
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

A Component Model with Support of Mobile

Architectures and Formal Description

Marek Rychlý∗
∗Department of Information Systems, Faculty of Information Technology,

Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic
rychly@fit.vutbr.cz

Abstract
Common features of current information systems have significant impact on software architectures
of these systems. The systems can not be realised as monoliths, formal specification of behaviour
and interfaces of the systems’ parts are necessary, as well as specification of their interaction.
Moreover, the systems have to deal with many problems including the ability to clone compo-
nents and to move the copies across a network (component mobility), creation, destruction and
updating of components and connections during the systems’ run-time (dynamic reconfiguration),
maintaining components’ compatibility, etc. In this paper, we present the component model that
addresses component mobility including dynamic reconfiguration, allows to combine control and
functional interfaces, and separates a component’s specification from its implementation. We focus
on the formal basis of the component model in detail. We also review the related research on the
current theory and practice of formal component-based development of software systems.

1. Introduction

Increasing globalisation of information society
and its progression create needs for extensive
and reliable information technology solutions.
Common requirements for current information
systems include adaptability to variable struc-
ture of organisations, support of distributed
activities, integration of well-established (third
party) software products, connection to a vari-
able set of external systems, etc. Those fea-
tures have significant impact on software archi-
tectures of the systems. The systems can not
be realised as monoliths, exact specification of
functions and interfaces of the systems’ parts
are necessary, as well as specification of their
communication and deployment. Therefore, the
information systems of organisations are realised
as networks of quite autonomous, but cooper-
ative, units communicating asynchronously via
messages of appropriate format [7]. Unfortu-

nately, design and implementation of those sys-
tems have to deal with many problems including
the ability to clone components and to move the
copies across a network (i.e. component mobil-
ity), creation, destruction and updating of com-
ponents and connections during the systems’
run-time (i.e. dynamic reconfiguration), main-
taining components’ compatibility, etc. [6]

Moreover, distributed information systems
are getting involved. Their architectures are
evolving during a run-time and formal spec-
ifications are necessary, particularly in criti-
cal applications. Design of the systems with
dynamic architectures (i.e. architectures with
dynamic reconfigurations) and mobile archi-
tectures (i.e. dynamic architectures with com-
ponent mobility) can not be done by means
of conventional software design methods. In
most cases, these methods are able to describe
semi-formally only sequential processing or sim-
ple concurrent processing bounded to one com-

10 Marek Rychlý

ponent without advanced features such as dy-
namic reconfiguration.

The component-based development (CBD,
see [17]) is a software development methodol-
ogy, which is strongly oriented to composability
and re-usability in a software system’s architec-
ture. In the CBD, from a structural point of
view, a software system is composed of com-
ponents, which are self contained entities ac-
cessible through well-defined interfaces. A con-
nection of compatible interfaces of cooperating
components is realised via their bindings (con-
nectors). Actual organisation of interconnected
components is called configuration. Component
models are specific meta-models of software ar-
chitectures supporting the CBD, which define
syntax, semantics and composition of compo-
nents.

Although the CBD can be the right way to
cope with the problems of the distributed in-
formation systems, it has some limitations in
formal description, which restrict the full sup-
port for the mobile architectures. Those restric-
tions can be delimited by usage of formal bases
that do not consider dynamic reconfigurations
and component mobility, strict isolation of con-
trol and business logic of components that does
not allow full integration of dynamic reconfigu-
rations into the components, etc.

This paper proposes a high-level component
model addressing the mentioned issues. The
model allows dynamic reconfigurations and com-
ponent mobility, defined combination of control
and business logic of components, and sepa-
ration of a component’s specification from its
implementation. The paper also introduces a
formal basis for description of the component
model’s semantics, i.e. the structure and be-
haviour of the components.

The remainder of this paper is organised as
follows. In Section 2, we introduce the compo-
nent model in more detail. In Section 3, we pro-
vide the formal basis for description of the com-
ponent model. In Section 5, we review main ap-
proaches that are relevant to our subject. In Sec-

tion 6, we discuss advantages and disadvantages
of our component model and its formal descrip-
tion compared with the reviewed approaches
and outline the future work. To conclude, in Sec-
tion 7, we summarise our approach and current
results.

2. Component Model

In this section, we describe our approach to the
component model. The component model is pre-
sented in two views: structural and behavioural.
At first, in Section 2.1, we introduce the compo-
nent model’s meta-model, which describes basic
entities of the component model and their rela-
tions and properties. The second view, in Sec-
tion 2.2, is focused on behaviour of the compo-
nent model’s entities, especially on the compo-
nent mobility.

2.1. Meta-model

The Figure 1 describes an outline of the compo-
nent model’s meta-model1 in the UML notation
[20]. Three basic entities represent the core enti-
ties of a component based architecture: a compo-
nent, an interface and a binding (a connector).

The component is an active communicat-
ing entity in a component based software sys-
tem. In our approach, the component con-
sists of component abstraction and compo-
nent implementation. The component abstrac-
tion (CompAbstraction in the meta-model) rep-
resents the component’s specification and be-
haviour given by the component’s formal de-
scription (semantics of services provided by
the component). The component implementa-
tion (CompImplementation) represents a specific
implementation of the component’s behaviour
(an implementation of the services). The imple-
mentation can be primitive or composite. The
primitive implementation (CompImplPrimitive)
is realised directly, beyond the scope of archi-
tecture description (it is “a black-box”). The

1 The figured diagram can not describe additional constraints, e.g. a composite component “contains” bindings
that interconnect only interfaces of the component’s subcomponents, not interfaces of its neighbouring components,
etc.

A Component Model with Support of Mobile Architectures and Formal Description 11

accessible via

to

contains

from

impl. by

consists of
is of

is of

input

is of

output
provides

ref.

ref.

InterfaceCompAbstraction

ReqInterface

CompImplComposite

CompImplementation

Binding

CompImplPrimitive

TypeOfBinding

NamedEntity
name : string

TypeOfInterface

<<enum>>
IntCtrlTypeEnum

start : void
stop : void
clone : void
attach : void
detach : void
getFuncInterf : void
bindFuncInterf : void

ProvInterface

ICProxyInward

ToIReference

ToIRefComp ToIRefInt

ToIControl
type : IntCtrlTypeEnum

TypeOfValue

ToIFuncParamIntCompProxy ICProxyOutward

ToIFunctional

bindings
*

output1

interfacescomponent

*1

input1..*

implementation1
*

subcomponents*

type
1*

type
1

*

inParams

*

type1

*

outParams
1..*proxies*

inner1 inner1
outer

1outer1

component

1

*
interface

1

*

Figure 1. The meta-model of the component model (the UML notation [20])

composite implementation (CompImplComposite)
is decomposable on a system of subcompo-
nents at the lower level of architecture de-
scription (it is “a grey-box”). Those subcom-
ponents are represented by component ab-
stractions (CompAbstraction and relation “con-
sists of”).

Interfaces of a component are described in
relation to the component’s abstraction (re-
lation “accessible via” from CompAbstraction).
We distinguish two types of interfaces: re-
quired and provided (ReqInterface and Prov-

Interface, respectively), according to the type
of services required or provided by the com-
ponent from or to its neighbouring compo-
nents, respectively, at the same level of hi-
erarchy of components (i.e. not from or to
subcomponents of a neighbouring component,
for example). Moreover, the composite com-
ponents’ implementations (CompImplComposite)
provide special internal interfaces, which are
available only for the component’s subcom-
ponents and make accessible the component’s
external interfaces (i.e. the interfaces de-
scribed in relation to CompAbstraction). The en-
tity ICProxyInward connects a composite com-
ponent’s external provided interface to the
component’s internal required interface, while
the entity ICProxyOutward connects a com-
posite component’s internal provided interface
to the component’s external required inter-

face (the relations “outer” and “inner” and
vice versa).

According to the functionality of inter-
faces, we can distinguish functional, con-
trol and reference interfaces (described by
TypeOfInterface). The functional interfaces
(ToIFunct-ional) represent business oriented
services with typed input and output parame-
ters (ToIFuncParam and TypeOfValue). The con-
trol interfaces (ToIControl and its attribute’s
type) provide services for obtaining references
to a component’s provided functional interfaces
(type getFuncInterfaces), for binding a compo-
nent’s required functional interfaces (type bind-

FuncInterface), and for changes of behaviour
(types start and stop) and architecture. The
services for changes of architecture are clone,
attach and detach for obtaining references to a
fresh copy of a component (type “cloning”), at-
taching of a new component as a subcomponent
and detaching of an old subcomponent, respec-
tively. The reference interfaces (ToIReference)
are able to transmit references to components
or interfaces, which is required to support com-
ponent mobility.

Finally, the binding describes connection of
required and provided interfaces of the identi-
cal types and of components at the same level
of the hierarchy into a reliable communication
link (entity Binding). The type of a binding
(TypeOfBinding) can specify a communication

12 Marek Rychlý

style (buffered and unbuffered connection), a
type of synchronisation (blocking and output
non-blocking), etc.

2.2. Behaviour and Support of
Mobile Architectures

The previous section introduces the structure
of the component model. A system described
by means of the component model is one com-
ponent with provided and required interfaces,
which represent the system’s input and output
actions, respectively. The component can be im-
plemented as a primitive component or as a com-
posite component. The primitive component is
realised directly, beyond the scope of architec-
ture description, while the composite component
is decomposable at the lower level of hierarchy
into a system of subcomponents communicating
via their interfaces and their bindings.

Behaviour of a primitive component has to
be defined by a developer, simultaneously with
definitions of the component’s interfaces. The
primitive component is defined as “a black-box”,
i.e. its behaviour can be described as a de-
pendence relation of input and output actions.
Behaviour of a composite component depends
on behaviour of its subcomponents, but it in-
cludes also a description of communication be-
tween connected interfaces of those subcompo-
nents and processing of specific control actions
in the component (e.g. requests for starting or
stopping of the component and their distribu-
tion to the component’s subcomponents, etc.).

In the following description, we focus on the
behaviour of control parts of components par-
ticularly related to the features of mobile ar-
chitectures, i.e. on creation and destruction of
components and connections and on passing of
components. Evolution of a system’s architec-
ture begins in the state where its initialisation
is finished.

A new component can be created as a copy of
an existing component by means of its control
interface clone. The resulting new component
is deactivated (i.e. stopped) and packed into a
message, which can be sent via outgoing con-
nections into different location (via interfaces of

type ToIRefComp) where it can be placed as a
subcomponent of a parent component (by means
of attach interface), connected to local neigh-
bouring components (by means of bindFunc-

Interf and getFuncInterf interfaces) and acti-
vated (by means of start interface). Destruction
of an old component can be done automatically
after deactivating of the component (by means
of stop interface), releasing of all its provided in-
terfaces and disconnecting from its parent com-
ponent (by means of detach interface).

Creation of new connections between two
compatible functional interfaces can be done by
means of passing of functional interfaces (via in-
terfaces of type ToIRefInt). At first, a reference
to provided functional interface (a target inter-
face) is obtained from a component (via control
interface getFuncInterf). This reference is sent
via outgoing connections into different location
(via interfaces of type ToIRefInt), but only in
the same parent component and at the same
level of hierarchy of components (i.e. crossing
the boundary of a composite component is not
allowed). The reference is received by a compo-
nent with compatible required functional inter-
face (a source interface) and a binding of this
interface to referenced interface is created (by
means of control interface bindFuncInterf). De-
struction of a connection can be done by rebind-
ing of a required interface participating in this
connection.

As it follows from the description of be-
haviour, the connections can interconnect only
interfaces of the same types. Moreover, dynamic
creation of new connections and destruction of
existing connection are permitted only for func-
tional interfaces (type ToIFunctional). Those re-
strictions, together with the restriction of pass-
ing of interfaces’ references described in the pre-
vious paragraph, prevent architectural erosion
and architectural drift [11], which are caused
by uncontrollable evolution of dynamic and mo-
bile architecture resulting into degradation of
the components’ dependencies over time. In the
component model, the architecture of control in-
terfaces and their interconnections, which allow
evolution and component mobility, is a static ar-
chitecture.

A Component Model with Support of Mobile Architectures and Formal Description 13

Despite those restrictions, combining of ac-
tions of functional interfaces with actions of
control interfaces is permitted inside primi-
tive components. This allows to build systems
where functional (business) requirements imply
changes of a systems’ architectures.

3. Formal Description

In this section, formal description of behaviour
of the component model’s entities is presented.
The Section 3.1 provides an introduction to the
process algebra π-calculus, which is used in de-
scription in Section 3.2. The description is based
on our previous research on distributed informa-
tion systems as systems of asynchronous concur-
rent processes [13] and the mobile architecture’s
features in such systems [15, 14].

3.1. The π-Calculus

The process algebra π-calculus, known also as a
calculus of mobile processes [10], is an extension
of Robin Milner’s calculus of communicating
systems (CCS). This section briefly summarises
the fundamentals of the π-calculus, a theory of
mobile processes, according to [16]. The follow-
ing theoretical background is required for the
component model’s formal description in Sec-
tion 3.2. The π-calculus allows modelling of sys-
tems with dynamic communication structures
(i.e. mobile processes) by means of two concepts:

a process – an active communicating en-
tity in a system, primitive or expressed in
π-calculus (denoted by uppercase letters in
expressions)2,
a name – anything else, e.g. a communica-
tion link (a port), variable, constant (data),
etc. (denoted by lowercase letters in expres-
sions)3.
Processes use names (as communication

links) to interact, and pass names (as variables,
constants, and communication links) to another

process by mentioning them in interactions. The
names received by a process can be used and
mentioned by it in further interactions (as com-
munication links). This “passing of names” per-
mits mobility of communication links.

Processes evolve by performing actions. The
capabilities for action are expressed via three
kinds of prefixes (“output”, “input” and “unob-
servable”, as it is described later). We can define
the π-calculus processes, their subclass and the
prefixes as follows.
Definition 1 (π-calculus). The processes,
the summations, and the prefixes of the
π-calculus are given respectively by

P ::= M | P | P ′ | (z)P | !P
M ::= 0 | π.P | M + M ′

π ::= x〈y〉 | x(z) | τ
We give a brief, informal account of seman-

tics of π-calculus processes. At first, process 0 is
a π-calculus process that can do nothing, it is the
null process or inaction. If processes P and P ′

are π-calculus processes, then following expres-
sions are also π-calculus processes with formal
syntax according to the Definition 1 and given
informal semantics:
– x〈y〉.P is an output prefix that can send

name y via name x (i.e. via the communi-
cation link x) and continue4 as process P ,

– x(z).P is an input prefix that can receive any
name via name x and continue as process P
with the received name substituted for every
free occurrence5 of name z in the process,

– τ.P is an unobservable prefix that can evolve
invisibly to process P , it can do an internal
(silent) action and continue as process P ,

– P + P ′ is a sum of capabilities of P together
with capabilities of P ′ processes, it proceeds
as either process P or process P ′, i.e. when
a sum exercises one of its capabilities, the
others are rendered void,

– P | P ′ is a composition of processes P and P ′,
which can proceed independently and can in-
teract via shared names,

2 A parametric process is also called “an agent”.
3 The names can be called according to their meanings (e.g. a port/link, a message, etc.).
4 The prefix ensures that process P can not proceed until a capability of the prefix has been exercised.
5 See the Definition 2.

14 Marek Rychlý

– (z)P is a restriction of the scope6 of name z
in process P ,

– !P is a replication that means an infinite
composition of processes P or, equivalently, a
process satisfying the equation !P = P | !P .
The π-calculus has two name-binding opera-

tors. The binding is defined as follows.
Definition 2 (Binding). In each of x(z).P
and (z)P , the displayed occurrence of z is bind-
ing with scope P . An occurrence of a name in
a process is bound if it is, or it lies within the
scope of, a binding occurrence of the name, oth-
erwise the occurrence is free.

In our notations, we will omit a transmit-
ted name, the second parts of input and out-
put prefixes in a π-calculus expression, if it is
not used anywhere else in its scope (e.g. in-
stead of (x)((y)x〈y〉.0 | x(z).0), we can write
(x)(x.0 | x.0)).

Since the sum and composition operators are
associative and commutative (according to the
relation of structural congruence [10]) they can
be used with multiple arguments, independently
of their order. Also an order of application of the
restriction operator is insignificant. We will use
the following notations:
– for m ≥ 3, let

∏m
i=1 Pi = P1 | P2 | . . . | Pm be

a multi-composition of processes P1, . . . , Pm,
which can proceed independently and can in-
teract via shared names,

– for n ≥ 2 and x̃ = (x1, . . . , xn), let
(x1)(x2) . . . (xn)P = (x1, x2, . . . , xn)P =
(x̃)P be a multi-restriction of the scope of
names x1, . . . , xn to process P .
We will omit the null process if the meaning

of the expression is unambiguous according to
the above-mentioned equations (e.g. instead of
x〈y〉.0 | x(z).0, we can write x〈y〉 | x(z)). More-
over, the following equations are true for the null
process:

M + 0 = M P | 0 = P (x)0 = 0

The π-calculus processes can be
parametrised. A parametrised process, an ab-
straction, is an expression of the form (x).P .
We may also regard abstractions as components
of input-prefixed processes, viewing a(x).P as

an abstraction located at name a. In (x).P as in
a(x).P , the displayed occurrence of x is binding
with scope P .
Definition 3 (Abstraction). An abstraction
of arity n ≥ 0 is an expression of the form
(x1, . . . , xn).P , where the xi are distinct. For
n = 1, the abstraction is a monoadic abstrac-
tion, otherwise it is a polyadic abstraction.

When an abstraction (x).P is applied to
an argument y it yields process P {y/x}. Ap-
plication is the destructor of abstractions.
We can define two types of application:
pseudo-application and constant application.
The pseudo-application is defined as follows.
Definition 4 (Pseudo-application). If F def=
(x̃).P is of arity n and ỹ is length n, then
P {ỹ/x̃} is an instance of F . We abbreviate
P {ỹ/x̃} to F 〈ỹ〉. We refer to this instance op-
eration as pseudo-application of an abstraction.

In contract to the pseudo-application that is
only abbreviation of a substitution, the constant
application is a real syntactic construct. It al-
lows to describe a recursively defined process.
Definition 5 (Constant application). A re-
cursive definition of a process constant K is an
expression of the form K

∆= (x̃).P , where x̃ con-
tains all names that have a free occurrence in
P . A constant application, sometimes referred
as an instance of the process constant K, is a
form of process Kbãc.

Communication between processes (a com-
putation step) is formally defined as a reduction
relation → . It is the least relation closed under
a set of reduction rules.
Definition 6 (Reduction). The reduction re-
lation, → , is defined by the following rules:

R-Inter (x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}

R-Tau τ.P + M → P

R-Par
P1 → P ′

1
P1 | P2 → P ′

1 | P2

R-Res P → P ′
(z)P → (z)P ′

R-Struct
P1=P2 → P ′

2=P ′
1

P1 → P ′
1

R-Const Kbãc → P{ã/x̃} K
∆= (x̃).P

6 The scope of a restriction may change as a result of interaction between processes.

A Component Model with Support of Mobile Architectures and Formal Description 15

The communication is described by the main
reduction rule R-Inter. It means that a compo-
sition of a process proceeding as either process
M1 or the process, which sends name y via name
x and continues as process P1, and a process
proceeding as either process M2 or the process,
which receives name z via name x and continues
as process P2, can perform a reduction step. Af-
ter this reduction, the process is P1 | P2 {y/z}
(all free occurrences of z in P2 are replaced by y).

3.2. Description of the Component
Model

A software system can be described by means
of the component model as one component with
provided and required interfaces, which repre-
sent the system’s input and output actions, re-
spectively. According to the component model’s
definition, every component can be implemented
as a primitive component or as a composite com-
ponent. Since a primitive component is realised
as “a black-box”, its behaviour has to be de-
fined by its developer. This behaviour can be
formally described as a π-calculus process, which
uses names representing the component’s inter-
faces, but also implements specific control ac-
tions provided by the component (e.g. requests
to start or stop the component). On the con-
trary, a composite component is decomposable
at the lower level of hierarchy into a system of
subcomponents communicating via their inter-
faces and their bindings (the component is “a
grey-box”). Formal description of the composite
component’s behaviour is a π-calculus process,
which is composition of processes representing
behaviour of the component’s subcomponents,
processes implementing communication between
interconnected interfaces of the subcomponents
and internal interfaces of the component and
processes realising specific control actions (e.g.
the requests to start or stop the composite com-
ponent, but including their distribution to the
component’s subcomponents, etc.).

Before we define π-calculus processes imple-
menting the behaviour of a component’s indi-
vidual parts, we need to define the component’s
interfaces within the terms of the π-calculus, i.e.

as names used by the processes. The following
names can be used in external or internal view
of a component, i.e. for the component’s neigh-
bours or the composite component’s subcompo-
nents, respectively.
– external: s0, s1, c, rs

1, . . . , r
s
n, pg

1, . . . , p
g
m (of a

primitive or composite component),
– internal: a, r′s1 , . . . , r′sm, p′g1 , . . . , p

′g
n (of a com-

posite component only),
where n is a number of the component’s re-
quired functional interfaces, m is a number of
the component’s provided functional interfaces
(both from the external view) and the names
have the following semantics:

via s0 – a running component accepts a re-
quest for its stopping, which a composite
component distributes also to all its subcom-
ponents,
via s1 – a stopped component accepts a
request for its starting, which a composite
component distributes also to all its subcom-
ponents,
via c – a component accepts a request for its
cloning and returns a new stopped instance
of the component as a reply,
via rs

i – a component accepts a request for
binding given provided functional interface
(included in the request) to the required
functional interface ri,
via pg

j – a component accepts a request for
referencing to the provided functional inter-
face pj that is returned as a reply,
via a – a composite component accepts a
request for attaching its new subcomponent,
i.e. for attaching the subcomponent’s s0 and
s1 names (stop and start interfaces), which
can be called when the composite component
will be stopped or started, respectively, and
as a reply, it returns a name accepting the
request to detach the subcomponent.
We should remark that there is a relation-

ship between the names representing functional
interfaces in the external view and the names
representing corresponding functional interfaces
in the internal view of the composite compo-
nent. The composite component connects its ex-
ternal functional interfaces r1, . . . , rn (required)
and p1, . . . , pm (provided) accessible via names

16 Marek Rychlý

rs
1, . . . , r

s
n and pg

1, . . . , p
g
m, respectively, to internal functional interfaces p′1, . . . , p′n (provided) and

r′1, . . . , r′m (required) accessible via names p′g1 , . . . , p
′g
n and r′s1 , . . . , r′sm, respectively. Requests received

via external functional provided interface pj are forwarded to the interface, which is bound to
internal functional required interface r′j (and analogously for interfaces p′i and ri).

3.2.1. Interface’s References and Binding

At first, we define an auxiliary process Wire7, which can receive a message via name x (i.e. input)
and send it to name y (i.e. output) repeatedly till the process receives a message via name d (i.e.
disable processing).

Wire
∆= (x, y, d).(x(m).y〈m〉.Wirebx, y, dc + d)

Binding of a component’s functional interfaces is done via control interfaces. These control
interfaces provide references to a component’s functional provided interfaces and allow to bind a
component’s functional required interfaces to referenced fictional provided interfaces of another
local components. Process CtrlIfs implementing the control interfaces can be defined as follows

SetIf
∆= (r, s, d).s(p).(d.Wirebr, p, dc | SetIfbr, s, dc)

GetIf
def
= (p, g).g(r).r〈p〉

Plug
def
= (d).d

CtrlIfs
def
= (r1, . . . , rn, r

s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m)

.(
n∏

i=1

(rd
i)(Plug〈rd

i 〉 | SetIfbri, rs
i , r

d
i c) |

m∏
j=1

!GetIf〈pj , p
g
j 〉)

where names r1, . . . , rn, rs
1, . . . , r

s
n, p1, . . . , pm, pg

1, . . . , p
g
m have been defined at the beginning of

Section 3.2. Let us assume CtrlIfs shares its names r1, . . . , rn and p1, . . . , pm with a process im-
plementing a component’s core functionality via its required and provided interfaces, respectively.
Pseudo-application GetIf〈pj , p

g
j 〉 enables process CtrlIfs to receive a name x via pg

j and to send pj

via name x as a reply (it provides a reference to an interface represented by pj). Constant application
SetIfbri, rs

i , r
d
i c enables process CtrlIfs to receive a name x via rs

i , which will be connected to ri
by means of a new instance of process Wire (it binds a required interface represented by ri to a
provided interface represented by x). To remove a former connection of ri, a request is sent via rd

i

(in case it is the first connection of ri, i.e. there is no former connection, the request is accepted by
pseudo-application Plug〈rd

i 〉).
In a composite component, the names representing external functional interfaces r1, . . . , rn,

p1, . . . , pm are connected to the names representing internal functional interfaces p′1, . . . , p′n,
r′1, . . . , r′m. Requests received via external functional provided interface pj are forwarded to the
interface, which is bound to internal functional required interface r′j (and analogously for interfaces
p′i and ri). This is described in process CtrlEI .

CtrlEI
def
= (r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

.
n∏

i=1

(d)Wirebri, p′i, dc |
m∏

j=1

(d)Wirebr′j , pj , dc

7 The process will be used also in the following parts of Section 3.2.

A Component Model with Support of Mobile Architectures and Formal Description 17

3.2.2. Control of a Component’s Life-cycle

Control of a composite component’s life-cycle8 can be described as process CtrlSS .

Dist
∆= (p,m, r).(p〈m〉.Distbp,m, rc + r)

Life
∆= (sx, sy, px, py).sx(m).(r)(Distbpx,m, rc | r.Lifebsy, sx, py, pxc)

Attach
def
= (a, p0, p1).a(c0, c1, cd)(d)

(cd(m).d〈m〉.d〈m〉 | Wirebp0, c0, dc | Wirebp1, c1, dc)

CtrlSS
def
= (s0, s1, a).(p0, p1)(Lifebs1, s0, p1, p0c | !Attach〈a, p0, p1〉)

where names s0 and s1 represent the component’s interfaces that accept stop and start requests,
respectively, and name a that can be used to attach a new subcomponent’s stop and start interfaces
(at one step).

The requests for stopping and starting the component are distributed to its subcomponents
via names p0 and p1. Constant application Lifebs1, s0, p1, p0c enables process CtrlSS to receive
a message m via s0 or s1. Message m is distributed to the subcomponents by means of constant
application Distbpx,m, rc via shared name px, which can be p0 in case the component is running or
p1 in case the component is stopped. When all subcomponents accepted message m, it is announced
via name r and the component is running or stopped and ready to receive a new request to stop
or start, respectively.

Pseudo-application Attach〈a, p0, p1〉 enables process CtrlSS to receive a message via a, a re-
quest to attach a new subcomponent’s stop and start interfaces represented by names c0 and c1,
respectively. The names are connected to p0 and p1 via new instances of processes Wire. Third
name received via a, cd, can be used later to detach the subcomponent’s previously attached stop
and start interfaces.

3.2.3. Cloning of Components and Updating of Subcomponents

Cloning of a component allows to transport the component’s fresh copy into different location, i.e.
its subsequent attaching as a subcomponent of other component. The processes of the cloning can
be described as follows

Ctrlclone
∆= (x).x(k).(s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m, r, p)

(k〈s0, s1, c, r, p〉 | r〈rs
1, . . . , r

s
n〉 | p〈pg

1, . . . , p
g
m〉

| Component〈s0, s1, c, r
s
1, . . . , r

s
n, p

g
1, . . . , p

g
m〉 | Ctrlclonebxc)

where pseudo-application Component〈s0, s1, c, r
s
1, . . . , r

s
n, p

g
1, . . . , p

g
m〉 with well-defined parameters

describes behaviour of the cloned component. When process Ctrlclone receives a request k via
name x, it sends names s0, s1, c, r, p via name k as a reply. The first three names represent “stop”,
“start” and “clone” interfaces of a fresh copy of the component. The process is also ready to send
names representing functional requested and provided interfaces of the new component, i.e. names
rs

1, . . . , r
s
n via name r names pg

1, . . . , p
g
m via name p, respectively, and to receive a new request.

The fresh copy of a component can be used to replace a compatible subcomponent of a compos-
ite component. The process of update, which describes the replacing of an old subcomponent with
a new one, is not mandatory part of the composite component’s behaviour and its implementation

8 A primitive component handles stop and start interfaces directly.

18 Marek Rychlý

depends on particular configuration of the component (e.g. if the component allows updating of its
subcomponents, a context of the replaced subcomponent, which parts of the component have to be
stopped during the updating, etc.). As an illustrative case, we can describe process Update as follows

Update
∆= (u, a, s0, sd, r

s
1, . . . , r

s
m, p

g
1, . . . , p

g
n)(k, s′d)

.(u〈k〉.k(s′0, s
′
1, c, r

′, p′).s0.a〈s′0, s′1, s′d〉.sd

.r′(r′s1 , . . . , r
′s
n).(x)(pg

1〈x〉.x(p).r′s1 〈p〉 . . . pg
n〈x〉.x(p).r′sn 〈p〉)

.p′(p′g1 , . . . , p
′g
m).(x)(p′g1 〈x〉.x(p).rs

1〈p〉 . . . p′gn 〈x〉.x(p).rs
m〈p〉)

.s′1.Updatebu, a, s′0, s′d, rs
1, . . . , r

s
m, p

g
1, . . . , p

g
nc)

Process Update sends via name u a request for a fresh copy of a cloned component. As a
return value, it receives a vector of names representing all functional interfaces in a process de-
scribing behaviour of the new component, which will replace an old subcomponent in its parent
component implementing the update process. Name a provides the parent component’s internal
control interface to attach the new subcomponent’s stop and start interfaces (the s′0 and s′1 names)
and an interface later used to detach the subcomponent (name s′d). Name s0 is used to stop the
replaced subcomponent and name sd is needed to detach the old subcomponent’s stop and start
interfaces. Finally, names rs

1, . . . , r
s
m, pg

1, . . . , p
g
n represent a context of the updated subcomponent,

i.e. connected interfaces of neighbouring subcomponents.

3.2.4. Primitive and Composite Components

In conclusion, we can describe the complete behaviour of primitive and composite components. Let’s
assume that process abstraction Compimpl with parameters s0, s1, r1, . . . , rn, p1, . . . , pm describes
behaviour of the core of a primitive component (i.e. excluding processing of control actions), as it is
defined by the component’s developer. Further, let’s assume that process abstraction Compsubcomps

with parameters a, r′s1 , . . . , r′sm, p′g1 , . . . , p
′g
n describes behaviour of a system of subcomponents in-

terconnected by means of their interfaces into a composite component (see Section 3.2.1). Names
s0, s1, r1, . . . , rn, p1, . . . , pm and names a, rs

1, . . . , r
s
m, pg

1, . . . , p
g
n are defined at the beginning of

Section 3.2.
Processes Compprim and Compcomp representing behaviour of the mentioned primitive and

composite components can be described as follows

Compprim
def
= (s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m)(r1, . . . , rn, p1, . . . , pm)

.(CtrlIfs〈r1, . . . , rn, r
s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉 | Ctrlclonebcc

| Compimpl〈s0, s1, r1, . . . , rn, p1, . . . , pm〉)

Compcomp
def
= (s0, s1, c, r

s
1, . . . , r

s
n, p

g
1, . . . , p

g
m)

.(a, r1, . . . , rn, p1, . . . , pm, r
′
1, . . . , r

′
m, p

′
1, . . . , p

′
n)

(CtrlIfs〈r1, . . . , rn, r
s
1, . . . , r

s
n, p1, . . . , pm, p

g
1, . . . , p

g
m〉

| CtrlIfs〈r′1, . . . , r′m, r′s1 , . . . , r′sm, p′1, . . . , p′n, p′g1 , . . . , p′gn 〉
| CtrlEI〈r1, . . . , rn, p1, . . . , pm, r

′
1, . . . , r

′
m, p

′
1, . . . , p

′
n〉 | Ctrlclonebcc

| CtrlSS〈s0, s1, a〉 | Compsubcomps〈a, r′s1 , . . . , r′sm, p′g1 , . . . , p′gn 〉)
where processes CtrlIfs represent behaviour of control parts of components related to their inter-
faces (see Section 3.2.1), processes Ctrlclone describe behaviour of a control part of components
related to cloning of these components (see Section 3.2.3), process CtrlSS represents behaviour of

A Component Model with Support of Mobile Architectures and Formal Description 19

a component’s control part handling its stop and start requests (see Section 3.2.2), and process
CtrlEI describes behaviour of communication between internal and external functional interfaces
of a component (see Section 3.2.1).

4. An Example

As an example, we describe a component based system for user authentication and access control.
At first the system receives an input from an user in form (username, password) and verifies the
user’s password in order to check the user’s identity. If the user’s password passes the verification,
the system creates a new session handle reserved for the user. The session handle is connected to
the system’s core. It enables the user to access the system’s core functionality and performs the
access control according to the user’s authorisation. Finally, the session handle is passed back to
the user as a return value of the whole process.

The system is composed of
• Login component verifying the user’s authentication and initiating the new session,
• Core component providing the system’s core functionality,
• and Session component enabling the user to access the Core component according to the

user’s authorisation.
For simplicity, let’s assume that component Session has only one input interface for the user’s

calls of the system’s core without any explicit authorisation checks and component Core imple-
ments simple shared memory – one storage for all users with two interfaces: for saving and loading
a value to and from the memory, respectively.

4.1. Definition of the Components’ Implementations

At first, we describe behaviour of cores of primitive components, i.e. the components’ implemen-
tations, which have to be defined by developer of the system (see Section 3.2.4). Description of
behaviour of the Core component’s implementation is:

Coreimpl
def
= (s0, s1, psave, pload)(val)Core′implbundef, psave, ploadc

Core′impl
∆= (val, psave, pload)(psave(val′).Core′implbval′, psave, ploadc

+ pload(ret).(ret〈val〉 | Core′implbval, psave, ploadc)
where process Coreimpl can save a message received via name psave and load the saved message
and send it as a reply on a request received via name pload.

Description of behaviour of the Session component’s implementation is the following:

Sessionimpl
def
= (s0, s1, rsave, rload, phandle)Session′impl〈rsave, rload, phandle〉

Session′impl
def
= (rsave, rload, phandle)(save, load)(phandle(ret)

.ret〈save, load〉.Session′implbrsave, rload, phandle, save, loadc)

Session′′impl
∆= (rsave, rload, phandle, save, load)

(save(call).rsave〈call〉.Session′impl〈rsave, rload, phandle〉
+ load(call).rload〈call〉.Session′impl〈rsave, rload, phandle〉)

20 Marek Rychlý

where process Sessionimpl can receive via name phandle an user’s request, which is specified subse-
quently by inputs via names save or load, and pass it to process Coreimpl via names rsave or rload

(the required interfaces), respectively.
Finally, behaviour of the Login component’s implementation can be defined as follows:

Loginimpl
∆= (s0, s1, pinit, sysattach, sessionclone, core

g
save, core

g
load)

pinit(username, password, ret)
.(Loginverify〈username, password, ok, fail〉
| Login′implbsysattach, sessionclone, core

g
save, core

g
load, ret, ok, failc

| Loginimplbs0, s1, pinit, sysattach, sessionclone, core
g
save, core

g
loadc)

Login′impl
∆= (sysattach, sessionclone, core

g
save, core

g
load, ret, ok, fail)(new, d

′, t)

(fail.ret〈error〉 + ok.sessionclone〈new〉.new(s′0, s
′
1, clone

′, r′, p′)
.sysattach〈s′0, s′1, d′〉.r′(r′ssave, r

′s
load).p′(p′ghandle)

.coregsave〈t〉.t(save).r′ssave〈save〉.coregload〈t〉.t(load).r′sload〈load〉

.p′ghandle(handle).(s
′
1 | ret〈handle〉)

where process Loginimpl can receive an user’s initial request via name pinit as a triple of names
(username, password, ret) and after successful verification of the user’s name and password, the
process returns a new session’s handle via name ret. Name sysattach provides an interface to attach
new subcomponents into the system (see Section 3.2.2), name sessionclone is connected to a provided
interface for cloning of Session component (see Section 3.2.3), and names coregsave or coregload are
connected to provided control interfaces for getting references to interfaces save or load of compo-
nent Core (see Section 3.2.1), respectively. The definition contains pseudo-application of process
abstraction Loginverify〈username, password, ok, fail〉, which represents description of behaviour

of user’s authentication process (e.g. Loginverify
def
= (. . .).ok for authorising of all users).

4.2. Description of the Component Based System

Now, we can describe behaviour of individual components including their control parts, as well as
behaviour and structure of a composite component, which represents the whole component based
system. According to Section 3.2.4, behaviour of components Core and Session can be described
as follows:

Core
def
= (s0, s1, c, p

g
save, p

g
load).(psave, pload)

(CtrlIfs〈psave, pload, p
g
save, p

g
load〉 | Ctrlclonebcc

| Coreimpl〈s0, s1, psave, pload〉)

Session
def
= (s0, s1, c, r

s
save, r

s
load, p

g
handle).(rsave, rload, phandle)

(CtrlIfs〈rsave, rload, r
s
save, r

s
load, phandle, p

g
handle〉 | Ctrlclonebcc

| Sessionimpl〈s0, s1, rsave, rload, phandle〉)
Behaviour of component Login has to be described differently from the others, because it uses

control interfaces sysattach, sessionclone, core
g
save, core

g
load, which can not be referenced (contrary

to functional interfaces, see Section 2.2). This case can be compared with the description of Update

A Component Model with Support of Mobile Architectures and Formal Description 21

process in Section 3.2.3. The behaviour of component Login can be described as follows:

Login
def
= (s0, s1, c, p

g
init, sysattach, sessionclone, core

g
save, core

g
load).(pinit)

(CtrlIfs〈pinit, p
g
init〉 | Ctrlclonebcc

| Loginimplbs0, s1, pinit, sysattach, sessionclone, core
g
save, core

g
loadc)

Finally, behaviour and structure of a composite component, which represents the whole com-
ponent based system, can be described as follows:

System
def
= (s0, s1, c, p

g
init)(a, pinit, r

′
init, r

′s
init)

.(CtrlIfs〈pinit, p
g
init〉 | CtrlIfs〈r′init, r

′s
init〉 | CtrlEI〈pinit, r

′
init〉

| Ctrlclonebcc | CtrlSS〈s0, s1, a〉 | System′〈a, r′sinit〉)

System′ def
= (sysattach, r

s
init)

(pg
init, core

g
save, core

g
load, sess

s
save, sess

s
load, sess

g
handle, loginclone, coreclone)

(sessclone, s
login
0 , slogin

1 , dlogin, score
0 , score

1 , dcore, ssess
0 , ssess

1 , dsess)

(Login〈slogin
0 , slogin

1 , loginclone, p
g
init, sysattach, sessclone, core

g
save, core

g
load〉

| Core〈score
0 , score

1 , coreclone, core
g
save, core

g
load〉

| Session〈ssess
0 , ssess

1 , sessclone, sess
s
save, sess

s
load, sess

g
handle〉

| sysattach〈slogin
0 , slogin

1 , dlogin〉 | sysattach〈score
0 , score

1 , dcore〉

| sysattach〈ssess
0 , ssess

1 , dsess〉 | pg
init〈t〉.t(init).rs

init〈init〉)

5. Related Work

There have been proposed several component models [8]. In this section, we focus on two contempo-
rary component models supporting some features of dynamic architectures and formal descriptions.

5.1. Fractal

The component model Fractal [3] is a general component composition framework with support for
dynamic architectures. A Fractal component is formed out of two parts: a controller and a content.
The content of a composite component is composed of a finite number of nested components.
Those subcomponents are controlled by the controller (“a membrane”) of the enclosing component.
A component can be shared as a subcomponent by several distinct components. A component with
empty content is called a primitive component. Every component can interact with its environment
via operations at external interfaces of the component’s controller, while internal interfaces are
accessible only from the component’s subcomponents. The interfaces can be of two sorts: client
(required) and server (provided). Besides, a functional interface requires or provides functionalities
of a component, while a control interface is a server interface with operations for introspection
of the component and to control its configuration. There are two types of directed connections
between compatible interfaces of components: primitive bindings between a pair of components
and composite bindings, which can interconnect several components via a connector.

22 Marek Rychlý

Behaviour of Fractal components can be for-
mally described by means of parametrised net-
works of communicating automata language [2].
Behaviour of each primitive component is mod-
elled as a finite state parametrised labelled tran-
sition system (pLTS) – a labelled transition
system with parametrised actions, a set of pa-
rameters of the system and variables for each
state. Behaviour of a composed Fractal compo-
nent is defined using a parametrised synchroni-
sation network (pNet). It is a pLTS computed
as a product of subcomponents’ pLTSs and a
transducer. The transducer is a pLTS, which
synchronises actions of the corresponding LTSs
of the subcomponents. When synchronisation of
the actions occurs, the transducer changes its
state, which means reconfiguration of the com-
ponent’s architecture. Also behaviour of a Frac-
tal component’s controller can be formally de-
scribed by means of pLTS/pNet. The result is
composition of pLTSs for binding and unbind-
ing of each of the component’s functional inter-
faces (one pLTS per one interface) and pLTS for
starting and stopping the component.

5.2. SOFA and SOFA 2.0

In the component model SOFA [12], a part of
SOFA project (SOFtware Appliances), a software
system is described as a hierarchical composition
of primitive and composite components. A com-
ponent is an instance of a template, which is de-
scribed by its frame and architecture. The frame
is a “black-box” specification view of the com-
ponent defining its provided and required inter-
faces. Primitive components are directly imple-
mented by described software system – they have
a primitive architecture. The architecture of a
composed component is a “grey-box” implemen-
tation view, which defines first level of nesting
in the component. It describes direct subcompo-
nents and their interconnections via interfaces.
The connections of the interfaces can be realised
via connectors, implicitly for simple connections
or explicitly. Explicit connectors are described
in a similar way as the components, by a frame
and architecture. The connector frame is a set of
roles, i.e. interfaces, which are compatible with

interfaces of components. The connector archi-
tecture can be simple (for primitive connectors),
i.e. directly implemented by described software
system, or compound (for composite connectors),
which contains instances of other connectors and
components.

The SOFA uses a component definition lan-
guage (CDL) [9] for specification of compo-
nents and behaviour protocols (BPs) for formal
description of their behaviours. The BPs [21]
are regular-like expressions on the alphabet of
event tokens representing emitting and accepting
method calls. Behaviour of a component (its in-
terface, frame and architecture) can be described
by a BP (interface, frame and architecture proto-
col, respectively) as the set of all traces of event to-
kens generated by the BP. The architecture pro-
tocols can be generated automatically from ar-
chitecture description by a CDL compiler. A pro-
tocol conformance relation ensures the architec-
ture protocol generates only traces allowed by the
frame protocol. From dynamic architectures, the
SOFA allows only a dynamic update of compo-
nents during a system’s runtime. The update con-
sists in change of implementation (i.e. an archi-
tecture) of the component by a new one. Compat-
ibility of the implementations is guaranteed by
the conformance relation of a protocol of the new
architecture and the component’s frame protocol.

Recently, the SOFA team is working on
a new version of the component model. The
component model SOFA 2.0 [5] aims at re-
moving several limitations of the original ver-
sion of SOFA – mainly the lack of support
of dynamic reconfigurations of an architecture,
well-structured and extensible control parts of
components, and multiple communication styles
among components.

6. Discussion and Future Work

The component model proposed in this paper is
able to handle mobile architectures, unlike the
SOFA that supports only a subset of dynamic
architectures (implementing the update opera-
tion) or the Fractal/Fractive, which does not
support components mobility. As is described in

A Component Model with Support of Mobile Architectures and Formal Description 23

Section 3.2, the π-calculus provides fitting for-
malism for description of software systems based
upon the component model.

The proposed semantics of the component
model permits to combine control interfaces
and functional interfaces inside individual prim-
itive components where the control actions can
be invoked by the functional actions, i.e. by
a system’s business logic represented by busi-
ness oriented services. This allows to build sys-
tems where functional (business) requirements
imply changes of the systems’ architectures. Re-
gardless, in some cases, this feature can lead
to architectural erosion and architectural drift
[11], i.e. unpredictable evolution of the system’s
architecture. For that reason, the component
model forbids dynamic changes of connections
between control interfaces, which reduces archi-
tecture variability to patterns predetermined at
a design-time. Formal description of the com-
ponents integrating the control and functional
actions can be compared with the transducer in
the Fractal/Fractive approach (see Section 5.1).

The next feature of the component model is
partially independence of a component’s spec-
ification from its implementation (see the de-
scription of entities CompAbstraction and Comp-

Implementation in Section 2.1). This feature is
similar to the SOFA’s component-template re-
lationship. It allows to control behaviour of a
primary component’s implementation, define a
composite component’s border that isolates its
subcomponents, which is called “a membrane”
in the Fractal, etc. (for comparison, see Section
5.1 and Section 5.2)

The attentive reader will have noticed that
the process algebra π-calculus, as it is defined
in Section 3.1 and applied to the formal de-
scription of behaviour of the component model’s
entities in Section 3.2, allows to describe only
synchronous communication. Although, in most
cases, we need to apply the component model to
distributed software systems with asynchronous
communication. This limitation is a consequence
of the reduction relation’s definition (see Defini-
tion 6 in Section 3.1). The problem can be solved
by proposing of a “buffered” version of commu-

nication between interfaces (i.e. in process Wire
from Section 3.2.1) or, alternatively, by using of
an asynchronous π-calculus [16].

The next important extension of the
presented approach is application of typed
π-calculus [10, 16], which allows to distinguish
types of names. This feature is necessary to for-
mally describe constraints of the type system
of interfaces in behaviour of components. In the
component model’s metamodel, the type system
is defined by instances of entity TypOfInterface

and its descendants and related entities (see Sec-
tion 2.1).

However, the above mentioned modifications
are out of scope of this paper and a final ver-
sion of the component model’s formal descrip-
tion including the proposed extensions is part
of current work. Further ongoing work is re-
lated to the realisation of a supporting envi-
ronment, which allows integration of the com-
ponent model into software development pro-
cesses, including integration of verification tools
and implementation support. The idea is to use
results of the ArchWare project [1], especially
for theorem-proving and model-checking9. We
intend to use the Eclipse Modeling Framework
(EMF) [4, 19] for modeling and code generation
of tools based on the component model and the
Eclipse Graphical Modeling Framework (GMF)
[18] for developing graphical editors according
to the rules described in the component model’s
metamodel (based on EMF).

7. Conclusion

In this paper, we have presented an approach,
which contributes to specify component-based
software systems with features of dynamic and
mobile architectures. The proposed component
model splits a software system into primitive
and composite components according to decom-
posability of its parts, and the components’
functional and control interfaces according to
the types of required or provided services. The
components can be described at different levels
of abstraction, as their specifications and imple-
mentations.

9 See the tools presented in documents D3.5b and D3.6c at [1].

24 Marek Rychlý

Semantics of the component model’s entities
is formally described by means of the process
algebra π-calculus (known as a calculus of mo-
bile processes). Formal description of behaviour
of a whole system can be derived from the vis-
ible behaviour of its primitive components and
their compositions and communication, both de-
fined at a design-time. The result is a π-calculus
process, which describes the system’s architec-
ture, including its evolution and component mo-
bility, and communication behaviour of the sys-
tem. Thereafter, critical properties of the system
can be verified by means of π-calculus model
checker.

We are currently working on extending our
approach to use asynchronous communication
between components and a type system for their
interfaces. Future work is related to integration
of the component model into software develop-
ment processes, including application of veri-
fication tools and implementation support. In
the broader context, the research is a part of
a project focused on formal specifications and
prototyping of distributed information systems.

Acknowledgements This research has
been supported by the Research Plan No. MSM
0021630528 “Security-Oriented Research in In-
formation Technology”.

References

[1] ArchWare project. http://www.arch-ware.org/,
Nov. 2006.

[2] T. Barros. Formal specification and verification
of distributed component systems. PhD thesis,
Université de Nice – INRIA Sophia Antipolis,
Nov. 2005.

[3] E. Bruneton, T. Coupaye, and J.-B. Stefani.
The Fractal component model. Draft of spec-
ification, version 2.0-3, The ObjectWeb Consor-
tium, Feb. 2004.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Eller-
sick, and T. J. Grose. Eclipse Modeling Frame-
work. The Eclipse Series. Addison Wesley Pro-
fessional, Aug. 2003.

[5] T. Bureš, P. Hnětynka, and F. Plášil. SOFA
2.0: Balancing advanced features in a hierarchi-
cal component model. In Proceedings of SERA
2006, Seattle, USA, 2006. IEEE Computer So-
ciety.

[6] J. Král and M. Žemlička. Autonomous compo-
nents. In SOFSEM 2000: Theory and Practice
of Informatics, volume 1963 of Lecture Notes in
Computer Science. Springer, 2000.

[7] J. Král and M. Žemlička. Software confedera-
tions and alliances. In CAiSE Short Paper Pro-
ceedings, volume 74 of CEUR Workshop Pro-
ceedings, pages 229–232. CEUR-WS.org, 2003.

[8] K.-K. Lau and Z. Wang. A survey of software
component models (second edition). Pre-print
CSPP-38, School of Computer Science, Univer-
sity of Manchester, Manchester, UK, May 2006.

[9] V. Mencl. Component definition language. Mas-
ter’s thesis, Charles University, Prague, 1998.

[10] R. Milner, J. Parrow, and D. Walker. A calculus
of mobile processes, parts I and II. Journal of
Information and Computation, 100:41–77, Sept.
1992.

[11] D. E. Perry and A. L. Wolf. Foundations for
the study of software architecture. SIGSOFT
Software Engineering Notes, 17(4):40–52, Oct.
1992.

[12] F. Plášil, D. B́ılek, and R. Janeček.
SOFA/DCUP: Architecture for component
trading and dynamic updating. In 4th Interna-
tional Conference on Configurable Distributed
Systems, pages 43–51, Los Alamitos, CA, USA,
May 1998. IEEE Computer Society.

[13] M. Rychlý. Towards verification of systems
of asynchronous concurrent processes. In Pro-
ceedings of 9th International Conference Infor-
mation Systems Implementation and Modelling
(ISIM’ 06), pages 123–130. MARQ, Apr. 2006.

[14] M. Rychlý. Component model with support of
mobile architectures. In Information Systems
and Formal Models, pages 55–62. Faculty of Phi-
losophy and Science in Opava, Silesian Univer-
sity in Opava, Apr. 2007.

[15] M. Rychlý and J. Zendulka. Distributed in-
formation system as a system of asynchronous
concurrent processes. In MEMICS 2006 Second
Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science. Faculty
of Information Technology BUT, 2006.

A Component Model with Support of Mobile Architectures and Formal Description 25

[16] D. Sangiorgi and D. Walker. The π-Calculus:
A Theory of Mobile Processes. Cambridge
University Press, First paperback edition,
Oct. 2003.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley
Professional, second edition, Nov. 2002.

[18] The Eclipse Foundation. Eclipse Graphical
Modeling Framework (GMF). http://www.
eclipse.org/gmf/, Sept. 2007.

[19] The Eclipse Foundation. Eclipse Model-
ing Framework Project (EMF). http://www.
eclipse.org/modeling/emf/, Sept. 2007.

[20] Unified Modeling Language, version 1.5. Doc-
ument formal/03-03-01, Object Management
Group, 2003.

[21] S. Vǐsňovský. Modeling software components
using behavior protocols. PhD thesis, Dept. of
Software Engineering, Faculty of Mathematics
and Physics, Charles University, Prague, 2002.

