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Summary: In this paper we consider the insurance polices based on drawdown and 
drawup events where an underlying asset is derived by a classical risk process with phase-
type claim sizes perturbed by Brownian motion. The drawdown/drawup process we define 
as a difference between the historical maximum/minimum and current asset value. We 
consider four contracts presented in [Palmowski, Tumilewicz 2016]. The first one is an 
insurance contract where the protection buyer is paying a constant premium with intensity 
p until the drawdown of fixed size occurs. In return he/she receives a certain insured 
amount at the drawdown epoch. The second insurance contract may expire early if a 
certain fixed drawup event occurs prior to a fixed drawdown. The last two contracts are 
extensions of the previous ones by an additional cancellable feature which allows an 
investor to terminate the contract earlier. We focus here on an extensive numerical 
analysis when claim sizes are phase-type. 

Keywords: insurance contract, fair valuation, drawdown, Lévy process, drawup, optimal 
stopping, Brownian motion. 

1. Introduction 

The drawdown of a given process is the distance of the current value 
away from the maximum value it has attained to date. Similarly, the 
drawup of a given process is defined as the current rise of the present 
value over the running minimum. Both of them have been customarily 
used as dynamic risk measures. In fact, drawdown processes do not only 
provide dynamic measures of risk but can also be viewed as measures of 
relative regret. Similarly, the drawup process can be viewed as a measure 
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of relative satisfaction. Thus, a drawdown or a drawup of a certain 
number of units may signal the time in which an investor may choose to 
change his/her investment position depending on his/her perception of 
future moves of the market and his/her risk aversion. 

The interest in asset drawdowns has been significantly raised by 
the recent financial crisis. Therefore the risk managment of 
drawdowns has become very important among practitioners; see e.g. 
[Grossman, Zhou 1993] for porfolio optimization under constraints on 
the drawdown process, [Carr et al. 2011], [Magdon-Ismail, Atiya 
2004] for the distribution of the maximum drawdown of drifted 
Brownian motion and the time-adjusted measure of performance 
known as the Calmar ratio and [Pospisil, Vecer 2010; Vecer 2006; 
2007] for drawdown processes as dynamic measures of risk. For an 
overview of the existing techniques for the analysis of market crashes, 
as well as a collection of empirical studies of the drawdown process 
and the maximum drawdown process, please refer to [Sornette 2003]. 
It is then natural that fund managers have a strong incentive to seek 
insurance against drawdowns.  

In this paper we follow [Palmowski, Tumilewicz 2016] and 
[Zhang et al. 2013] pricing some insurance contracts against 
drawdown (and drawup) events and identifying optimal stopping 
rules. We also identify for them the so-called fair premium rates when 
contracts’ prices equal zero. In its simplest form, the first drawdown 
insurance contract involves a continuous premium payment paid by 
the investor (protection buyer) to insure a drawdown of an underlying 
asset value to a pre-specified level. Possibly, the buyer of the 
insurance contract may think that it is unlikely to get a large 
drawdown and he/she might want to stop paying the premium. 
Therefore we expand the simplest contract by adding a cancellable 
feature. In this case, the investor receives the right to terminate the 
contract earlier and in this case he/she pays a penalty for doing so. We 
show that the investor’s optimal cancellable time is based on the first 
passage time of the drawdown process. 

Moreover, we also consider a related insurance contract that protects 
the investor from a drawdown preceding a drawup. In other words, the 
insurance contract expires early if a drawup event occurs prior to a 
drawdown. From the investor’s perspective, when a drawup is realized 
there is little need to insure against a drawdown. Therefore this drawup 
contingency automatically stops the premium payment and is an 
attractive feature that will potentially reduce the cost of drawdown 
insurance. Finally, we also added a cancellable feature to this contract. 
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In this paper we start from presenting the latest results derived by 
[Palmowski, Tumilewicz 2016] giving very general formulas for the 
prices of the mentioned above insurance contracts and identifying the 
optimal stopping rules. The main goal of this paper is to give a more 
statistical, and hence more practical, analysis of these formulas. We 
suggest here some new algorithms of finding all quantities when claim 
sizes (or jumps of asset prices) have so-called phase-distributions.  

Phase-type distributions are the computational vehicle of much of 
modern applied probability. Typically, if a problem can be solved 
explicitly when the relevant distributions are exponentials, then the 
problem may admit an algorithmic solution involving a reasonable 
degree of computational effort if one allows for the more general 
assumption of phase-type structure. We refer to the book by 
[Asmussen 2003] for an overview of the properties of the phase-type 
distributions. 

The paper is organized as follows. In Section 2 we present 
insurance contacts that we will work with and identify their prices and 
the optimal stopping rules. In Section 3 deals with the numerical 
analysis. We complete our paper with our conclusions in Section 4. 

2. Drawdown-type contracts 

We work on complete filtered probability space (Ω, F,𝐏) satisfying 
the usual conditions. We model a logarithm of risky underlying asset 
price log 𝑆𝑡 by a Cramér-Lundberg risk process perturbed by an 
independent Brownian motion 𝐵𝑡: 

𝑋𝑡 = 𝑥 + 𝑑𝑡 + 𝜎𝐵𝑡 −�𝜂𝑖

𝑁𝑡

𝑖=1

.  (1) 

Above 𝑁𝑡 is a Poisson process with intensity 𝛽 > 0 and {𝜂𝑖} is a 
independent sequence of i.i.d. jumps. This is a very natural choice for 
modelling the asset process and this choice is due to a better fit of the 
evolution of the stock price process to the real data. Indeed in recent 
years the empirical study of financial data reveals the fact that the 
distribution of the log-return of stock price exhibits features which 
cannot be captured by the normal distribution, such as heavy tails and 
asymmetry. For the purpose of replicating more effectively these 
features and for reproducing a wide variety of implied volatility skews 
and smiles, there has been a general shift in the literature to modelling 
stock price with exponential jump-diffusion process as an alternative 
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to the exponential of a linear Brownian motion; see [Oksendal, Sulem 
2004] for overviews. Note also that process 𝑋𝑡 given in (1) is a 
particular case of so-called spectrally negative Lévy process that is, in 
fact, our price process 𝑆𝑡  =  exp{𝑋𝑡} is a geometric Lévy process.  

What is more, we assume that the distribution of jumps of 𝑋𝑡 
given in (1) is phase-type. A distribution 𝐹𝜂 of 𝜂 is said to be of phase-
type (and we will write 𝜂 ≈ Ph(𝛾,𝐓)) if 𝜂 has the same distribution as 
the lifetime of some terminating the Markov process starting from the 
vector 𝛾, having finitely many states 𝑁 and having time homogeneous 
transition rates with subintensity 𝐓. Then  

𝐹𝜂(𝜙) = 1 − 𝛾 exp{𝐓𝜙}𝟏, 

for 𝜙 ≥ 0, where 𝟏 is a vector of ones. This gives also the form of the 
density 𝑓𝛾(𝜙) of 𝛾: 

𝑓𝛾(𝜙) = 𝛾 exp{𝐓𝜙} 𝐭, 
where  

𝐭 = −𝐓𝟏.  (2) 
Most of the well-known distributions are of phase-type: 

• exponential distribution with intensity 𝜌  
− in this case 𝑁 = 1, 𝐓 = −𝜌 and 𝛾 = 1;  

• Erlang distribution Erl(𝜌,𝑁): 

𝑓𝛾(𝜙) = 𝜌𝑁
𝜙𝑁−1

(𝑁 − 1)! 𝑒
−𝜌𝜙 

− in this case 𝛾 = (1,0, … ,0) and  

𝐓 = �

−𝜌 𝜌 0
0 −𝜌 𝜌
⋮
0

⋮
0

⋮
0

 

⋯ 0
⋯ 0
⋱
⋯

⋮
−𝜌

�  ;  (3) 

• hyperexponential distribution: 

𝑓𝛾(𝜙) = �𝛾𝑖𝜌𝑖𝑒𝜌𝑖𝜙
𝑁

𝑖=1

 

− in this case:  

𝐓 = �

−𝜌1 0 0
0 −𝜌2 0
⋮
0

⋮
0

⋮
0

 

⋯ 0
⋯ 0
⋱
⋯

⋮
−𝜌𝑁

�; 
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• a mixture of Erlang distributions with the same scale parameter 
𝜌 > 0: 

𝑓𝛾(𝜙) = 𝑒𝜌𝜙�𝛾𝑖
𝜌𝑖

(𝑖 − 1)!𝜙
𝑖−1

𝐿

𝑖=1

 

− in this case 𝑁 = 𝐿(𝐿+1)
2

 and the subintensity matrix 𝐓 is a 
matrix made of blocks of increasing size from 1 to 𝐿 of type (3) 
located along the diagonal. 
Many identities for the spectrally negative Lévy process 𝑋 

presented in (1) is given in terms of so-called scale functions which 
are defined in the following way. For 𝑟 ≥ 0 we define a continuous 
and strictly increasing function 𝑊(𝑟) on [0,∞) with the Laplace 
transform given by:  

� 𝑒𝜙𝑢𝑊(𝑟)(𝑢)
∞

0
𝑑𝑢 =

1
𝜓(𝜙) − 𝑟 ,  (4) 

where 

𝜓(𝜙) = log𝔼[𝑒𝜙𝑋1]  (5) 

is a Laplace exponent of 𝑋𝑡. This is the first scale function. The 
second one is related with the first one via the following relationship: 

𝑍(𝑟)(𝑢) = 1 + 𝑟� 𝑊(𝑟)(𝜙)𝑑𝜙
𝑢

0
.  (6) 

The Laplace exponent 𝜓 defined in (5) calculated for the process 
𝑋 given in (1) equals:  

𝜓(𝜙) = 𝑑𝜙 +
𝜎2𝜙2

2 + 𝛽(𝛾(𝜙𝐈 − 𝐓)−1𝐭 − 1),  (7) 

where 𝐭 is given in (2) and 𝐈 is an identity matrix of appropriate  
size 𝑁. 

Using the definition of the scale function 𝑊(𝑟) given in (4) and  
[6, Prop. 5.4], we can conclude the following result of [4, Prop. 2.1]. 
Let 𝐼 be a set of (the sign-changed) negative roots: 

𝐼 ∶= {𝜑𝑖: 𝜓(−𝜑𝑖) = 𝑟 and 𝑅𝑒(𝜑𝑖 > 0)} 

and 

Φ(𝑟) ≔ sup{𝜑 ≥ 0: 𝜓(𝜑) = 𝑟}. 
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If elements in 𝐼 are distinct, then for 𝑟 ≥ 0 the scale function is 
written as: 

𝑊(𝑟)(𝑢) =
𝑒Φ(𝑟)

𝜓′�Φ(𝑟)�
−�𝐵𝑖𝑒−𝜑𝑖𝑢

𝑁−1

𝑖=1

,  (8) 

where  

𝐵𝑖 ∶= −
1

𝜓′(−𝜑𝑖)
 .  (9) 

Later we will focus on the numerical work for two distributions of 
the generic jump 𝜂:  
• Erlang distribution Erl(2,𝜌): 

𝑓𝛾(𝜙) = 𝜌2𝜙𝑒−𝜌𝜙  (10) 
with Laplace exponent given by 

𝜓(𝜙) = 𝑑𝜙 +
𝜎2𝜙2

2 + 𝛽 �
𝜌

𝜌 + 𝜙�
2
− 𝛽  (11) 

and  
• hyperexponential distribution  

𝑓𝛾(𝜙) = 𝛾1𝜌1𝑒−𝜌1𝜙 + 𝛾2𝜌2𝑒−𝜌2𝜙  (12) 

for a probability vector (𝛾1, 𝛾2) and Laplace exponent  

𝜓(𝜙) = 𝑑𝜙 +
𝜎2𝜙2

2 + 𝛽 �𝛾1
𝜌1

𝜌1 + 𝜙 + 𝛾2
𝜌2

𝜌2 + 𝜙� − 𝛽.  (13) 

For these distributions we will evaluate all the insurance contracts 
described before. In Table 1 and Table 2 below are presented the 
roots of 𝜓(𝜑) − 𝑟 = 0 necessary to evaluate 𝑊(𝑟) in (8). 

Table 1. The roots of 𝜓(𝜑) − 𝑟 = 0 for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 
𝛽 = 0.1 and jumps with Erlang distribution Erl(2,4). The free interest rate 𝑟 = 0.01 

Φ(𝑟) 𝜑1 𝜑2 𝜑3 
0.321 4.318− 1.075𝑖 0.315 4.318 + 1.075 

Source: own work. 

Table 2. The roots of 𝜓(𝜑) − 𝑟 = 0 for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 
𝛽 = 0.1 and jumps with hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 
𝜌2 = 4. The free interest rate 𝑟 = 0.01 

Φ(𝑟) 𝜑1 𝜑2 𝜑3 
0.236 0.476 3.149 4.236 

Source: own work. 
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For the cases presented in Table 1 and Table 2 we can explicitely 
calculate the scale function 𝑊(𝑟). For Erlang distribution we have that 
𝑊(𝑟)(𝜙) = 16.199𝑒0.321𝜙 − 0.646 cos(1.075𝜙) 𝑒−4.318𝜙

− 15.552𝑒−0.315𝜙 − 0,−0.361 sin(1.075𝜙) 𝑒−4.318𝜙 (14) 

and for hyperexponential distribution we get 

𝑊(𝑟)(𝜙) = 15.889𝑒0.236𝜙 − 15.529𝑒−0.476𝜙 − 0.161𝑒−3.149𝜙

− 0.199𝑒−4.236𝜙. (15) 

Let us denote by:  

𝑋t = sup
s≤t

𝑋𝑠 , 𝑋 𝑡 = inf
s≤t

𝑋𝑠 , 

the maximum and minimum logarithm of the asset price within time 
interval [0, 𝑡]. In this paper, we analyze insurance contracts related 
with the drawdown and drawup processes. The drawdown is the 
difference between running the maximum of the process and its 
current value and the the drawup is the difference between the 
process’ current value and its running minimum. Here, we 
additionally allow that the drawdown and drawup processes start from 
some points 𝑦 and 𝑧, respectively. That is,  

𝐷𝑡 = 𝑋𝑡 ∨ 𝑦 − 𝑋𝑡  , 𝑈𝑡 = 𝑋𝑡 − 𝑋 𝑡 ∧ (−𝑧).  
Above, the values 𝑦 and −𝑧 can be interpreted as the historical 

maximum and historical minimum of process 𝑋. Crucial for further 
work are the following first passage times of the drawdown process 
and drawup processes, respectively:  

𝜏𝐷+(𝑎) = inf{𝑡 ≥ 0:𝐷𝑡 ≥ 𝑎} , 𝜏𝐷−(𝑎) = inf{𝑡 ≥ 0:𝐷𝑡 ≤ 𝑎} , 

𝜏𝑈+(𝑎) = inf{𝑡 ≥ 0:𝑈𝑡 ≥ 𝑎} , 𝜏𝑈−(𝑎) = inf{𝑡 ≥ 0:𝑈𝑡 ≤ 𝑎} . 

Later we will use the following notational convention:  

𝐏|𝑦[∙] ∶= 𝐏[∙ |𝐷0 = 𝑦], 

𝐏|𝑦|𝑧[∙] ∶= 𝐏[∙ |𝐷0 = 𝑦, 𝑈0 = 𝑧], 

𝐏𝑥|𝑦|𝑧[∙] ∶= 𝐏[∙ |𝑋0 = 𝑥, 𝐷0 = 𝑦, 𝑈0 = 𝑧]. 

Finally, we denote 𝐏𝑥[∙] ∶= 𝐏[∙ |𝑋0 = 𝑥] with 𝐏 ∶= 𝐏𝟎 and 
𝔼|𝑦, 𝔼|𝑦|𝑧, 𝔼𝑥|𝑦|𝑧, 𝔼𝑥, 𝔼 will be the corresponding expectations to the 
above measures. We also used the following notational convention: 
𝔼�∙ 𝟙{𝐴}� = 𝔼[∙  ; A] for any event 𝐴. 
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2.1. Drawdown insurance contract 

In this subsection we consider the insurance contract in which the 
protection buyer will pay constant premium 𝑝 > 0 continuously until 
the drawdown of size 𝑎 > 0 occurs. In return he/she receives the 
insured amount of 𝛼 > 0 at the drawdown moment. Let 𝑟 > 0 be the 
risk-free interest rate. The contract price is equal to the discounted 
value of the future cash-flows:  

𝑓(𝑦,𝑝) = 𝔼|𝑦 �−� 𝑒−𝑟𝑡𝑝d𝑡
𝜏𝐷
+(𝑎)

0
+ 𝛼𝑒−𝑟𝜏𝐷+(𝑎)� .  (16) 

In this contract the investor wants to protect him/herself from the 
asset price 𝑆𝑡 = 𝑒𝑋𝑡 falling from the previous maximum more than 
fixed level 𝑒𝑎 for some 𝑎 > 0. In other words, he/she believes that 
even if the price will go up again after the first drawdown of size 𝑒𝑎 it 
will not bring him/her sufficient profit. Therefore he/she is ready to 
take this type of contract to reduce loss by getting 𝛼 > 0 at the 
drawdown epoch. 

The next result gives the price of the contract 𝑓(𝑦, 𝑝). The proof of 
all theoretical results can be found in [Palmowski, Tumilewicz 2016] 
and we skipped them here focusing later only on the numerical and 
statistical analysis.  

Theorem 1. The value of the contract (16) is by  

𝑓(𝑦, 𝑝) = �
𝑝
𝑟 + 𝛼��𝑍(𝑟)(𝑎 − 𝑦) − 𝑟𝑊(𝑟)(𝑎 − 𝑦)

𝑊(𝑟)(𝑎)
𝑊′(𝑟)(𝑎)� −

𝑝
𝑟

 . 

A fair situation for both sides, the insurance company and 
investor, is when the contract price equals 0 . We say then that the 
premium 𝑝∗ is fair when 

𝑓(𝑦,𝑝∗) = 0 .  (17) 

From Theorem 1 we can derive the following theorem.  

Theorem 2. For the contract (16) a fair premium equals: 

𝑝∗ =
𝑟𝛼 �𝑍(𝑟)(𝑎)𝑊′(𝑟)(𝑎)− 𝑟 �𝑊(𝑟)(𝑎 − 𝑦)�

2
 �

𝑊′(𝑟)(𝑎) − 𝑍(𝑟)(𝑎)𝑊′(𝑟)(𝑎) + 𝑟�𝑊(𝑟)(𝑎 − 𝑦)�2
 .  (18) 
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2.2. Cancellable feature 

We now extend the previous contract by a cancellable feature. In other 
words, we give the investor the right to terminate contract payment at 
the termination time fixed fee 𝑐 > 0 for doing it anytime prior to a 
pre-specified drawdown of size 𝑎 > 0. This contract is interesting for 
the investor who is not willing to pay a premium any longer when 
he/she stops believing that a large drawdown may happen. The 
contract value equals then:  

𝐹(𝑦,𝑝) = sup
𝜏∈T

�−� 𝑒−𝑟𝑡𝑝d𝑡 − 𝑐𝑒−𝑟𝑡𝟙{𝜏<𝜏𝐷
+(𝑎)}

𝜏𝐷
+(𝑎)∧𝜏

0
 

 + 𝛼𝑒−𝑟𝜏𝐷+(𝑎)𝟙�𝜏𝐷+(𝑎)<𝜏�� ,  

(19) 

where T is a family of all F𝑡-stopping times. 

One of the main goals of this paper is to identify the optimal 
stopping rule 𝜏∗ that realizes the price 𝐹(𝑦,𝑝). To do this, we use the 
“guess and verify” approach. This means that we first guess the 
candidate stopping rule and then verify if this is truly the optimal 
stopping rule using the well-known Verification Lemma (see 
[Kyprianou 2006]). Our guess will be that the optimal stopping rule is 
the first passage time of the drawdown process below some level 𝜃, 
that is that  

𝜏∗ = 𝜏𝐷−(𝜃∗) ∈ T  (20) 

for some 𝜃∗ ∈ (0,𝑎). We chose this class of stopping times since it 
represents the opposite situation to the insured one. The contract 
insures against a huge drawdown, so when the drawdown process is 
falling the moment of reward payment is receding. Obviously we 
choose the optimal level 𝜃∗ such that it maximizes the value function 

𝐹(𝑦, 𝑝, 𝜃) ≔ 𝐹(𝑦,𝑝)  (21) 

calculated under the assumption that 𝜏𝐷−(𝜃) realizes the supremum in 
(19). Thus  

𝜃∗ = inf �𝜃 ∈ (0,𝑎): 
𝜕
𝜕𝜃

𝐹(𝑦,𝑝,𝜃) = 0 and ∀ 𝜍 ≥ 0 𝐹(𝑦,𝑝,𝜍) ≤ 𝐹(𝑦,𝑝,𝜃) � .  (22) 

Observe now that the value of the basic contract without a 
cancellable feature, 𝑓(𝑦, 𝑝) given in (16) is an increasing function 
with respect to 𝑦. So the value of the basic contract 𝑓 is smallest at 
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point 0. Let us consider a situation when 𝑓(0,𝑝) > −𝑐. This means 
that the smallest expected value that an investor can receive from the 
basic contract is greater than the fee he/she will pay in the case of 
terminating insurance earlier. When this is the case then the optimal 
stopping strategy for the investor is to never terminate the contract, 
that is 𝜏 = ∞. To eliminate this trivial case we assume from now that  

𝑓(0,𝑝) ≤ −𝑐 

which is equivalent to saying that  

𝑝
𝑟 − 𝑐 > �

𝑝
𝑟 + 𝛼��𝑍(𝑟)(𝑎) − 𝑟

�𝑊(𝑟)(𝑎)�
2

𝑊′(𝑟)(𝑎) � ≥ 0.  (23) 

For the stopping rule (20) we can explicitly compute the value of 
the cancellable drawdown contract 𝐹(𝑦, 𝑝,𝜃) given in (21). For 
𝑦 > 𝜃 we get 

𝐹(𝑦,𝑝, 𝜃) = �
𝑝
𝑟 + 𝛼�𝑍(𝑟)(𝑎 − 𝑦) + �

𝑝
𝑟 − 𝑐�

𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃)

 −�
𝑝
𝑟 + 𝛼�𝑍(𝑟)(𝑎 − 𝜃)

𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃) −

𝑝
𝑟  . 

 (24) 

Note that if 𝑦 ≤ 𝜃, then the investor will terminate the contract 
immediately: 

𝐹(𝑦,𝑝,𝜃) = −𝑐. 
In fact, if 𝑦 ≤ 𝜃∗ the investor should not buy the contracts since it 

is optimal to terminate at its beginning. This implies that we should 
only consider contracts for which 𝑦 > 𝜃∗. 

We can verify that (20) indeed holds true (see Theorem 3 of 
[Palmowski, Tumilewicz 2016] for details).  

Theorem 3. Assume that (22) holds. If 𝜃∗ ∈ (0,𝑦), then the stopping 
time 𝜏𝐷−(𝜃∗) is an optimal stopping rule for the stopping problem (19).  

2.3. Incorporating drawup contingency 

The investor might like to buy a contract which has some maturity 
conditions. This means that the contract will end when these conditions 
are fulfilled. Therefore in this paper we will also consider an insurance 
contract which provides protection from any specified drawdown with a 
certain drawup contingency. In particular, this contract may expire earlier 
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if a fixed drawup event occurs prior to the drawdown of the same level. 
Choosing the drawup event is very natural since it corresponds to some 
market upward trend and therefore the investor might want to stop paying 
the premium when this event happens. Under a risk-neutral measure the 
value of this contract equals:  

𝑘(𝑦,𝑧,𝑝) ∶= 𝔼|𝑦|𝑧 �−� 𝑒−𝑟𝑡𝑝d𝑡
𝜏𝐷
+(𝑎)∧𝜏𝑈

+(𝑎)

0
+ 𝛼𝑒−𝑟𝜏𝐷+(𝑎)𝟙{𝜏𝐷

+(𝑎)<𝜏𝑈
+(𝑎)� ,  (25) 

for 𝑎 > 0. At the beginning we will find this value function and then 
identify the fair premium 𝑝∗ under which  

𝑘(𝑦,𝑧,𝑝∗) = 0.  (26) 

Note that  

𝑘(𝑦,𝑧,𝑝) = �
𝑝
𝑟 + 𝛼� 𝜈(𝑦,𝑧) +

𝑝
𝑟 𝜆

(𝑦,𝑧) −
𝑝
𝑟 ,  (27) 

where  
𝜈(𝑦,𝑧) ∶= 𝔼|𝑦|𝑧�𝑒−𝑟𝜏𝐷

+(𝑎);𝜏𝐷+(𝑎) < 𝜏𝑈+(𝑏)�, 

𝜆(𝑦,𝑧) ∶= 𝔼|𝑦|𝑧�𝑒−𝑟𝜏𝑈
+(𝑎);𝜏𝑈+(𝑏) < 𝜏𝐷+(𝑎)�. 

According to [Palmowski, Tumilewicz 2016], if 𝑎 ≤ 𝑦 + 𝑧, then 
the following holds 

𝜆(𝑦,𝑧) =
𝑊(𝑟)(𝑎 − 𝑦)

𝑊(𝑟)(2𝑎 − 𝑦 − 𝑧) ,  (28) 

𝜈(𝑦,𝑧) = 𝑍(𝑟)(𝑎 − 𝑦)− 𝑍(𝑟)(2𝑎 − 𝑦 − 𝑧)
𝑊(𝑟)(𝑎 − 𝑦)

𝑊(𝑟)(2𝑎 − 𝑦 − 𝑧) .  (29) 

When 𝑎 > 𝑦 + 𝑧, then we have 

𝜆(𝑦,𝑧) =
𝑊(𝑟)(𝑎 − 𝑦)

𝑊(𝑟)(2𝑎 − 𝑦 − 𝑧)
−

1
𝑟

𝑊′(𝑟)(𝑎)

�𝑊(𝑟)(𝑎)�
2 �𝑍

(𝑟)(𝑎 − 𝑦)− 𝑍(𝑟)(𝑧)�  (30) 

and 

𝜈(𝑦,𝑧) = 𝑍(𝑟)(𝑧)− 𝑍(𝑟)(𝑎)
𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎)   

 +
1
𝑟 𝑍

(𝑟)(𝑎)
𝑊′(𝑟)(𝑎)

�𝑊(𝑟)(𝑎)�2
�𝑍(𝑟)(𝑎 − 𝑦)− 𝑍(𝑟)(𝑧)� .  

(31) 

Now we can state the following result of [Palmowski, Tumilewicz 
2016]. 
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Theorem 4. The price of the contract defined in (25) is given in (27) 
with 𝜈(𝑦,𝑧) and 𝜆(𝑦,𝑧) given in (28)-(29) and (30)-(31).  

From (27) if follows the following theorem.  

Theorem 5. For the contract (25) the fair premium defined in (26) 
equals:  

𝑝∗ =
𝑟𝛼𝜈(𝑦,𝑧)

1 − 𝜈(𝑦,𝑧)− 𝜆(𝑦,𝑧)  .  (32) 

2.4. Cancellable feature 

We will also consider now the additional possibility of the termination 
of the previous contract. In this contract the protection buyer can 
terminate his/her position by paying fee 𝑐 > 0. The value of this 
contract equals then 

 𝐾(𝑦,𝑧,𝑝) ∶= sup
𝜏∈T

�−� 𝑒−𝑟𝑡𝑝d𝑡
𝜏𝐷
+(𝑎)∧𝜏𝑈

+(𝑎)∧𝜏

0
 

 +𝛼𝑒−𝑟𝜏𝐷+(𝑎)𝟙�𝜏𝐷+(𝑎)<𝜏𝑈
+(𝑎)∧𝜏� − 𝑐𝑒−𝑟𝜏𝟙�𝜏<𝜏𝐷+(𝑎)∧𝜏𝑈

+(𝑎)�� .  
(33) 

Similarily to cancellable drawdown contract, we are looking for 
optimal stopping rule 𝜏∗ which realizes supremum of 𝐾(𝑦, 𝑧, 𝑝). We 
use the ,“guess and verify” approach again. The candidate for optimal 
strategy is given by  

𝜏∗ = 𝜏𝐷−(𝜃∗) ∈ T  (34) 
for some 𝜃∗ ∈ (0,𝑎). We chose the same family of stopping time since 
the intuition stays the same. The reward is paid when the drawdown is 
growing, so we still expect that the optimal stopping rule is denoted 
by the first moment when the drawdown is declining. The presence of 
additional maturity conditions is only going to affect the optimal 
stopping level 𝜃∗. We denote by 

𝐾(𝑦, 𝑧,𝑝, 𝜃) ≔ 𝐾(𝑦, 𝑧, 𝑝) 
caluculated for stopping time of form (34). It is natural to look for 𝜃 
which maximizes function 𝐾(𝑦, 𝑧, 𝑝, 𝜃) in order to prove the 
optimality of (33). We define 𝜃∗ as follows:  

𝜃∗: = inf �𝜃 ∈ (0,𝑎): 
𝜕
𝜕𝜃 𝐾

(𝑦, z, 𝑝, 𝜃) = 0 and ∀ 𝜍

≥ 0 𝐾(𝑦, 𝑧, 𝑝, 𝜍) ≤ 𝐾(𝑦, 𝑧, 𝑝, 𝜃) � . 
(35) 
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At the beginning of analyzing this contract, note that if 𝑘(𝑦, 𝑧) >
−𝑐 it is optimal for the investor to never terminate the contract and 
hence 𝜏 = ∞. Again this happens because the smallest expected value 
that investor can receive from the basic contract is greater than the fee 
which should be paid. To avoid this trivial case we will assume that 
there exists at least one point (𝑦0,𝑧0) for which 𝑘(𝑦0,𝑧0) ≤ −𝑐. This 
assumption is equivalent to the following inequality:  

𝑝
𝑟 − 𝑐 > �

𝑝
𝑟 + 𝛼�𝜈(𝑦0, 𝑧0) +

𝑝
𝑟 𝜆

(𝑦0, 𝑧0) ≥ 0.  (36) 

Similarly, we calculate the value of 𝐾(𝑦, 𝑧, 𝑝, 𝜃) for 𝜏∗ given in 
(34). For 𝑦 > 𝜃 we have 

𝐾(𝑦, 𝑧, 𝑝,𝜃) = 

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑘(𝑦, 𝑧, 𝑝) − (𝑘(𝜃, 𝑎 − 𝜃) + 𝑐)

𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃) + 𝑐𝑎 �𝑍(𝑟)(𝑎 − 𝑦) − 𝑍(𝑟)(𝑧)�

 for 𝑎 > 𝑦 + 𝑧

𝑘(𝑦, 𝑧, 𝑝) − (𝑘(𝜃,𝑦 + 𝑧 − 𝜃) + 𝑐)
𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃) 

 for 𝑦 + 𝑧 − 𝜃 < 𝑎 ≤ 𝑦 + 𝑧 
0 for 𝑎 < 𝑦 + 𝑧 − 𝜃 ,

 (37) 

where 

𝑐𝑎 = �
𝑝
𝑟 + 𝛼��1 − 𝑍(𝑟)(𝑎)

𝑊′(𝑟)(𝑎)

�𝑊(𝑟)(𝑎)�2
� +

𝑝
𝑟

1
𝑟

𝑊′(𝑟)(𝑎)

�𝑊(𝑟)(𝑎)�2
  (38) 

and 𝑘(𝑦, 𝑧,𝑝) is given by (27) with 𝜈(𝑦, 𝑧) and 𝜆(𝑦, 𝑧) calculated in 
(28)-(29) for 𝑎 ≤ 𝑦 + 𝑧 and (30)-(31) for 𝑎 > 𝑦 + 𝑧. Moreover, for 
𝜃 ≤ 𝑦 we should stop the contract immediately, so 

𝐾(𝑦, 𝑧, 𝑝, 𝜃) = −𝑐.  (39) 

The next main result given in Theorem 7 of [Palmowski, 
Tumilewcz 2016] gives the price of the above insurance contract. 

Theorem 6. Assume that (36) holds. If 𝜃∗ ∈ (0,𝑦), then 𝜏𝐷−(𝜃∗) is the 
optimal stopping rule solution for (32).  

3. Numerical analysis 

In this section we analyze numerically all the insurance contracts and 
check their dependence on the chosen parameters of the model. We focus 
on the classical risk process perturbed by Brownian motion given in (1). 
The main contribution of this paper lies in the extensive numerical 



ŚLĄSKI 
PRZEGLĄD 

STATYSTYCZNY 

Nr  15(21) 

214 Zbigniew Palmowski, Joanna Tumilewicz 

analysis for cases when the jumps 𝜂𝑖 of logarithm of the asset price have 
phase-type distrbutions. These distrubutions are widely used in financial 
and actuarial applications and have the huge potential of modelling all 
possible shapes of jump distributions. They are also very convenient from 
the point of view of parametrisation and calibration since we can choose 
a general number of parameters to estimate.  

3.1. Fair premium for drawdown insurance 

We start from pricing the drawdown contract 𝑓(𝑦,𝑝) given in (16) using 
Theorem 1 and, from identifying the expression for the fair premium 𝑝∗ 
given in (18) when jumps have an Erlang distribution (10) using the scale 
function 𝑊(𝑟) given in (14), see Figure 1 and Figure 2. 

Note that by increasing starting drawdown 𝐷0 = 𝑦, one may rapidly 
increase the value of the fair premium 𝑝∗. This happens because when the 
starting position of drawdown is near to insured level 𝑎, then we have 
less to wait. The fair premium has to be higher since it must balance the 
reward and the premium payment period is shorter. In fact, if 𝜎 > 0, then 
𝑝∗ value tends to ∞ when 𝑦 ↑ 𝑎. This follows from the fact that in this 
case we have 𝑊(𝑟)(0) = 0 and the denominator in the expression for the 
fair premium 𝑝∗ goes to 0 as 𝑦 ↑ 𝑎. 

 
Fig. 1. The value of drawdown contract 𝑓(𝑦, 𝑝) with respect to the starting position  
of drawdown 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1  
and with jumps from Erlang distribution Erl(2,4). Parameters: free interest rate 𝑟 = 0.01, 
drawdown level 𝑎 = 10, reward 𝛼 = 100, premium 𝑝 = 1.4 
Source: own work. 
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Fig. 2. Fair premium 𝑝∗ for drawdown contract 𝑓(𝑦, 𝑝) with respect to the starting 
position of drawdown 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1  
and with jumps from Erlang distribution Erl(2,4). Parameters: free interest rate 𝑟 = 0.01, 
drawdown level 𝑎 = 10, reward 𝛼 = 100, premium 𝑝 = 1.4 
Source: own work. 

A similar result could be obtained for hyperexponential 
distribution (12) with scale function given in (15): 

 

 
Fig. 3. The value of drawdown contract 𝑓(𝑦, 𝑝) with respect to the starting position  
of drawdown 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1  
and with jumps from hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 𝜌2 = 4. 
Parameters: free interest rate 𝑟 = 0.01, drawdown level 𝑎 = 10, reward 𝛼 = 100, 
premium 𝑝 = 1.4 

Source: own work. 
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Fig. 4. Fair premium 𝑝∗ for drawdown contract 𝑓(𝑦, 𝑝) with respect to the starting 
position of drawdown 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and 
with jumps from hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 𝜌2 = 4. 
Parameters: free interest rate 𝑟 = 0.01, drawdown level 𝑎 = 10, reward 𝛼 = 100, 
premium 𝑝 = 1.4 

Source: own work. 

3.2. Cancellable drawdown insurance 

We now price the contract 𝐹(𝑦,𝑝) defined in (19) and identified in 
Theorem 3 and we also find the optimal stopping rule 𝜏∗ given in (20) 
for 𝜃∗ defined in (23). Because of the numerical work done in the 
previous subsection it suffices to find only function 𝑔(𝑦,𝑝,𝜃∗) and 𝜃∗. 

Remember that from (24) for 𝜃 < 𝑦 we have: 

 𝐹(𝑦,𝑝, 𝜃) = �
𝑝
𝑟 + 𝛼�𝑍(𝑟)(𝑎 − 𝑦) + �

𝑝
𝑟 − 𝑐�

𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃) 

  −�
𝑝
𝑟 + 𝛼�𝑍(𝑟)(𝑎 − 𝜃)

𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎 − 𝜃) −

𝑝
𝑟  ,  

where 𝑐 is the fee which the investors pay when he/she terminates the 
contract earlier, and for 𝜃 ≥ 𝑦 

𝐹(𝑦,𝑝,𝜃) = −𝑐 . 
Figure 5 and Figure 6 depict the dependence of the function 

𝐹(𝑦,𝑝,𝜃) on 𝜃. The straight line at the end of the 𝐹(𝑦,𝑝,𝜃) follows 
from the fact that the function 𝐹 is constant equal to −𝑐 for 𝜃 ≥ 𝑦. 
When 𝜃∗ is at the beginning of that straight line this means that the 
investor should not take this insurance contract. This means that we 
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are looking for 𝜃∗ that maximizes function 𝐹 on (0, 𝑦). Note also that 
by (24) and the definition of the optimal 𝜃∗ given in (20) the level 𝜃∗ 
does not depend on the starting position of the drawdown 𝐷0 = 𝑦 as 
long as 𝑦 > 𝜃∗. In particular, for our set of parameters we have 
𝜃∗ ≈ 2.0 for jumps with Erlang distribution and 𝜃∗ ≈ 1.5 for 
hyperexponential distribution. 

Figure 5 and Figure 6 depict also the dependence of the function 
𝐹(𝑦,𝑝,𝜃) on the premium rate 𝑝. Note that a smaller premium rate 
produces higher values of the insurance contract 𝐹 given in (19).  
It also affects the level  of  optimal 𝜃∗.  By  increasing  premium 𝑝  we 

 

 

 
Fig. 5. The value of 𝐹(𝑦,𝑝,𝜃) with respect to 𝜃 for different levels of 𝑦 (upper)  
and 𝑝 (lower), for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with jumps 
from Erlang distribution Erl(2,4). Parameters 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 𝑐 = 10, 
𝑝 = 0.3, 𝑦 = 6 
Source: own work. 
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Fig. 6. The value of 𝐹(𝑦,𝑝,𝜃) with respect to 𝜃 for different levels of 𝑦 (upper)  
and 𝑝 (lower), for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with jumps 
from hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 𝜌2 = 4. Parameters 
𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 𝑐 = 10, 𝑝 = 0.2, 𝑦 = 6 

Source: own work. 

increase 𝜃∗. Thus too high premium level produces contracts where 
𝜃∗ > 𝑦 and hence the insurance is no longer interesting for investors. 
On the other hand, we cannot decrease the premium rate too much 
sincondition (22) must be satisfied. If not, the optimal is to never 
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terminate the contract earlier and maximum value is attained at 0. For 
example, for jumps with Erlang distribution for our set of parameters 
this conditions means that the premium level should be strictly greater 
than 0.1 (see Figure 5 (lower) for 𝑝 = 0.1). 

3.3. Fair premium for drawup contingency 

We will now investigate numerically the insurance contract 𝑘(𝑦,𝑧,𝑝) 
given in (25) which provides protection from any specified drawdown 
of size 𝑎 with certain drawup contingency of size 𝑎. By Theorem 5  
it suffices to find functions 𝜆 and 𝜈. To do this we use identities  
(28)- (31). Therefore we can find that  

𝑝∗ =
𝑟𝛼 �𝑍(𝑟)(𝑎 − 𝑦)− 𝑍(𝑟)(2𝑎 − 𝑦 − 𝑧) 𝑊(𝑟)(𝑎 − 𝑦)

𝑊(𝑟)(2𝑎 − 𝑦 − 𝑧)�

1 − 𝑍(𝑟)(𝑎 − 𝑦) + 𝑊(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(2𝑎 − 𝑦 − 𝑧) (𝑍(𝑟)(2𝑎 − 𝑦 − 𝑧) − 1)

 

for 𝑎 ≤ 𝑦 + 𝑧 and  

𝑝∗ =
𝑟𝛼 �𝑍(𝑟)(𝑧) − 𝑍(𝑟)(𝑎)𝑊

(𝑟)(𝑎 − 𝑦)
𝑊(𝑟)(𝑎) + 1

𝑟 𝑍
(𝑟)(𝑎) 𝑊′(𝑟)(𝑎)

(𝑊(𝑟)(𝑎))2 �𝑍
(𝑟)(𝑎 − 𝑦) − 𝑍(𝑟)(𝑧)��

1 − 𝑍(𝑟)(𝑧) − (𝑍(𝑟)(𝑎)− 1)�1
𝑟
𝑊′(𝑟)(𝑎)

(𝑊(𝑟)(𝑎))2 (𝑍(𝑟)(𝑎 − 𝑦) − 𝑍(𝑟)(𝑧))�
 

for 𝑎 > 𝑦 + 𝑧.  

Figure 7 and Figure 8 depict the value function for this contract. 
The solid line shows the dependency of contract value on the 
starting/historical position of drawdown 𝐷0 = 𝑦 with constant starting 
position of drawup 𝑈0 = 5 and the dot line shows the dependency on 
starting position of drawup 𝑧 with constant starting position of 
drawdown 𝑦 = 5. 

The dependency of fair premium 𝑝∗ with respect to starting 
position of drawdown and drawup was done on Figure 9 and Figure 
10. Note that, similarly to the drawdown contract without drawup 
constraints, when 𝑦 ↑ 𝑎 the fair premium is growing to infinity since 
the drawdown of size 𝑎 will occur faster and the reward must be 
balanced by a premium, when it is fair. This is not the case when 𝑧 ↑
𝑎. Here the fair premium does not tend to infinity since there is no 
reward payment at 𝑧 = 𝑎. 
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Fig. 7. The value of drawdown contract 𝑘(𝑦,𝑧,𝑝) with respect to 𝑦 with constant 𝑧  
and with respect to 𝑧 with constant 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 
𝜎 = 0.4, 𝛽 = 0.1 and with jumps from Erlang distribution Erl(2,4). Parameters: 
𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 𝑝 = 1.4, 𝑦 = 5, 𝑧 = 5 

Source: own work. 

 
Fig. 8. The value of drawdown contract 𝑘(𝑦,𝑧,𝑝) with respect 𝑡𝑜 𝑦 with constant 𝑧  
and with respect to 𝑧 with constant 𝑦, for process 𝑋 with parameters 𝑑 = 0.05, 
𝜎 = 0.4, 𝛽 = 0.1 and with jumps from hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 
𝜌1 = 3, 𝜌2 = 4. Parameters 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 𝑝 = 1.4, 𝑦 = 5, 𝑧 = 5 

Source: own work. 
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Fig. 9. Fair premium 𝑝∗ for drawup contingency contract 𝑘(𝑦,𝑧,𝑝) with respect to 𝑦  
for different 𝑧 (upper) and with respect to 𝑧 for different 𝑦 (lower), for process 𝑋  
with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with jumps from Erlang distribution 
Erl(2,4). Parameters: 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 𝑝 = 1.4 

Source: own work. 

Fig. 10. Fair premium 𝑝∗ for drawup contingency contract 𝑘(𝑦,𝑧,𝑝) with respect to 𝑦 for 
different 𝑧 (upper) and with respect to 𝑧 for different 𝑦 (lower), for process 𝑋 with 
parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with jumps from hyperexponential 
distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 𝜌2 = 4. Parameters 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 
𝑝 = 1.4 

Source: own work. 
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3.4 Cancellable drawup contingency 

Fig. 11. The value of 𝐾(𝑦,𝑧,𝑝,𝜃) with respect to 𝜃 for different levels of 𝑦 (left), 𝑧 (right) 
and 𝑝 (middle), for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with 
jumps from Erlang distribution Erl(2,4). Parameters 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100, 
𝑐 = 10, 𝑝 = 1.4, 𝑦 = 8, 𝑧 = 2 

Source: own work. 

We continue our previous numerical analysis by adding a 
cancellable feature and by considering the insurance contract (33). 
Note that by (37) it suffices to find the value of the contract without 
cancellable feature 𝑘 given in (25), hence, just to calculate functions 𝜆 
and 𝜈 given in (28)–(31) and scale functions (4) and (6).  

The contract value is depicted in Figure 11 and Figure 12. What 
is worth mentioning is that in this contract there appears jump at 
𝜃 = 𝑦 + 𝑧 − 𝑎 if only 𝑦 + 𝑧 − 𝑎 > 0, which corresponds to the 
presence of a drawup contingency. This happens because when 𝜃 
decreases the drawup increases and at 𝑦 + 𝑧 − 𝑎 we have a drawup of 
level 𝑎. The jump occurs since the contract terminates and the investor 
does not have to pay a fee. Furthermore, similarly to the previous case 
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of drawdown contract with cancellable feature, we can observe that 
optimal 𝜃∗ does not depend on the starting position of drawdown 
𝐷0 = 𝑦 and drawup 𝑈0 = 𝑧. What is more, the contract value depends 
on starting position of drawup 𝑈0 = 𝑧 only through the level when the 
jump appears. When there is no jump or if the jump has not appeared 
yet, the contract value for different 𝑧 coincides. However, the 
dependence is strong with respect to the process and contract 
parameters, like for example dependence of premium level 𝑝.  
 

Fig. 12. The value of 𝐾(𝑦,𝑧,𝑝,𝜃) with respect to 𝜃 for different levels of 𝑦 (left), 𝑧 (right) 
and 𝑝 (middle), for process 𝑋 with parameters 𝑑 = 0.05, 𝜎 = 0.4, 𝛽 = 0.1 and with 
jumps from hyperexponential distribution 𝛾1 = 0.4, 𝛾2 = 0.6, 𝜌1 = 3, 𝜌2 = 4. 
Parameters 𝑟 = 0.01, 𝑎 = 10, 𝛼 = 100 𝑐 = 10, 𝑝 = 0.5, 𝑦 = 8, 𝑧 = 2 

Source: own work. 

4. Conclusions 

In this paper we analyzed a few insurance contracts on drawdown and 
drawup events where the underlying asset is modeled by the Cramér-
Lundberg risk process perturbed by an independent Brownian motion 
𝐵𝑡 and jumps given by phase-type distrbutions. We identified the fair 
premium 𝑝∗ and optimal stopping rules for the contracts with  
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a cancelling feature. In this paper we focus on the crucial numerical 
analysis demonstrating the power of derived in [Palmowski, 
Tumilewicz 2016] theoretical formulas. 

It is natural to consider other processes for asset prices. Moreover, 
one can consider fees 𝛼 and 𝑐 dependent on the process 𝑋 observed at 
the end of the insurance contract. In fact, there is still a huge demand 
for more general insurance contracts that will serve as a policy against 
large drawdowns. This will be the subject of future research. 
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SPADKI I WZROSTY FAZOWYCH PROCESÓW LÉVY'EGO  
W WYCENIE KONTRAKTÓW UBEZPIECZENIOWYCH  

Streszczenie: W artykule rozważamy kontrakty ubezpieczeniowe oparte na procesach 
spadku i wzrostu dla procesów ryzyka typu Lévy'ego z fazowymi stratami. Proces 
spadku/wzrostu w danej chwili określamy jako różnicę pomiędzy supremum/infimum do 
tego momentu i wartością procesu w tej chwili. W pracy przeanalizujemy cztery 
kontrakty. Pierwszy kontrakt zobowiązuje inwestora do płacenia stałej składki w sposób 
ciągły, a w zamian – w momencie, gdy proces spadku przekroczy określony poziom – 
wypłaca inwestorowi określone wynagrodzenie. Drugi kontrakt może zostać samoistnie 
rozwiązany w chwili zaobserwowania procesu wzrostu do pewnego poziomu. Ostatnie 
dwa kontrakty dają inwestorowi dodatkowo możliwość wcześniejszego wycofania się z 
umowy po uiszczeniu z góry ustalonej grzywny. Praca opiera się na wcześniejszym 
artykule [Palmowski, Tumilewicz 2016] i koncentruje się na statystycznym aspekcie 
wcześniej otrzymanych formuł, modelując skoki cen akcji poprzez rozkłady fazowe.  

Słowa kluczowe: proces spadku, proces wzrostu, procesy Lévy'ego, kontrakty 
ubezpieczeniowe, proces fazowy.  

 

 

 

 

 

 

 

 

 

 

 

 




