
e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 51–63, DOI 10.2478/v10233-011-0030-4

Experience with Instantiating an Automated
Testing Process in the Context of Incremental

and Evolutionary Software Development

Janusz Górski∗, Michał Witkowicz∗
∗Departament of Software Engineering, Gdańsk University of Technology

jango@pg.gda.pl, miwi@eti.pg.gda.pl

Abstract
The purpose of this article is to present experiences from testing a complex AJAX-based
Internet-system which is under development for more than five years. The development process
follows incremental and evolutionary lifecycle model and the system is delivered in subsequent
releases. Delivering a new release involves both, the new tests (related to the new and/or modified
functionalities) and the regression tests (after their possible refactoring). The article positions
the testing process within the context of change management and describes the applied testing
environment. Details related to documenting the test cases are given. The problem of automation
of tests is discussed in more detail and a gradual transition from manual to automated tests is
described. Experimental data related to the invested effort and the benefits resulting from tests
automation are given. Plans for further development of the described approach are also presented.

1. Introduction

Testing can serve both, verification and valida-
tion purposes. It can generate considerable costs
(according to [1] it is not unlikely that testing
consumes 40% or more of the total development
effort) and therefore defining testing objectives
and strategy belong to the key decisions to be
made in a software development project. This
includes not only the answer to how much we
want to spend on testing but also what, when and
how to test to maximize benefits while keeping
the costs in reasonable limits. It is well known
that testing cannot prove absolute correctness of
a program [2] and can consume (practically) un-
limited resources. On the other hand, testing can
prove (and does it in practice) that the program
includes faults. Therefore, an important crite-
rion to be used in practice is to drive the testing
process in a way that increases the likelihood of
fault detection. In practical situations it means

that we are interested in such test cases selection
criteria which result in tests that have the highest
potential for detecting significant faults within
given time and budgetary constraints. Signifi-
cant faults are these which have highly negative
impact on the program behavior in its target en-
vironment. For instance, a fault which is never or
very rarely activated within a given operational
context of a program is less significant than a
fault which is activated in (almost) every usage
scenario, unless the former fault is considered
to be “catastrophic” in which case it should be
eliminated even for a very high price.

Current tendency is that the number of ap-
plication programs developed for use in Internet
increases rapidly. The complexity of such appli-
cations grows. As they are often used to support
businesses, commerce and other services, the ex-
pectations related to their dependability increase.
This requires employment of more sophisticated
assurance processes. To maintain their usabil-

52 Janusz Górski, Michał Witkowicz

ity, such programs have to follow the evolution
of their requirements and target environments.
Therefore, in addition to the common corrective
maintenance practices, they have to be subjected
to the perfective and adaptive maintenance pro-
cesses [3]. A program, instead of being considered
as the final result of its development process, is
better understood as an object which appears in
time in subsequent incarnations, following an evo-
lutionary process. An important question then is
not only how to ensure the expected dependabil-
ity of the program, but in addition how to main-
tain the assumed level of guarantees throughout
the program evolution. Without such change in
the attitude we can end up with a product which
quickly disintegrates in time and in consequence,
the users lose their interest in it.

Changes of a program undermine the confi-
dence in its reliability. Even a very small change
(for instance one single bit) can result in a dra-
matic loss of reliability (for instance, the pro-
gram stops to work entirely). A widely adopted
solution is to have regression testing in place,
meaning that the program is subjected to a des-
ignated set of test cases each time it has been
modified. With careful selection of these test
cases, a positive result of all tests supports the
claim that the reliability of the modified program
remains unchanged. Depending on the scope of
the changes involved, the regression test suite is
being modified to reflect the program evolution.

In present business environments, time is
considered a very valuable asset and shortening
time-to-market of new products and services is
among the highest priorities. This is reflected in
the growing popularity of incremental delivery
of software products, where the product is deliv-
ered as a series of subsequent increments, each
increment representing some added value for the
users. From the software assurance viewpoint we
are facing here the same situation as in software
evolution. The product is growing and each sub-
sequent increment is expected not to decrease its
dependability comparing to its predecessor.

Combining incremental development with
software evolution is the common situation which
calls for strengthening software assurance prac-
tices and building them into the software process

from the very beginning. This has been reflected
in the agile approaches to software development
where testing is brought to the front of the pro-
cess by integrating it with the requirements spec-
ification (specifying requirements by test cases)
and running tests as soon as the first increments
are coded.

The purpose of this paper is to present a
case study involving instantiation of an auto-
mated testing process during development of a
substantial Internet application TCT [4,5] based
on AJAX technologies. The application follows
the evolutionary and incremental development
process model. The data presented in this paper
were collected during the period of more than
five years of development and evolution of TCT.

The application is based on AJAX technolo-
gies [6,7]. AJAX radically changes the protocol of
interaction between the Internet browser and the
server. The granularity of exchanged messages
drops down from a full page to a page element
and such elements are exchanged asynchronously
in a way which is highly transparent to the user.
The result is that the user has a feeling of work-
ing interactively without delays caused by page
reloading.

Moving to the AJAX technologies has sig-
nificant impact on program testing. Numerous
techniques, e.g. these described in [8, 9] become
non-applicable or can be applied only partially.
In Table 1 we assess some of them following [8].

Table 1 demonstrates that only selected tech-
niques (in particular, these based on the so called
test recording and replaying) and some tools of
the xUnit type (e.g. squishWeb or Selenium) are
suitable for testing AJAX-based software. Other
techniques are not applicable or require signifi-
cant modifications.

The TCT application considered in this pa-
per is following the incremental and evolutionary
development process. The objective is to deliver
subsequent increments while maintaining a sat-
isfactory level of reliability and keeping the de-
velopment effort in reasonable limits. To achieve
this we had to invest in automation of tests which
proven to be particularly beneficial.

The paper first sets the scene, explaining the
object of testing, its architecture and the pro-

Experience with Instantiating an Automated Testing Process in the Context . . . 53

Table 1. Web testing techniques applied to AJAX-based applications [8]

Testing Adequate Problems Tools
Model-based no Web models extracted are par-

tial; existing Web crawlers are not
able to download site pages

research

Mutation-based no Mutant operators are never being
applied to client Web code; the
application of mutant operators
is difficult

not-existing

Code Coverage partially It is difficult to cover dynamic
events and DOM changes; cov-
erage tools managing a mix of
languages are not available

Javascript: Coverage val-
idator
Java: Cobertura, Emma,
Clover, etc.
Languages mix: not avail-
able

Session-based no It is impossible to reconstruct the
state of the Web pages using only
log-files

research

Capture/Replay
and xUnit

yes Javascript, asynchronous HTTP
requests and DOM analysis are
not always supported

not ok: Maxq, HTTPUnit,
InforMatric, etc.
partially ok: Badboy,
HTMLUnit, etc.
ok: squishWeb, Selenium,
etc.

cess of its development. Then we describe the
testing process and explain how it developed in
time. Next, we present subsequent steps towards
automation of the testing process together with
the collected data which characterize the perfor-
mance of the automated tests. We also highlight
the main factors which, in our opinion, had the
most significant influence on these results. In
conclusion we also present the plans for further
improvement of the process as the application
grows and its usage context becomes richer.

2. Object of Testing

The object under test was an Internet applica-
tion called TCT, being a part of the Trust-IT
framework [4, 5]. The objective of Trust-IT is
to provide methodological and tool support for
representation, maintenance and assessment of
evidence-based arguments. From the user’s per-
spective, TCT implements a set of services. They

cover eighteen groups of key system functionali-
ties accessible by a user (listed in Table 6). Multi-
ple instantiations of the services are deployed for
different groups of users (presently we run some
sixteen such instantiations). Each instantiation
supports different “projects” which are used by
different users. The users work independently and
in parallel, accessing the services by an Internet
browser.

Trust-IT together with the TCT tool has
been developed in a series of projects supported
by EU 5th and 6th Framework Programmes1.
The tool was already applied to analyze safety,
security and privacy of IT systems and services
from different domains, including healthcare, au-
tomobile and business. Presently TCT is being
used to support processes of achieving and as-
sessing conformance to norms and standards, in
particular in the medical and business domains
(more information can be found in [10]). Fur-
ther application domains are being investigated,
including monitoring of critical infrastructures.

1 5th FR UE Project DRIVE, IST-12040, 6th FR UE Integrated Project PIPS IST-507019, 6th FR UE STREP
Project ANGEL IST-033506.

54 Janusz Górski, Michał Witkowicz

2.1. Application Architecture

The architecture of TCT follows the rich
client-server model which is illustrated in Fig-
ure 1 [11]. The model includes three lay-
ers: database server PostgreSQL [12], applica-
tion server JBoss [13] and a client written in
JavaScript [14] in accordance with AJAX (Asyn-
chronous JavaScript and XML) [6]. The client
is automatically uploaded to the browser of the
end user.

Figure 1. The architecture of TCT

The lowest layer (the database) implements
the business logic as a set of stored procedures.
The intermediate layer is based on J2EE [15] and
links the database with the client. Communica-
tion between these layers is based on web services
and SOAP (Simple Object Access Protocol) [16].

Each layer is a complex program: presently
the database stores some 135 procedures, the
intermediate layer and the client layer have 141
classes and 139 classes correspondingly. The two
higher layers include additional structure (inter-
nal layers) to provide for better understandability
and maintainability.

2.2. Increments and Evolution

Following earlier prototypes, the development of
the present TCT tool was initiated in December
2005. At the beginning, the objectives and the
scope of the required functionalities were identi-

fied and the delivery of the functionalities was
planned as a series of increments. The intention
was to follow the incremental development model
[17, 18] by producing deliverables in subsequent
iterations, where each iteration involves require-
ments gathering and analysis, design, implemen-
tation and testing. In effect, each iteration results
in the release of an executable subset of the final
product, which grows incrementally from itera-
tion to iteration to become the final system.

However, it has been soon realized that fol-
lowing the incremental model in a strict sense
is not relevant. As TCT was being developed in
the context of on-going research and the research
objectives (and consequently the results) were
shaped and scoped by the results of the experi-
ments and the feedback received from the partic-
ipants of these experiments, the requirements for
TCT were changing, following a learning curve.
Therefore we had to switch to a more complex,
incremental and evolutionary development model,
which can be characterized as follows [19]: it im-
plies that the requirements, plans, estimates, and
solutions evolve and are being redefined over the
course of the iterations, rather than being fully
defined and “frozen” during the major up-front
specification step before the development iter-
ations begin; evolutionary model is consistent
with the pattern of unpredictable discovery and
change in new product development.

From the testing perspective the incremen-
tal and evolutionary development process poses
important challenges: (1) to maintain reliability
of the subsequent increments it was necessary to
have the regression testing in place from the very
beginning, and (2) to follow the evolution of the
application, the set of regression tests could not
be treated as monotonic (i.e. extended by the new
test cases reflecting the current increment while
preserving the already used test cases); instead
it had to evolve following the changes introduced
to the already existing functionalities.

So far, TCT has been delivered in eight re-
leases: four of them were related to the major
changes and the remaining four were related to
the localized changes of the application. To reflect
this scope of change, the former are also called
main releases and the latter intermediate releases.

Experience with Instantiating an Automated Testing Process in the Context . . . 55

Figure 2. The history of development of TCT

Figure 3. Testing in the context of change management process

The difference between the two is based on the as-
sessment of the impact of the introduced changes
and the resulting need for the thoroughness of re-
gression tests. The history of TCT releases is illus-
trated in Figure 2. The releases are numbered by
two digits, where the first one denotes the number
of the main release, whereas the second denotes
the intermediate release related to the main one.

Throughout the whole evolution, the archi-
tecture of the application remains stable. The
changes were mainly related to functionality
(adding new functions, changing existing func-
tions, removing obsolete functions) and to the
applied technologies.

3. Testing in the Context of Change
Management

The testing process is embedded in the broader
process of change management. The model of the
change management process is shown in Figure 3.

The process implements mechanisms for re-
porting the issues related to the application and
for maintaining a related repository of issues.
The repository is based on the MantisBT plat-
form [20]. The repository is being periodically
reviewed, which results in selecting the issues
to be resolved. The selected issues are assigned
priorities and then are grouped together in pack-
ages, each package containing the issues which
can be solved by a common maintenance action.
Not all issues require changes in software, for
instance some are related to the way a user in-
teracts with the system and can be solved by
improving user’s documentation and training.
The issues which call for software changes are
dealt with in the next steps of the process. First,
the necessary changes are subjected to planning
and then an explicit decision about implement-
ing the plan is bring made, after assessing the
resources needed for such implementation and
the resulting impact. The plan for the change
and the change implementation process provide

56 Janusz Górski, Michał Witkowicz

input to the step of updating the test cases. The
new and updated test cases are then stored in
the tests repository forming the new suite of the
tests to be performed. The repository of test
cases is implemented using Subversion (SVN)
[21]. After implementing the change, the tests
are being applied.

For a given release of the application, depend-
ing on if it is related to a main release or to a
intermediate release, the scope of related testing
differs. In the former case, the tests include both,
the tests covering the new functionality and the
full set of regression tests. In the latter case, the
tests cover the new/changed functionality and
only a subset of the regression tests is included.
Limiting the scope of regression tests for a local-
ized change is based on the assumption that the
impact of the change is limited and is unlikely
to affect the whole scope of the functions.

The testing process is illustrated in Figure 4.
It starts with building the current repository of
test cases which is a subset of the tests main-
tained in the main repository of test cases. The
selection criteria depend on if we are testing a
main or an intermediate release of the system.
In the former case the current repository is sim-
ply a copy of the main repository. In the latter
case it is a proper subset of the main reposi-
tory. Then, the selected test cases are run and
the results are collected in the repository of test
results. The results of the tests are then ana-
lyzed and assessed. In case of failed tests, there
are two possibilities: (1) inserting new issues to
the repository of issues (for further processing)
or (2) updating the current repository of tests.
The former possibility takes place if removing
the cause of the test failure involves a signifi-
cant change; then introducing this change is left
to the next releases of the system. The latter
possibility is in place if (due to a negative test
result) an immediate and localized change is
introduced to the software which affects the cor-
responding tests kept in the current repository.
The decision on which alternative is chosen is
taken by the tests manager and involves consul-
tation with the representatives of key groups of
the users.

Figure 4. Two phase testing process

After assessing the test results, the decision
is being made concerning the continuation of the
testing process. If all the issues detected during
the previous phase are deposited to the reposi-
tory of issues, the testing process stops and the
next release is delivered to the users. If however,
some immediate changes were introduced to the
software, the tests kept in the current repository
are executed again.

3.1. Specification of Test Cases

Each test case is represented in accordance with
a predefined structure. It includes the following
elements:
– Identifier - a unique name of the test case.

The name suggests the tested functionality;
– Author - identification of the person respon-

sible for this test case;
– Feature - brief, intuitive description of the

tested feature;
– Scenario - description of the related testing

scenario including:
– summary of the scenario,
– description of the initialization phase,

Experience with Instantiating an Automated Testing Process in the Context . . . 57

– the list of actions necessary to complete
the test case,

– description of the closing phase of the test
case;

– Success criterion - specification of how to
assess that the test case completed success-
fully.
An example test case specification is given

in Table 2. The objective of this test case is to
check if authentication of the users assigned to
different roles works correctly.

3.2. Manual Execution of Test Cases

At the beginning, all test cases were executed
manually. The testers were following the test
scenarios specified for each test case. If a test
case does not pass the success criterion, the tester
immediately reports this as an issue to be solved.
The issue specification includes details of the
sequence of actions which led to the failure.

If the currently reported issue is similar to
an issue already reported, then the existing issue
description is being updated instead of inserting
the new one. Assessment of this “similarity” was
left to the tester. And this appeared to be a weak
point in issues reporting. Because analyzing the
existing descriptions was boring, the testers often
did not go deeply into the details and just con-
cluded that the issue has been already reported
and its description did not need any update. The
result was that sometimes an important infor-
mation was not included in the issue description,
which adversely impacted fault diagnostics and
correction.

4. Automation of Test Case Execution

Manual execution of the process illustrated in
Figure 4 consumed significant resources for both,
complete regressions tests (full suite of regression
tests performed for each main release of the sys-
tem) and partial regression tests (for the releases
related to the localized software changes). This
had negative impact on the delivery time of subse-
quent releases and slowed down the development
process.

To deal with the above problems we decided
to invest in automation of test case execution. A
separate testing system was developed based on
the TestNG library [22] and the server and the
library offered by Selenium Remote Control [23].
The testing system maintains the TCT system
metaphor which is being updated in parallel to
the subsequent releases of TCT. The metaphor
is used to activate these functions of TCT which
are callable from an Internet browser. In con-
sequence, these functions are being activated
automatically.

Each result of an automated test case is struc-
tured in the XML format (Extensible Markup
Language) [24] and inserted to a file. Such reports
are periodically reviewed and the detected issues
are inserted to the issues repository.

Figure 5 illustrates an example fragment of
the code implementing the testing scenario shown
in Table 2. Method 1 attempts to log a user
in, assuming the role “viewer”. Method 3 im-
plements the logging sequence. It includes a
check if the required element has been visualized.
Method 2 finalizes the test scenario and logs the
user out.

5. Experiences

So far, there were eight system releases (see Fig-
ure 2) including four main releases and four inter-
mediate ones. Testing of the three first releases
(two main and one intermediate) was performed
by a team of five testers. The process was manual
and consumed significant resources. Testing of
the second main release was performed by a team
of four testers and with partial automation of
test cases (automated testing did not play an
important role yet and was just experimented
with). The third main release was tested with
30% test cases already automated. The testing
process involved two testers.

The results achieved were so encouraging that
the effort in test case automation was increased
which resulted in that for the fourth main re-
lease (Release 4.0 in Figure 2) the number of
automated test cases reached 95%. This resulted
in radical decrease of the effort to execute test

58 Janusz Górski, Michał Witkowicz

Table 2. An example of test case specification

Identifier SystemFunctions_Login
Author Michał Witkowicz
Feature Access to system functions for different user roles – system login
Scenario Summary:

Make sure that all possible roles have accounts in the system (viewer, developer,
assessor and admin). Then login to the system as a user assuming different
roles.

Initialization:
Check if login screen is properly displayed (find DOM element with
id=“tct_login_data_form”). If not, the user is likely to be logged in; log the
user out (SystemFunctions_Logout). Then, if the login screen is properly
displayed - do nothing.

Actions:
1. Input user login and password.
2. Press “log in” button.
3. Check if the root node named “Projects” of the projects tree is displayed

(max. waiting time = 10 sec.).
4. Log out the user.
5. Check if the login screen is correctly displayed (find DOM element with

id=“tct_login_data_form”; max. waiting time = 10 sec.).
6. Repeat the steps 1–5 for every possible user role: admin, developer, assessor

and viewer.

Finalization:
Repeat the Initialization phase again.

Success criterion Users assigned to all different roles are able to log in to the system

Method 1. test
@Test (groups = {"TCT","viewer"})
public void test() throws InterruptedException {

cmdContainer.loginPage.logIn(viewerUser.getLogin(), viewerUser.getPasswd());
}

Method 2. tearDownTest
@AfterMethod
public void tearDownTest() throws InterruptedException {

cmdContainer.mainMenuBar.logout();
}

Method 3. logIn
public void logIn(String userName, String password)
throws InterruptedException, SeleniumException {

selenium.type("login_username", userName);
selenium.type("login_password", password);
selenium.click("button_logIn");
cmdContainer.waitForElementPresent("dom=document.

getElementById(’projects_root’).parentNode.childNodes[3].firstChild",
cmdContainer.loadPageDelay);
}

Figure 5. An example test case code

Experience with Instantiating an Automated Testing Process in the Context . . . 59

cases and in significant shortening of the delivery
time for this release.

The progress in test cases automation is il-
lustrated in Figure 6.

Figure 6. The progress of the test cases automation

Automation of test cases is not free, how-
ever. In our experience, one man-day resulted in
automation of approximately five test cases (to
automate 67 test cases we needed 14 man-days).
However, comparing to the effort needed for man-
ual execution of test cases during testing of subse-
quent system releases, this effort was acceptable
(more details are given in Table 4 and 5).

When it comes to the cost of maintaining
automated test cases, it depends on a scope of
changes in the application in the next release.
Obviously, the maintenance of test cases was
more expensive while preparing a main release
of the system. For example, for the fourth main
release it has been observed that one man-day
resulted in approximately three updated test
cases and total 16 man-days were needed for
tests maintenance (see Table 4 and 5). For in-
termediate releases, usually only few test cases
needed to be updated, and the total effort was
significantly less.

The total numbers of test cases for the sub-
sequent main releases of the system are given in
Figure 7.

Tables 3, 4 and 5 summarize the effort needed
for testing the four main releases and illustrate
the gain (in terms of effort) resulting from test
cases automation.

Test cases were following system development
and evolution. This was not only because new

Figure 7. The numbers of all test cases for the main
releases of the system

test cases were being introduced but also be-
cause some test cases became obsolete and some
other were merged together or modified. As the
result, periodic refactoring [25] of test cases was
necessary, to maintain test cases integrity and
understandability. In particular, such refactor-
ing was performed before testing the release 4.0
which resulted in reducing the number of test
cases from 236 (in release 3.0) to 133.

The coverage by test cases of the key system
functionalities of the release 4.0 is shown inTable 6.

Tables 7 and 8 illustrate the numbers of issues
reported during testing of subsequent main re-
leases (Table 7) and during exploitation of these
releases (Table 8).

During the exploitation phase, the reported
problems were classified in accordance with the
different categories of the maintenance objec-
tives [26]: adaptive, corrective, preventive and
perfective. On the other hand, all issues detected
during testing were classified as corrective.

Figure 8 compares numbers of different issues
detected during exploitation and Figure 9 com-
pares the issues of corrective category between
testing and exploitation phases.

From Figures 8 and 9 we can see that for re-
lease 2.0, testing detected some 30% of corrective
issues whereas the remaining 70% were detected
in the exploitation phase. For the release 3.0 this
proportion looks better and may indicate the
positive influence of tests automation. For the
release 4.0 this proportion looks much better:
automated tests detected nearly 100% of correc-
tive issues. However, it should be noted that the
exploitation period of release 4.0 amounts for

60 Janusz Górski, Michał Witkowicz

Table 3. Number of test cases and number of testers involved in testing of main releases

Release # # of test cases # of manual test
cases

of automated test
cases

of testers

1.0 185 185 0 5
2.0 222 222 0 4
3.0 236 169 67 2
4.0 133 6 127 2

Table 4. Distribution of testing effort for main releases

Release # Application
design

Specification/
Implementation

Maintenance Execution Total effort

1.0 – 5 man-days 0 15 man-days 20 man-days
2.0 – 1 man-day 6 man-days 18 man-days 25 man-days
3.0 10 man-days 15 man-days 5 man-days 20 man-days 50 man-days
4.0 0 14 man-days 16 man-days 3 man-days 33 man-days

Table 5. Distribution of testing effort for automated tests

Release # Application
design

Specification/
Implementation

Maintenance Execution Total effort

3.0 10 man-days 14 man-days 0 2 man-days 26 man-days
4.0 0 14 man-days 16 man-days 2 man-days 32 man-days

Table 6. Test case coverage

Functionality Number of test cases
Copy, cut and paste functions 27
Accessibility of basic system functions 14
Tree of projects and versions 11
Management window for administrators 10
Tree of trust cases 9
Access rights management 9
Appraisal mechanism 8
Management on links 7
Tree element expand and collapse 6
Refresh function 5
Import and export 5
Login and logout 5
Management of user settings 4
Behaviour of tree icons 4
Management of repositories 4
Reference nodes 3
Report generator 1
Traversal tool 1

Experience with Instantiating an Automated Testing Process in the Context . . . 61

Table 7. The number
of reported issues
during testing of
main releases

Release # Issues
1.0 15
2.0 56
3.0 20
4.0 63

Table 8. The number of reported issues during exploitation of main releases

Release # Adaptive Corrective Preventive Perfective Sum of issues
1.0 1 47 0 38 86
2.0 4 173 18 75 270
3.0 5 39 1 32 77
4.0 0 1 0 2 3

Figure 8. Issues distribution during maintenance of the TCT system

Figure 9. Corrective issues detected during testing and exploitation

just three months (whereas for release 2.0–12
months and for release 3.0–10 months). To make
these data more comparable we calculated the
“issues density” metrics (dividing the number
of detected issues by the system exploitation
period). The result is shown in Table 9.

The above numbers should not be over in-
terpreted, however. To assess the influence of
the testing process on the reliability of the TCT
system we would have to take into account other
factors for which we have no quantifiable data
yet. This involves for instance the influence of

the “size” system change or the operational pro-
file during system exploitation. Nevertheless, at
least one relationship can be clearly observed: as
the number of different users of the subsequent
system releases increases, in the light of the data
Table 9. Corrective issues density for the last three

main releases

Release # Issues per month
2.0 14,41
3.0 3,9
4.0 0,33

62 Janusz Górski, Michał Witkowicz

presented in Table 9, the claim of increasing
reliability of the system gains more credibility.

The presented results suggest that there is
still a considerable opportunity to improve the
effectiveness of the testing process. However, we
cannot ignore the fact that the defects detected
during testing are usually the “big” ones (i.e. such
that disable or significantly disturb the usage of
the system), whereas the defects detected during
exploitation are usually “small” and rarely pre-
vent the users from using the system. However, it
is also worth to note that the difference between
“big” and “small” defect is context dependent and
what is “small” from one user’s perspective (not
noticeable at all or slightly disturbing) can be
considered “big” from the perspective of another
user with different operational profile. Although
we did not yet collected enough data to differen-
tiate between the different impact of the defects,
we are well aware of this problem and intend to
exploit it while planning for the next steps of
test process improvement.

6. Conclusions and Plans for
the Future

The decision about automation of test cases, in
particular with respect to the regression tests,
has been positively verified in practice as it re-
sulted in considerable reduction of the tests exe-
cution effort and contributed to removing subjec-
tivity from execution and interpretation of tests
and their results. Despite relatively high cost of
the implementation and maintenance of auto-
mated tests, the total testing effort decreased
and a significant gain in system reliability has
been observed.

In our particular case we could observe that
perfective maintenance had a considerable share
in system changes. This is because the system
is being developed in the context of a research
process which generates new ideas and discovers
new ways of system usage. It can be expected
that for systems developed in a business context
the influence of this type of changes would be
less significant.

In the near future we plan for delivering the
next (intermediate) release of the system. This
involves the ongoing effort of designing new test
cases (checking the new functionalities) and refac-
toring the existing test cases. Nevertheless, the
goal of having 100% regression tests fully auto-
mated seems to be not realistic due to the present
limitations of the Selenium platform [23].

To exploit the potential of improving the
effectiveness of the testing process (illustrated
in Figure 9) and to take into account the dif-
ferences between “big” and “small” faults we
plan for introducing to our testing process the
risk based selection of test cases [27–30]. This
will take into account different usage scenarios
and the consequences related to system failure
within these scenarios. This information will be
then traced back to the system functionalities
and reflected in “weighting” of the related test
cases. These weights will be taken into account
while planning for the test coverage of critical
functions.

The next main release of the system will in-
volve a significant change of technology, espe-
cially in relation to the client layer (see Figure
1). To deal with this change we also plan for
extending the scope of unit testing of system
components. For better control of tests coverage,
mutation testing [31] is also considered.

References

[1] I. Sommerville, Software Engineering, 8th ed.
England: Pearson Education, 2007.

[2] R. Patton, Software Testing, 2nd ed. USA: Sams
Publishing, 2006.

[3] P. Grubb and A. A. Takang, Software Mainte-
nance Concepts and Practice. Singapore: World
Scientific Printers, 2003.

[4] J. Górski, “Trust-IT – a framework for trust
cases,” in Proc. Workshop on Assurance Cases
for Security – The Metrics Challenge. Edin-
burgh, UK: The 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and
Networks DSN, 2007, pp. 204–209.

[5] J. Górski et al., “Trust-IT research project,” in-
formation Assurance Group, Gdansk University
of Technology (18.10.2011). [Online]. http://iag.
pg.gda.pl/iag/?s=research&p=trust_cases

Experience with Instantiating an Automated Testing Process in the Context . . . 63

[6] D. Crane, E. Pascarello, and D. James, AJAX
in Action. Manning Publications Co., 2006.

[7] J. Eichorn, Understanding AJAX: Using
JavaScript to Create Rich Internet Applications.
Prentice Hall, 2006.

[8] A. Marchetto, P. Tonella, and F. Ricca, “Testing
techniques applied to AJAX web applications,”
2007, workshop on Web Quality, Verification
and Validation (WQVV), at the International
Conference on Web Engineering.

[9] A. Mesbah, “Analysis and testing of
AJAX-based single-page web applications,”
Ph.D. dissertation, Delft University of
Technology, 2009.

[10] NOR-STA, “Support for achieving and assessing
conformance to NORms and STAndards,”
(04.11.2011). [Online]. http://www.nor-sta.eu/

[11] L. Cyra, J. Miler, M. Witkowicz, and M. Ol-
szewski, “Advanced design solutions of a rich
internet application,” in Zwinność i dyscyplina
w inżynierii oprogramowania, A. Jaszkiewicz,
B. Walter, and A. Wojciechowski, Eds., Po-
litechnika Poznańska. Poznań: Nakom, 2007, pp.
35–47, (In Polish).

[12] PostgreSQL. (10.06.2010). [Online]. http:
//www.postgresql.org/

[13] JBoss. (10.06.2010). [Online]. http://www.jboss.
org/

[14] D. Flanagan, JavaScript: The Definitive Guide.
O’Reilly, 2001.

[15] SunMicrosystems, “Developer resources for
Java technology,” (10.06.2010). [Online].
http://java.sun.com/

[16] W3C, “Simple object access protocol,”
(10.06.2010). [Online]. http://www.w3.org/TR/
soap/

[17] C. Larman and V. R. Basili, “Iterative and incre-
mental development: A brief history,” Computer,
Vol. 36, No. 6, pp. 47–56, June 2003.

[18] PCMagazine-Encyclopedia, “Iterative develop-
ment,” (06.04.2011). [Online]. http://www.
pcmag.com/encyclopedia/

[19] C. Larman, Agile and Iterative Development:
A Manager’s Guide. Addison-Wesley Profes-
sional, 2003.

[20] Mantis. (10.06.2010). [Online]. http://www.
mantisbt.org/

[21] Subversion. (10.06.2010). [Online]. http:
//subversion.tigris.org/

[22] TestNG. (10.06.2010). [Online]. http://testng.
org/

[23] Selenium, “Selenium web application testing sys-
tem.” [Online]. http://seleniumhq.org/projects/
remote-control/

[24] W3C, “Extensible markup language,”
(10.06.2010). [Online]. http://www.w3.org/
XML/

[25] A. V. Deursen, L. Moonen, A. Bergh, and
G. Kok, “Refactoring test code,” in Proceedings
of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software
Engineering. Sardinia, Italy: XP2001, 2001, pp.
92–95.

[26] E. B. Swanson, “The dimensions of maintenance,”
in Proceedings of the 2nd international confer-
ence on software engineering, San Francisco,
1976, pp. 492–497.

[27] R. Black, Advanced Software Testing – Vol. 2:
Guide to the Istqb Advanced Certification as an
Advanced Test Manager. USA: Rock Nook Inc.,
2009, Vol. 2.

[28] R. Black and N. Atsushi, “Advanced risk based
test results reporting: putting residual quality
risk measurement in motion,” Software Test &
Quality Assurance, Vol. 7, No. 8, pp. 28–33, 2010.

[29] R. Black, K. Young, and P. Nash,
“A case study in successful risk-based
testing at CA,” (06.04.2011). [Online].
http://www.softed.com/resources/

[30] F. Redmill, “Theory and practice of risk-based
testing,” Software Testing, Verification and Re-
liability, Vol. 15, pp. 3–20, 2005.

[31] Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” CREST
Centre, King’s College London, Technical Report
TR-09-06, 2009.

