSPCA outperformed the PCA
and weighted PCA, and wSPCA clearly retained more color visual information.

Keywords: spectral reconstruction, wavelength-sensitive function, segmented principal component anal-
ysis.

1. Introduction

The spectral reflectance can be called the object “fingerprinting” that accurately carries
the fundamental color information, so spectral color information could match originals
under arbitrary illuminants and observers. It is highly useful in various applications,
such as print inspection, image color reproduction, art paintings and image classifica-
tion [1–4]. However, high-dimensional spectral data need large storage space and
computational complexity, so a significant effort is necessary for data compression or
dimensionality reduction in such spectral color information. Consequently, more ac-



366 GUANGYUAN WU et al.

curate reflectance reconstruction will become the key technology in multispectral
images.

Since the reflectance spectra of natural spectral surfaces and most nonfluorescent
dyes are mostly smooth spectral functions and they are strongly correlated across
neighborhood spectral regions, the spectral reflectance can be adequately represented
by a few numbers of the orthogonal basis vectors extracted from the dataset [2, 5]. Re-
lying on this observation, multivariate statistical analysis methods such as the principal
component analysis (PCA) can be the most efficient dimensional reduction methods
for minimizing the error of spectral reconstruction. In color technology and science,
PCA has become a standard method for reducing dimensionality of the data and
minimizing the reconstruction error for over 50 years. In 1964, COHEN [6] applied PCA
on a subset of the Munsell Book of Color, using only three principal components to
represent 150 spectral reflectances. From then on, numerous papers state that the PCA
has been used extensively to analyze different spectral datasets [7–10]. However, the
PCA-based reconstruction process has treated equally the entire spectral reflectance
along different wavelengths, which could not well reflect the human visual system.
This is because the human eyes usually have different sensitives for different wave-
lengths. For this reason, the weighted version of PCA (wPCA), considering the wave-
length-sensitivity function (WSF) of human visual system, was also proposed.
LAAMANEN et al. [11] presented a wPCA-based method (wPCA1) for the compression
and reconstruction of spectral color information, which applied an appropriate weight
function on spectral data before forming the correlation matrix and calculating the
eigenvector basis. GUANGYUAN WU et al. [12] proposed a wPCA-based reconstruction
method (wPCA2), which used PCA to obtain the ordinary eigenvectors calculated from
the unweighted spectral dataset and determined a proper weighting function to execute
the weighted reconstruction of spectral color data. The wPCA is to attain much more
reconstruction accuracy at wavelengths where the sensitivity of human vision is higher,
which will improve the color reproduction accuracy in color technology and science.
It is clear that the choice of weight function is arbitrary, AGAHIAN et al. [13] demon-
strated that seven different weight functions involve the sensitivity of human visual
system but each shows its own characteristic. And yet, in fact, the weighted function
involving color-matching functions well reflects the brightness information and chro-
matic information of color. Recently, LAAMANEN et al. [11] presented two different
weighted functions, one of which was formed as a combination of the CIE 1931 color
-matching functions. JIANDONG TIAN and YANDONG TANG [14] showed the WSF, which
generated by adding the three color matching functions. GUANGYUAN WU et al. [12]
proposed the weighted function, which can be attained by the square root of arbitrary
weight function that includes the CIE 1931 XYZ color-matching function. However,
wPCA clearly improves the color reproduction accuracy, but fails to the spectral re-
production accuracy under different weight functions.

To obtain good spectral and colorimetric accuracy simultaneously, segmented
principal component analysis (SPCA) method and weighted segmented principal com-
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ponent analysis (wSPCA) method are proposed in this study for reconstruction of spec-
tral color information. First, the methods require partitioning of the complete spectrum
of wavelengths into two subgroups, considering the sensitivity of human visual system.
Then, the classical PCA is carried out in each subgroup of data separately. 

2. Theoretical background

The spectral dataset can be represented adequately by a few numbers of the orthogonal
basis vectors with a minimum mean square error of the residual , where

 and  are two matrices that involve orig-
inal and reconstructed spectral vectors, respectively. The solution of   can
be usually generated by a PCA. A set of spectral vectors   can
be represented by

for  

where uj – the orthogonal basis vectors, vij – the coefficient of the j-th basis vector, 
– the mean spectral reflectance value of dataset. Spectral reflectance can be approxi-
mated well to use only a few basis vectors

for d < n.

If we define the matrices   
  and  matrices R

and  can be expressed by: 

where sign  denotes the tensor product of vectors. 
Since the classical PCA is a global transformation, it could not preserve local useful

spectral color information to obtain a good spectral reconstruction, and therefore might
not reflect the characteristics of all the spectral reflectance. So with the classical PCA
and the wPCA it is very difficult to obtain good spectral and colorimetric accuracy si-
multaneously [11, 12, 15]. Spectral reconstruction using a SPCA could be useful. This
is because the variances of the bands in each subgroup are much higher than the whole
bands, and SPCA improves the performance of PCA [4, 16]. In addition, the PCA is
the well-known linear model that equally treats spectral reflectance over the whole
wavelength, but human visual system is a highly nonlinear system. For these reasons,
we present two segmented PCA-based methods for the reconstruction of spectral color
information, considering the human visual system.

min R R̂– 2
2

R r1 r2 … rm, , ,[ ]T= R r̂1 r̂2 … r̂m, , ,[ ]T=
min R R̂– 2

2

ri R
n∈ i 1 … m, ,=( )

ri ujvij r+
j 1=

n= m n≥

r

r̂i ujvj r+
j 1=

d=

U u1 u2 … un, , ,[ ]T ,= V vn1 vn2 … vnm, , ,[ ],= Û =
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The complete set of bands is segmented based on the following considerations.
Since human visual system usually has different sensitivities over different wave-
lengths, and CIE XYZ color matching functions involve brightness information and
chromatic information [11, 14], WSF can be generated by combination of color match-
ing functions. If a whole spectrum of wavelengths is partitioned into several subgroups
at wavelength where WSF has low sensitivity, the influence of color difference will
be minimized because the junction of two subgroups could easily present atypical
spikes (as shown in Fig. 1). This idea leads to the proposed SPCA method discussed
below. 

The complete spectrum of wavelengths (400–700 nm) is first divided into two
subgroups. Figure 2 shows the WSF, generated by adding three matching functions,
and two subgroups of wavelengths. The PCA is then carried out in each subgroup of
data separately.

It has been observed previously that when the wavelengths where WSF has high
sensitivity are reconstructed accurately, more color information is retained and better
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Fig. 1. Two examples of spectral reconstruction by the SPCA method. 
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Fig. 2. The WSF generated by adding three matching functions and two subgroups of wavelengths.
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color reproduction performance is achieved through the reconstruction process. The pur-
pose of  wPCA, considering the wavelength sensitivity of human visual system, is to im-
prove the color reproduction accuracy in color technology and science. The wPCA is
noted that after spectral reproduction, the same weight function W can be separated
from the weighted spectral data to achieve representatives of the reconstructed spectral
curves [11, 12], 

The weight function W is a diagonal matrix with the main diagonal of the values in-
volved in WFS. Because WFS involves some very small values, it is necessary to add
a constant function (i.e., 1) to avoid computational instability when inverting values
of the weight function [11]. Since human visual system usually has different sensitiv-
ities over different wavelengths in each subgroup, the wSPCA is similarly feasible. 

3. Experiments and discussion

To evaluate the performance of the proposed SPCA and wSPCA methods for spectral
reconstruction of spectral database, the PCA and wPCA methods (wPCA1, wPCA2),
SPCA and wSPCA were implemented for comparison of the colorimetric accuracy and
spectral accuracy. First, the spectra of Munsell Atlas were selected as training samples.
The mixed spectrum sets (including Munsell Atlas, ColorChecker 24, Acrylic Paints
and NCS Atlas) were employed as testing samples [8, 17, 18]. In addition, all the spec-
tra and illuminants were sampled at 10 nm intervals between 400 and 700 nm. The good-
ness-of-fit coefficient (GFC) and CIELAB color differences under illuminants D65 and
F2 between the original and reconstructed spectra of the testing samples were calcu-
lated to compare the five different methods. The GFC has values in the range [0, 1],
GFC ≥ 0.999 and GFC ≥ 0.9999 represent good and excellent spectral matches, re-
spectively.

Tables 1 and 2 show the mean CIELAB color differences and the maximum CIELAB
color differences for the different numbers of the orthogonal basis vectors under dif-
ferent CIE illuminants. The tables also show the standard deviation of color difference
statistics of the five methods. The standard deviations could represent the robustness
of the five methods: the smaller the standard deviations, the more robust performance
of the spectral reconstruction method under predefined viewing conditions. Figure 3
shows graphical representations of mean color differences to reconstruct the mixed
spectrum sets under different CIE illuminants. As the results show, the colorimetric
performance orders of the five methods are wSPCA, SPCA, wPCA2, wPCA1 and PCA.
It is mainly due to the preserving of spectral color information that SPCA and wSPCA
preserve more local information than the PCA and wPCAs, which minimizes the loss
of color information in the reconstruction process. In addition, the colorimetric rep-

R̂ Û WÛ( ) 1–
W R h r⊗–( ) h r⊗+=
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resentation accuracy of wSPCA performed better than SPCA. The main reason is that
the wSPCA achieves more accurate reconstruction at high sensitivity wavelength of
human visual system. 

Spectral reconstruction accuracy was estimated by using the GFC between the orig-
inal and reconstruction spectra. Table 3 shows the minimum of the GFC values, the
mean of the GFC values for different numbers of the orthogonal basis vectors used in
the reconstruction of the mixed spectrum sets. Also, percentage of testing samples with
the GFC values greater than 0.999 was recorded in each case, where GFC ≥ 0.999 rep-
resents the condition for good spectral matches. Figure 4 shows graphical representa-
tions of the reconstructed results for the mixed spectrum sets used in five different
methods, and average spectral residuals between the reconstructed and original spectra
in the mixed spectrum sets with three orthogonal basis vectors. It is easy to find that
the spectral reconstruction accuracy of the weighted reconstruction method is less than
that of the non-weighted reconstruction method. This result presents a strong agree-
ment with the conclusion made by numerous previous studies [11–13], and is due to
cause spectral representation errors to increase in low sensitivity wavelength.

Figure 5 shows the example of spectral reconstructions of one sample from the
mixed spectrum sets. It can be seen from Fig. 5 that the middle part of spectrum ob-
tained with the weighted reconstruction method is more accurate than that obtained
with the non-weighted reconstruction method, but the both ends of the spectrum are
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Fig. 3. Graphical representation of mean color differences for the mixed spectrum sets in Table 1 (a) and
in Table 2 (b). 
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just the reverse. The same phenomenon can be seen more clearly from the average spec-
tral residuals shown in Fig. 4b.

4. Conclusions

In this paper, we presented the segmented principal component analysis (SPCA) method
and weighted version (wSPCA) method for reconstruction of spectral color informa-
tion. The bands partition and the weighted function are connected with the CIE color
-matching function, which is done to retain more color visual information in the re-
construction process. The feasibility of the SPCA and wSPCA were tested by recon-
structing the mixed spectrum sets (including Munsell Atlas, ColorChecker 24, Acrylic
Paints and NCS Atlas). The results indicated that the SPCA and wSPCA achieved high-
er spectral and colorimetric accuracy for all the testing samples than the classical PCA
and wPCAs. In addition, the wSPCA retained clearly more color visual information.

Acknowledgements – This work was supported by the National Natural Science Foundation of China
(No. 61301231) and the Innovation Fund Project for Graduate Student of Shanghai (No. JWCXSL1401).

References

[1] VALERO E.M., YU HU, HERNÁNDEZ-ANDRÉS J., ECKHARD T., NIEVES J.L., ROMERO J., SCHNITZLEIN M.,
NOWACK D., Comparative performance analysis of spectral estimation algorithms and computational
optimization of a multispectral imaging system for print inspection, Color Research and Application
39(1), 2014, pp. 16–27.

[2] DI-YUAN TZENG, BERNS R.S., A review of principal component analysis and its applications to color
technology, Color Research and Application 30(2), 2005, pp. 84–98.

[3] HANEISHI H., HASEGAWA T., HOSOI A., YOKOYAMA Y., TSUMURA N., MIYAKE Y., System design for
accurately estimating the spectral reflectance of art paintings, Applied Optics 39(35), 2000, pp. 6621
–6632.

[4] XIUPING JIA, RICHARDS J.A., Segmented principal components transformation for efficient hyperspec-
tral remote-sensing image display and classification, IEEE Transactions on Geoscience and Remote
Sensing 37(1), 1999, pp. 538–542.

400 450 500 550 600 650 700

Wavelength [nm]

0.45

0.30

0.00

R
ef

le
ct

an
ce

PCA
wPCA1
wPCA2

SPCA
wSPCA

0.15

Original

Fig. 5. Results of spectral reconstruction by using PCA, SPCA and wSPCA methods. 



374 GUANGYUAN WU et al.

[5] BARAKZEHI M., AMIRSHAHI S.H., PEYVANDI S., AFJEH M.G., Reconstruction of total radiance spectra
of fluorescent samples by means of nonlinear principal component analysis, Journal of the Optical
Society of America A 30(9), 2013, pp. 1862–1870.

[6] COHEN J., Dependency of the spectral reflectance curves of the Munsell color chips, Psychonomic
Science 1(1–12), 1964, pp. 369–370.

[7] VRHEL M.J., GERSHON R., IWAN L.S., Measurement and analysis of object reflectance spectra, Color
Research and Application 19(1), 1994, pp. 4–9.

[8] GARCÍA-BELTRÁN A., NIEVES J.L., HERNÁNDEZ-ANDRÉS J., ROMERO J., Linear bases for spectral re-
flectance functions of acrylic paints, Color Research and Application 23(1), 1998, pp. 39–45.

[9] KOHONEN O., PARKKINEN J., JÄÄSKELÄINEN T., Databases for spectral color science, Color Research
and Application 31(5), 2006, pp. 381–390.

[10] SHAMS-NATERI A., Wavelength intervals effect on reflectance spectra reconstruction, Optica Applicata
42(4), 2012, pp. 737–742.

[11] LAAMANEN H., JETSU T., JAASKELAINEN T., PARKKINEN J., Weighted compression of spectral color
information, Journal of the Optical Society of America A 25(6), 2008, pp. 1383–1388.

[12] GUANGYUAN WU, ZHEN LIU, ENYIN FANG, HAIQI YU, Reconstruction of spectral color information
using weighted principal component analysis, Optik – International Journal for Light and Electron
Optics 126(11–12), 2015, pp. 1249–1253.

[13] AGAHIAN F., FUNT B., AMIRSHAHI S.H., Spectral compression: weighted principal component anal-
ysis versus weighted least squares, Proceedings of SPIE 9014, 2014, article 90140Z.

[14] JIANDONG TIAN, YANDONG TANG, Wavelength-sensitive-function controlled reflectance reconstruc-
tion, Optics Letters 38(15), 2013, pp. 2818–2820.

[15] FLINKMAN M., LAAMANEN H., TUOMELA J., VAHIMAA P., HAUTA-KASARI M., Eigenvectors of optimal
color spectra, Journal of the Optical Society of America A 30(9), 2013, pp. 1806–1813.

[16] QIAN DU, WEI ZHU, HE YANG, FOWLER J.E., Segmented principal component analysis for parallel
compression of hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters 6(4), 2009,
pp. 713–717.

[17] Spectral Database, University of Eastern Finland, http://www2.uef.fi/fi/spectral/spectral-database
[18] AYALA F., ECHÁVARRI J.F., RENET P., NEGUERUELA A.I., Use of three tristimulus values from surface

reflectance spectra to calculate the principal components for reconstructing these spectra by using
only three eigenvectors, Journal of the Optical Society of America A 23(8), 2006, pp. 2020–2026.

Received August 6, 2015
in revised form November 19, 2015


