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3D morphological reconstruction 
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As an important component of blood cells, the red blood cell plays a vital role in many diseases
such as malaria and so on. Although quantitative phase imaging techniques can be used for homo-
geneous cellular thickness distribution to obtain ideal results, they cannot achieve 3D morpholog-
ical distribution. In this paper, a new method is presented to get a 3D morphology image of red
blood cell. With this method, only two cellular quantitative phase images obtained from two or-
thogonal directions are needed as original information. By using the grid method, the sample is
divided into many small phase cubes, and then we take a layer’s cubes into calculation so that
the 3D problem could be transformed into a 2D problem to elaborate. Then it can be applied to
the tomographic imaging combined with the maximum entropy method according to the two or-
thogonal phase images. This method has been proved by a simulation of red blood cell. The results
show that cellular morphological distribution can be achieved in detail very well just based on only
two orthogonal phase images. 
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1. Introduction

In the human blood, the largest numbers of blood cells are red blood cells (RBC).
Research on the morphology of RBC is significant to human health. A series of blood
diseases can be diagnosed by detecting the abnormal changes in red blood cell mor-
phology, such as autoimmune hemolytic and sickle cell anemia. However, the 3D mor-
phological distribution of RBC is hard to be obtained by traditional optical microscopy
due to the transparent property of RBC. To solve this problem, several methods have
been proposed, such as phase contrast and differential interference contrast based on
the phenomenon of the optical path-length shifts across the specimen. Unfortunately,
only qualitative information can be obtained by these techniques.
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Over the last decades, significant progress has been made in quantitative phase
imaging (QPI) methods [1, 2] which promise to overcome the limitation of traditional
phase microscopy. Various techniques have been proposed for studying the transparent
biological specimens [3], including the Fourier phase microscopy (FPM) [4],
the Hilbert phase microscopy (HPM) [5], the diffraction phase microscopy (DPM) [6],
the asynchronous digital holography (ADH) [7] and so on. QPI technique becomes one
of the main technologies applied to study microscopic structure and dynamics behavior
of biological cells because of the advantages of its high sensitivity, high sampling rate,
high accuracy and non-intrusive method without injury. However, the traditional QPI
can only obtain the biological cells’ thickness distribution. Some recent progress has
been made to discover the 3D morphological distribution of biological cells [8–11],
such as optical diffraction tomography [12–15] and marker-free phase nanoscopy [16].

In order to explore cellular morphology, a new tomography [17–19] entropy meth-
od of 3D imaging based on orthogonal phase images has been presented in this paper.
This approach only needs the cellular quantitative phase information in two orthogonal
directions as input data, rather than holograms with various illumination angles (from
–60 deg to +60 deg), and can be obtained from the 3D refractive index distribution by
using this iterative algorithm; furthermore it reconstructs the 3D morphology infor-
mation. This method is based on fast convergence and high efficiency of the maximum
entropy reconstruction method, and it only needs quantitative phase information on
the cell in two orthogonal directions which could reduce the amount of data calculation.
This advantage makes this method very suitable for tomography imaging of computing
refractive index distribution. In order to demonstrate the effectiveness of the method,
RBC is taken as a simulation example.

2. Basic principle and method

In this method, for the sake of the determination of the cellular morphology, one should
work out the spatial refractive index distribution of the phase object. For this purpose,
the grid method [20–23] is applied to divide the sample into many small cubes and the
cube grid should completely cover the phase object. Thus the 3D problem could be
transformed into a 2D problem to elaborate by taking one layer of cube grids as a re-
search object. The grids are composed of the serial number on the basis of a TV scan
order. The grid is set as a square with k rows and k columns. The total number of
the parallel light is M = 2k and the total number of small squares is N = k 2 in the grid
plane. From two orthogonal directions the cell is irradiated by parallel light, as shown
in Fig. 1.

Because of biological cells’ characteristics of colorless, transparent, weak absorp-
tion and scatter, the assumption of the light projection [24] can be applied to the meth-
od. So the diffraction of light in a biological sample can be negligible, and light is
assumed to propagate along straight lines. The light passes through the grid and gets
a phase point ϕi on the CCD, where aij is the length of the i-th scan line truncated by
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the j-th grid element and nj is the refractive index difference between the j-th grid el-
ement and the surrounding liquid medium. So ϕi can be given by

i = 1, 2, ..., M; j = 1, 2, ..., N (1)

Since the grid is generally relatively dense, i.e. M < N, so in theory equations have
infinite solutions. In order to find the optimal solution, the method of maximum en-
tropy [25–28] is adopted. 

When point (x, y) is located within a region D of an area S, entropy is defined as

(2)

Its discrete form can be rewritten into

j = 1, 2, ..., N (3)

Adopting the Lagrange multiplication and attaching the boundary value conditions
of the refractive index of the cell, the optimal solution can be determined by the fol-
lowing equation:

i = 1, 2, ..., M; j = 1, 2, ..., N (4)
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Fig. 1. 2D grid model schematic diagram.
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where ΔS = Δx Δy is the area element, φ i is the phase shift that the i-th light has passed

through the sample in fact,  is the phase shift that the i-th light passed

through the sample can be calculated by the grid method, γ  is the Lagrange multipli-

cation factor,  is a constraint condition, a and b are the low-

er and upper refractive index values, which can be appropriately selected according to
the actual situation of the sample.

For a given factor γ , there is no explicit solution in Eq. (4), unless applying an it-
erative method to search for the optimal solution. The steepest decline in the optimi-
zation method is chosen to search for the minimum point of the objective function J(n)
in the negative gradient direction. The two main formulas are used.

First, the gradient of the objective function in any of a grid element can be given by

i = 1, 2, ..., M; j = 1, 2, ..., N (5)

Second, the recurrence formula of the iterative solution can be expressed as

(6)

where  is the t-th iteration solution of the j-th grid element,  is the t-th iteration
solution of all grids on the layer,  is the t-th gradient distribution of all grids on
the layer, ρ* is the optimal step length. When function J (n) takes the minimum value,
the corresponding step length is the optimal step length.

When the iterative solution meets the accuracy requirements, it is outputted, which
represents the difference value distribution of the refractive index between all grids
and the surrounding liquid medium on the layer. Coupled with the refractive index of
the surrounding liquid medium, the refractive index distribution on the layer is ob-
tained. In the refractive index distribution, the value is denoted by ne in the neighbor-
hood of the refractive index of the surrounding liquid medium and the other value is
denoted by  Thus, one can get the distribution information of the refractive index
on the layer.

From the above method of calculating the refractive index distribution information
of each layer, the spatial distribution of the refractive index and the physical thickness
of the cell can be finally obtained. Then, the cellular 3D morphological distribution
can be determined by extracting position information of the critical point between
the surrounding liquid medium and the cell.
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3. Simulation and results analysis

To verify the effectiveness of the method on a homogeneous cell, RBC is taken as
an example. The approximate RBC model is established, and the parameters of
the cross-section of the RBC model and the three-dimensional RBC model are
shown in Fig. 2. In addition, the refractive index value of the surrounding liquid me-
dium and the cell is 1.34 and 1.41, respectively [29], and the wavelength of source is
set to 632.8 nm.  
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Fig. 2. The cross-section image of RBC model (a). The established three-dimensional RBC model (b).

1.7965 μm

–4

–2

0

2

4

3

2

1

0

–1

–2

–3

4

2

1

0

3

y 
[μ

m
]

x [μm]

a b

–4 –2 0 2 4

–4

–2

0

2

4

y 
[μ

m
]

x [μm]
–4 –2 0 2 4

Fig. 3. The light propagates along y-axis. The wrapped (a) and unwrapped (b) phase image. 
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Fig. 4. The light propagates along z-axis. The wrapped (a) and unwrapped (b) phase image. 
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When RBC is parallelly irradiated by the light source from two orthogonal direc-
tions, the corresponding wrapped phase images and unwrapped phase images are ac-
quired along the y-axis illumination as shown in Fig. 3 and along the z-axis illumination
as shown in Fig. 4. 

According to the methods described above, the cellular refractive index distribution
information of each layer is acquired by means of MATLAB software, which is stored
in a three-dimensional matrix. The cellular surface morphology information can be ex-
tracted from the matrix, especially, the coordinate information of the critical point be-
tween the surrounding liquid medium and the cell. The extracted three-dimensional
discrete points can be outputted and revealed as shown in Fig. 5. Besides, the two-di-
mensional scatter plot of the cross-section image is demonstrated in Fig. 6.

The morphology of a concave disc shown in Fig. 5 agrees with the appearance of
RBC very well. The reconstructed cross-section image of a RBC model (shown in
Fig. 6) is in conformity with the shape of the model (shown in Fig. 2a). From which,
the 3D reconstruction of RBC, including the unique biconcave disc-shape, is proved
effectively. To be specific, the diameter of the reconstructed RBC is 7.10 μm and
the thickness of the thinnest place is 0.84 μm, with the corresponding errors at 1.4%
and 5.5%, respectively. 

2

1

0

–1
4

2
0

–2
–4 –4

–2

0

2

4

y [μm]

x [μm]

z 
[μ

m
]

Fig. 5. 3D morphological distribution of RBC. 
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Fig. 6. Scatter plot of the reconstructed cross-section image of 3D morphological distribution of RBC.
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In order to study the effect of noise in the reconstruction method, the white Gaussian
noise is introduced to the phase images, which is set at 20 dB signal-noise ratio. With
the method proposed above, the cellular refractive index distribution data are obtained.
The collation map of the cross-section images between the original reconstructed data
and those with Gaussian noise is presented in Fig. 7, and it shows that the morpholog-
ical structure of RBC could be well described with the method proposed in this paper,
even with the Gaussian noise. 

According to the phase shift formula, the cellular axial average refractive index
(along the z-axis) with the Gaussian noise as well as that without noise is calculated
at the same plane as that shown in Fig. 2, which is demonstrated in Fig. 8. From these
data, the average refractive indexes of RBC in this plane, with and without the Gaussian
noise, are calculated at 1.405 and 1.407, with the relative error at 0.36% and 0.25%
compared with the model data of 1.41 respectively. Thus, the validity of the recon-
struction under the Gaussian noise could be confirmed by the contrasting results.
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Fig. 7. Collation map of the reconstructed cross-section images between the original reconstructed data
and data with Gaussian noise.
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Fig. 8. The axial average refractive index distribution.
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4. Conclusion

This paper presents a new method for 3D morphological distribution of the cell.
The proposed method inherits the fast convergence and high efficiency of the maxi-
mum entropy method, and only two cellular orthogonal quantitative phase images are
needed to obtain the spatial refractive index distribution. Thus the 3D morphological
distribution of the cell could be reconstructed in detail. The results indicate that
the proposed reconstruction method for RBC morphology is effective and feasible. It
provides a new way to research the 3D morphological distribution of the biological
cell. Meanwhile, the cell model established at the present stage is relatively simple. It
is necessary to further refine the model and improve the algorithm as well.
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