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From where we stand the rain seems random.  

If we could stand somewhere else, we would see the order in it. 

 

Tony Hillerman 
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Summary 

Precipitation phenomena exhibit highly non-linear properties and strong intensity 

differentiation across both spatial and temporal scales. The complex space-time distribution of 

precipitation determines the course of the no less complicated phenomenon of surface runoff. 

It is particularly visible in urban areas where, due to a large share of watertight surfaces, the 

response of catchment to rainfall impulse is particularly violent. Rapid drainage of rain water 

from sealing surfaces and its concentration in drainage systems results in increasingly 

unfavorable phenomena of urban floods. In recent years, the frequency and extent of urban 

floods and sewage overflows has been increasing in many cities in Poland and the world. The 

reason for this is the rapid seal of urban surfaces and climate changes resulting in the 

intensification of precipitation processes. 

Solving the problems of urban floods and sewage overflows requires engineers to use a 

modern hydrodynamic modeling workshop. According to current European sewage standard 

EN 752, the application of computer simulation models within urban centers handled by 

extensive and complex drainage systems is indispensable. However, the development of the 

hydrodynamic model alone is not sufficient in executing the proper verifications, and access 

to reliable precipitation data is required. There should be a locally-measured rainfall series in 

high time resolution with the range of single minutes from a lengthy period of around 30 

years of observation. Obviously, access to this class of precipitation data in Poland is very 

limited. Moreover, in modern engineering practice, it is considered correct to model very large 

urban drainage systems based on precipitation data from single rain gauges, often located in city 

suburbs (e.g. airports). This raises questions and doubts. Firstly, how reliable is the use of data 

from a single rain gauge? Are the frequencies of storm sewer overflows obtained from a series 

of hydrodynamic simulations statistically correct? In the case of an absence of local observation 

data, is it possible to generate synthetic precipitation data using random cascades? Finally, in 

domestic conditions, can we use continuous and easy to set up generators based on the universal 

multifractal model? 

Accordingly, the subject of this dissertation is a comprehensive analysis of fractal and 

multifractal properties of 1-minute precipitation data recorded on a unique nationwide 

research field, in the form of a network of 25 electronic rain gauges, property of the 

Municipal Water Supply and Sewerage Company (MPWiK) in Warsaw. Scaling properties, 

precipitation intermittencies, and occurrences of extremes in the data series of individual rain 

gauges for a time scale of 1 minute to over 11 days are investigated using a spectral density 
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analysis of the time series of rainfall intensity, functional box-counting method, trace moment 

method, probability distribution/multiple scaling, and double trace moment method. 

As a result, the universal multifractal parameters α, C1 and H (so called Lèvy stochastic 

variables) are estimated for all 25 rain gauges. Subsequently, the universal multifractal 

parameters are subject to cluster analysis in order to identify groups of similar precipitation 

gauges. Along these lines, the parameters derived for specific Warsaw rain gauges or clusters 

of gauges displaying similarities, are used to generate synthetic precipitation series by means 

of continuous universal random cascade models. The statistical evaluation is carried out of the 

generated synthetic precipitation time series performed by comparing complementary 

cumulative distribution function (P(R>r)) and the intermittency (Ep0) calculated for synthetic 

vs. observed time series. As a last step of research, a special filtering algorithm is proposed in 

order to correct intermittency characteristics of synthetic precipitation time series. 

Based on the performed studies, the time structure of the recorded Warsaw precipitation 

time series is found to be a multifractal set characterized by scale-invariant behaviour over a 

wide range of scales. Furthermore, it has been observed that the clear majority of Warsaw rain 

gauges, except for two specific stations (airport and suburbs), have a distinct similarity of 

multifractal properties of recorded precipitation series, manifested by similar values of 

universal multifractal parameters α, C1 and H. 

It has also been demonstrated that, for the first time in Poland, the universal continuous 

cascades could be used in practice for generation of synthetic rainfall series of fine temporal 

resolution for Warsaw. There is also a possibility of practical parameterization of the cascade 

generator itself by only two multifractal parameters α and C1. At the same time, the need to 

use a filter algorithm to improve the structure of generated time series in terms of 

precipitation intermittency has been noted. 

In the summary, there exists a large potential of the developed continuous random cascade 

models based on universal multifractal models in generating high-resolution precipitation 

time series for purposes of urban hydrology. 

  

Key words:  

Rainfall time series, urban hydrology, scale invariance, intermittency, multifractal parameters, 

universal multifractal model. 
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Streszczenie 

Opady atmosferyczne charakteryzują się nieciągłością i silnym zróżnicowaniem natężeń 

zarówno w skalach przestrzennych jak i czasowych. Skomplikowany czasoprzestrzennie 

rozkład opadów determinuje przebieg nie mniej skomplikowanego zjawiska spływu 

powierzchniowego. Jest to szczególnie zauważalne na obszarach miejskich, gdzie przy dużym 

udziale powierzchni nieprzepuszczalnych odpowiedź zlewni na impuls opadowy jest 

szczególnie gwałtowna. Szybki odpływ wód opadowych z powierzchni utwardzonych i ich 

koncentracja w systemach odwodnienia skutkuje coraz częściej niekorzystnymi zjawiskami 

podtopień i powodzi miejskich. W ostatnich latach można mówić o zwiększaniu się częstości 

podtopień i powodzi miejskich, a także zwiększaniu się ich zasięgu w wielu miastach  

w Polsce i na świecie. Jako przyczyny tego procesu uznaje się szybki proces uszczelniania 

powierzchni miast oraz zmiany klimatyczne skutkujące wzmożeniem procesów opadowych.  

Rozwiązywanie problemów podtopień i powodzi miejskich wymaga od inżyniera 

stosowania nowoczesnego warsztatu modelowania hydrodynamicznego. Zgodnie z aktualną 

europejską normą kanalizacyjną EN 752, w obrębie centrów miast obsługiwanych przez 

rozległe i skomplikowane systemy odwodnienia, nieodzowne jest stosowanie komputerowych 

modeli symulacyjnych. Samo jednak opracowanie modelu hydrodynamicznego nie jest 

wystarczające, jako że dla przeprowadzenia serii symulacji konieczny jest dostęp do 

wiarygodnych danych opadowych. Winny to być lokalne szeregi opadowe o wysokiej 

rozdzielczości czasowej rzędu pojedynczych minut, z długiego okresu rzędu około 30 lat 

obserwacji. W sposób oczywisty dostęp do tej klasy danych opadowych w Polsce jest bardzo 

ograniczony. Ponadto we współczesnej praktyce inżynierskiej przyjmuje się za prawidłowe 

modelowanie nawet bardzo dużych, rozległych miejskich systemów odwodnienia w oparciu  

o dane opadowe pochodzące z pojedynczych deszczomierzy, często zlokalizowanych na 

przedmieściach miasta (np. na pobliskim lotnisku). Sytuacja ta rodzi pytania i wątpliwości. Po 

pierwsze na ile wiarygodne jest stosowanie danych z pojedynczego deszczomierza? Czy 

otrzymywane w wyniku serii symulacji hydrodynamicznych częstości nadpiętrzeń kanalizacji 

deszczowych są statystycznie poprawne? Czy przy braku dostępności lokalnych danych 

obserwacyjnych, możliwe jest generowanie syntetycznych danych opadowych z użyciem 

kaskad losowych? Na koniec, czy można w warunkach krajowych stosować w praktyce  

w tym celu ciągłe i łatwe w parametryzacji generatory oparte o uniwersalny model 

multifraktalny? 
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W związku z powyższym, przedmiotem niniejszej rozprawy jest w pierwszym rzędzie 

kompleksowa analiza właściwości fraktalnych i multifraktalnych 1-minutowych szeregów 

opadowych zarejestrowanych na unikalnym w skali kraju poligonie badawczym, w postaci 

sieci 25 elektronicznych deszczomierzy, należących do MPWiK w Warszawie. Badania 

właściwości skalowych, nieciągłości opadów oraz występowania ekstremów w szeregach 

opadowych z poszczególnych deszczomierzy przeprowadzono dla skal czasowych 

odpowiadających czasom w przedziale od 1 minuty do 11 dni, z wykorzystaniem warsztatu 

analizy widmowej szeregów czasowych natężeń deszczów, metody funkcyjnego zliczania 

pudełek, metody prawdopodobieństwa/wielokrotnego skalowania, metody momentu śladu 

oraz metody podwójnego momentu śladu. 

W wyniku całościowej analizy otrzymanych wyników oszacowano uniwersalne parametry 

multifraktalne α, C1 i H (tzw. zmienne stochastyczne Lèvy’ego) dla wszystkich 25 

deszczomierzy. Zbiór uniwersalnych parametrów multifraktalnych poddano analizie skupień 

w celu identyfikacji grup deszczomierzy o podobnych własnościach. Uniwersalne parametry 

multifraktalne charakterystyczne dla specyficznych deszczomierzy lub też grup 

deszczomierzy wykazujących wzajemne podobieństwo, wykorzystywano do generowania 

syntetycznych szeregów opadowych przy użyciu uniwersalnych modeli ciągłych kaskad 

losowych. Jakość generowanych szeregów syntetycznych została zweryfikowana 

statystycznie poprzez porównanie wyników obliczeń komplementarnej dystrybuanty deszczu 

(P(R>r)) oraz stopnia nieciągłości (Ep0) dla syntetycznych i zarejestrowanych szeregów 

czasowych deszczów. Ostatnim etapem badań była próba stworzenia specjalnego algorytmu 

filtrującego, w celu poprawy struktury syntetycznych szeregów czasowych z punktu widzenia 

nieciągłości opadów. 

Na podstawie przeprowadzonych badań stwierdzono, że struktura czasowa rejestrowanych 

w Warszawie szeregów opadowych ma charakter multifraktalny i wykazuje niezmienniczość 

skalową w szerokim zakresie skal. Zaobserwowano ponadto, że zdecydowana większość 

deszczomierzy warszawskich za wyjątkiem dwóch specyficznych posterunków (na terenie 

lotniska i na przedmieściach miasta) wykazuje wyraźne podobieństwo właściwości 

multifraktalnych zarejestrowanych szeregów opadowych, manifestujące się zbliżonymi 

wartościami uniwersalnych parametrów multifraktalnych α, C1 i H. 

W pracy zademonstrowano też, po raz pierwszy w Polsce, możliwość stosowania ciągłych 

kaskad uniwersalnych do generowania syntetycznych szeregów opadowych o wysokiej 

rozdzielczości czasowej dla Warszawy. Odnotowano przy tym możliwość praktycznego 

sparametryzowania samego generatora kaskady jedynie przez dwa parametry multifraktalne  
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α and C1. Jednocześnie zauważono konieczność stosowania algorytmu filtrującego w celu 

poprawy struktury generowanych szeregów czasowych pod kątem nieciągłości opadów.  

W podsumowaniu pracy stwierdza się wysoki potencjał stosowania modeli ciągłych kaskad 

losowych opartych o uniwersalne modele multifraktalne do generowania szeregów 

opadowych o wysokiej rozdzielczości czasowej do wykorzystania w hydrologii miejskiej. 

 

Słowa kluczowe:  

Szeregi opadowe, hydrologia miejska, niezmienniczość skalowa, nieciągłość, parametry 

multifraktalne, uniwersalny model multifraktalny. 
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1. Introduction 

From all the interrelated components of the hydrological system, precipitation plays the 

most important role in the global meteorological cycle and has a great impact on everyday 

life. The worldwide availability of surface and ground water depends on precipitation 

variability, therefore an accurate estimation of precipitation changes in time and space is 

crucial in hydrology. The analysis of precipitation for hydrological purposes is focused on 

providing information in terms of long term average, that is, 30-year normal precipitation, 

seasonal variability, inter-annual variability, i.e. the deviation of the annual values, and the 

extreme values particularly useful for the prediction of flooding (e.g. real time monitoring), 

drainage systems design, or model verification (hydrological modelling of catchments). The 

latter is particularly subject to spatial variability that can influence the simulation of water 

behaviours in catchment and sub-catchment responses (He et al., 2011b). The level of 

accuracy of analysis results is strictly related to knowledge of atmospheric precipitations and 

forecasting methods, thus the source of data and analysis techniques. Narkhedkar et al. 

(2010), in their study, pointed that only a combination of different techniques of analysis 

provides sufficient precipitation estimates, that is: observations from rain gauges and 

satellites, together with a numerical model prediction lead to satisfactory analysis results, 

even if with some (if not yet well understood) uncertainty.  

Despite the increasingly wider application of hydrological modelling and precipitation 

estimation using weather radar, these methods are still sources of uncertainties: hydrological 

modelling is subject to error through model formulation, parameter estimation and model 

inputs, while radar measurements are performed remotely and indirectly (Refsgaard et al., 

2007; He et al., 2011a), thus, rain gauge measurements are still considered the most reliable 

point scale source of data, according to many authors (Lebel and Amani, 1999; Wang and 

Wolff, 2010; He et al., 2011a). However, precipitation phenomena exhibit a high non-linear 

variability in spatial and temporal scale, therefore the variability of both the surface and 

duration (from minutes to several days) causes strongly irregular fluctuations difficult to 

capture instrumentally, and even more difficult to describe mathematically (de Lima, 1998; 

Kiely and Ivanova, 1999). For years, the random character of rainfall phenomena was ignored 

and the only precipitation model assumed by engineers was of constant intensity. 

Very often in hydrological modelling, the complex natural processes are simplified and 

approximated: for instance, in hydrological modelling the generalization of rainfall 

phenomena leads to an insufficient analysis of spatial and temporal resolution and an 
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inadequate usage of rain data. This problem is particularly present in urban hydrology where, 

due to changes in climate conditions (the increased frequency and intensity of heavy rainfall 

events), and more rapid urban expansion, the increase of seal surface causes an increase of 

surface runoff, (the soil absorption capacity is reduced) and specifically, an increase the load 

of sewerage system (Berggren et al., 2011; Fletcher et al., 2013). Therefore, the 

implementation of modelling as usual procedure of sewerage system design became 

necessary. Yet, most of the already build rain water drainage and combined sewage systems 

in Poland have been designed based on the Błaszczyk IDF (Intensity-Duration-Frequency) 

rainfall model and the simple surface runoff calculation method (assuming constant intensity 

rainfall in the catchments), reducing its value with the increasing outflow time, already 

outdated and no longer recommended (Kotowski et al., 2010; Kaźmierczak and Kotowski, 

2012). Only for selected cities in Poland, computer based hydrodynamic drainage systems 

models were developed and used for assessment of their hydraulic condition.  

Practical motivation for the usage of hydrodynamic drainage systems models originates 

mainly from the European standard EN 752:2008 „Drain and sewer systems outside 

buildings” (assumed Polish standard PN-EN:752). Computer based drainage system models 

can be seen as contemporary engineering tools necessary for verification of the recommended 

frequencies of acceptable drainage systems overtopping, in according to the European 

standards. Especially for sewage systems covering large areas (over 2 km2), a real-time 

modelling is recommended using software based on equations of slowly varying unsteady 

flow for both surface runoff and the sewer conduits flow; this implies the application of 

variable rainfall data in time and in space. Then, the modelled system outpouring has to be 

verified by different rainfall scenarios at the input to the hydrodynamical modelling. In fact, 

local rainfall data are required for verification of local results deriving from the model 

simulations (Narkhedkar et al., 2010).  

Commonly used rainfall data for verification are locally-measured intense multidecadal 

(min 30 years) rainfall series or synthetic hyetograph of Euler type II (Schmitt, 2007; 

Kaźmierczak and Kotowski, 2012; Kotowski, 2015). The former are very rare or rarely 

available in Poland, whereas the use of simple and static synthetic hyetographs of Euler type 

II is in obvious conflict with the variability of rainfall hyetograph shapes and temporal 

intensities observed in nature. Indeed, the main obstacle for proper hydrological modelling is 

the lack of free access to relevant rainfall data by Polish designers (Kotowski, 2006; Licznar, 

2008). In the past, prior to the exploitation of modern rain gauges (until 2007), the rainfall 

data series had been registered mainly by pluviographs, whose results needed manual 
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conversion to the digital format: even the reading of maximum rainfall events was tedious and 

time-consuming (Licznar, 2005; Licznar et al., 2005; Licznar, 2009). Moreover, the access to 

“raw” high-resolution rainfall intensity data was (and still is) mainly reserved for authorized 

persons from the Polish Institute of Meteorology and Water Management. Similarly, local 

rainfall monitoring systems dedicated to urban hydrology are still rare and usually under 

development. In case of lack of any (available) multiannual local data, Polish designers tend 

to build their analysis on rainfall time series from (single) rain gauges located outside the city 

centres, usually at airports—where the best location conditions recommended by World 

Meteorological Organization (WMO) are met by modelling even large urban sewage systems 

without regard to the variability of rainfall on urban precipitation field. 

Similar consideration is given to synthetic hyetographs, mainly on Euler type II, commonly 

used in Germany, and widely used by Polish designers. In a recent study, Licznar and Szeląg 

(2014) analysed over 400 Warsaw registered rainfall events of a time duration of up to 420 

minutes, and stated that the model precipitation of Euler type II significantly deviated from 

the registered time series in almost every case, and the synthetic hyetograph was strongly 

inconsistent with the shape of the registered hyetographs. Moreover, it follows that the 

application of Euler type II rainfall for time series longer than 180 minutes is senseless. 

Consequently, we need to answer the arising question of whether in the design of urban 

sewage system only one set of data is suitable for modelling purposes and is able to reflect the 

spatial and temporal variability of rain. And finally, if no recorded data is available, is it 

sufficient to use in simulations the defined model precipitations like Euler type II?  

A better understanding of the precipitation field, especially improving precipitation 

modelling tools, is one of the most important tasks of modern hydrology, which so far does 

not take into consideration the variability of the urban precipitation field, (Licznar, 2009; 

Dżugaj, 2014). The requirements of rainfall data for purposes of urban hydrology are different 

from those of natural catchments (Schilling, 1991). Urban hydrology requires high temporal 

and spatial resolution rainfall time series that are only dedicated to this only purpose gauging 

networks can provide (Niemczynowicz, 1999; Berne et al., 2004; Bruni et al., 2015). In terms 

of numbers Emmanuel et al. (2012) defined the adequate spatial resolution of urban filed as a 

maximum distance of 6.5 km between rain gauges for light rain events and 2.5 km for 

showers, while Berne et al. (2004) developed a mathematical relation between the temporal 

and the spatial resolution of rainfall for urban applications and, for a catchment of about 100 

km2, defining the required spatial resolution as 5.2 km and the temporal resolution of 12 

minutes. Interestingly, if the temporal resolution is sufficiently high (<5min) for catchments 
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of areas greater than 1 km2, a distance between neighbouring rain gauges of 1 km is 

satisfactory (for drainage areas up to 8.7 km2) (Ochoa-Rodriguez et al., 2015).  

The variability of precipitation fields is of particular importantance in the implementation 

of global Real Time Control (RTC) of urban drainage systems (UDS), currently under 

implementation in many European cities as an effective method for controlling urban 

wastewater and stormwater systems (e.g. Vezzaro et al., 2014; Viessman et al., 2014). Such 

systems take advantage of the precipitation field variability, whose description affects the 

optimization of water retention inside the system itself (Licznar et al., 2005). As for 2010, 

many European rain gauge networks had already been employed as part of the RTC (e.g. in 

Barcelona (Spain) a network of 24 rain gauges, in Marseille (France) with 24 rain gauges and 

Vienna (Austria) with 25 gauges (Thames Tunnel Needs Report Appendix B, 2010)).  

In Poland, the lack of appropriate data necessary for modelling sewage systems resulted in 

the implementation of a local precipitation measuring network in many urban catchments. 

Gauge networks of Łódź, Gdańsk or Wrocław are worthy of notice, but special attention is 

given to Warsaw, where from 2008 one of the biggest monitoring systems in Europe is in 

operation, and for the first time in Poland a local rain gauge network focused on gathering 

input data for hydrodynamic modelling combined with the monitoring of filling and flows 

levels within sewers has been created (Licznar, 2009).  

The probabilistic evaluation of the urban drainage efficacy and degree of retention of 

overloaded systems required by the European guidelines, can be performed only on the basis 

of multidecadal (at least 20-30 years) high temporal resolution time series (up to 10 minutes) 

(Licznar et al., 2015). The implementation of urban rain gauge networks would allow in the 

future for a wider access to high resolution time series necessary for hydrodynamic 

modelling; nevertheless, such data is necessary at present. Currently available computer 

technologies and development of applied mathematics lead to a conceptual and mathematical 

modelling of precipitation focused on the improvement of the input data to local simulations 

such as synthetic rainfall events (Llasat et al, 2007). Effectively, to reflect the actual 

conditions in modelling, the random nature of rainfall has to be implemented in urban 

analysis. Such a purpose can be reached by using synthetic data randomly generated, e.g. by 

the multiplicative random cascade models focused on rainfall disaggregation of coarse daily 

rainfall to higher resolution by models conserving mass at each branch (microcanonical 

cascades) or not conserving mass (canonical cascades) (Licznar et al., 2011a; Licznar et al., 

2011b; Rupp, 2012; Licznar and Szeląg, 2014). Multiplicative random cascades belong to a 

general type of fractal and multifractal cascade model which is simpler and characterized by 
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fewer parameter than the remaining two types: autoregressive and point-process models 

(Veneziano et al., 2006; Rupp et al., 2012). For the first time in Poland, such an approach has 

been proposed as a method of analysis of the Wrocław precipitation field by Licznar (2009). 

As a result, the developed microcanonical random beta-normal cascade enabled the temporal 

variability and intermittency of rainfall data for time scales from about 24 hours up to 5 

minutes. The statistical parameters of the obtained generated synthetic time series are 

consistent with the parameters of the observed data. Similar results were achieved by Górski 

(2013) for a rainfall time series from Kielce (Poland) and Licznar et al. for four German cities 

(2011b). 

Notwithstanding, a basic characteristic of microcanonical random cascade models requires 

a large number of parameters that has to be estimated at each level of cascade. An alternative 

claimed by many authors (de Lima, 1998; Schertzer and Lovejoy, 1987, 1989) is the approach 

of the universal multifractal generator limited by only 3 parameters for the whole hierarchy of 

scales. 

The principle of the already mentioned fractal and multifractal theory, subject of the 

present dissertation, is the invariance of properties across scales that is believed to be the 

hidden principle of hydrology (de Lima, 1998). Advances in mathematics and computer 

science also enabled the developing of scaling theories, according to that of which a natural 

event is scale-invariant if its features are independent of scale. The quantification of this 

scale-invariance is given by the scaling rules (power laws) described by scaling exponents. In 

modern math, the generalization of scaling properties of a process is possible using the fractal 

and multifractal theory as an alternative to the classical Euclidean approach for all the 

phenomena that do not “fit” into traditional rules. Fractal theory deals with simple scaling, 

while multifractal theory is described by an infinity of scaling exponents. The strongest point 

of this geometry is the minimum number of parameters needed to describe complex natural 

phenomena, like turbulence, cloud formation, earthquakes, or finally, rainfall precipitation (de 

Lima, 1998; Schertzer and Lovejoy, 1993).  

The fractal and multifractal analysis of rainfall is not well known in Poland. Yet, first 

attempts of its application to Polish rainfall time series performed by Licznar in Wrocław, 

Górski in Kielce and by the author in Warsaw, as is demonstrated, provided promising results 

to a wider application of such methods in many applications of urban hydrology. 
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2. The aim and scope of the thesis 

The aim of the present study is to contribute to a better understanding of the non-linear 

variability of rainfall by analysing the precipitation time series in terms of the scale-invariant 

and multifractal behaviour present in precipitation data, originating from the biggest Polish 

urban precipitation field. The study uses point-rainfall data retrieved from a network of 25 

recording rain gauge situated in Warsaw (Poland) providing high resolution data for over  

2 years. The registered precipitation time series are subject to multifractal investigation based 

on spectral analysis and analysis of scaling of probability distributions and statistical moments 

of rainfall intensity. Based on the multifractal geometry methods, the universal multifractal 

parameters for all the rain gauge data are determined to characterize the statistical properties 

of multifractal processes.  

Special attention is therefore given to the universal multifractal model, based on Lévy 

random variables, under which a universal multifractal generator is created, to generate 

synthetic 1-minute precipitation time series for Warsaw data. The final step is focused on the 

determination of statistical features of the generated data and their comparison to the statistics 

of the recorded time series. 

 

The following statements have been hypothesized: 

I. Rainfall (temporal) structure varies within a precipitation field of a large city. 

II. Due to this, the multifractal characteristics of the local rainfall series recorded at different 

rain gauges, that is: intermittency, scales, and extremes are subjected to significant 

variation. 

The conducted studies are additionally aimed to determine whether: 

1. in a large urban filed, properties such intermittency and scaling are variable; 

2. the Warsaw rainfall time series exhibit multifractal characteristic; 

3. it is possible characterize multifractal behaviour of rainfall series from Warsaw by a 

simple set of universal multifractal parameters; 

4. the universal multifractal model based on universal parameters can be a practical tool 

for generating synthetic rainfall series; 

5. it is possible to somehow impose intermittency observed in natural precipitation into 

synthetic series generated by continuous universal multifractal model.  
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Outline of the dissertation 

The dissertation is divided in chapters and sections as follows. Chapter 3 is focused on a 

brief review of type of precipitation measurements and the description of the most common 

errors encountered in precipitation monitoring. In Chapter 4 the analysed precipitation field of 

Warsaw (Poland) as well as the Warsaw climatic and precipitation conditions are presented. 

In addition, guidelines of the proper location of urban precipitation monitoring stations are 

reported, based on which the analysis of Warsaw gauges recording conditions is discussed. In 

Chapter 5, the concept of the fractal geometry is introduced and the need of using fractal 

dimension is clarified, and the basis of simple fractal analysis of sets that is the box-counting 

method is described. Chapter 6 is dedicated to the assumptions and motivations of multifractal 

geometry, the description of multifractals is presented, and the multifractal analysis 

techniques are reviewed to finally obtain the full description of the universal multifractal 

parameters upon which the universal multifractal generator is constructed. The results and 

discussion are presented in Chapter 7 and the final conclusions are described in Chapter 8. 

Furthermore, the references, list of symbols and abbreviation used in the text, as well as all 

the attachments are found at the end of the dissertation.  
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3. Precipitation process 

The interactions occurring between the atmosphere and ground surface are essential for the 

circulation and distribution of the water in the Earth system. In hydrology, intended as the 

science studying the global water balance, both in temporal and spatial scale, as in many other 

earth sciences, the water cycle plays a significant role also as a basis for hydrological 

investigation. Besides the biological and chemical processes, the water cycle is defined by the 

physical interactions between the atmosphere and the surface water, among which 

precipitation and evaporation are the most important. 

The formation of precipitation is roughly related to the processes of evaporation, when 

moisture is released into the atmosphere; condensation, when moisture is lifted from the 

atmosphere to the troposphere by convection; convergence of air mass; and the falling down 

onto the ground surface by precipitation of rain or snow. Briefly, three basic stages of 

precipitation formation are defined: 1) occurrence of saturation conditions, 2) phase change 

from vapour to liquid/solid state, and 3) formation of water/ice crystal droplets to precipitable 

size (Eagleson, 1970; Chow et al., 1988). 

The conditions encouraging the formation of precipitation are related directly to the local 

patterns of atmospheric circulation and the ground surface. The geographical position such as 

latitude, altitude, topography, distance from mountains and moisture sources, and local feature 

like: wind intensity, wind direction with the consequent air masses movements, relative 

temperature of water and ground, affect the spatial and temporal variability of precipitation 

(Eagleson, 1970; de Lima, 1998). 

3.1 Precipitation measurements 

Recent developments in precipitation measurement techniques have led to the replacement 

of conventional (manual) rain gauges, focused to measure the precipitation intensity (defined 

as the amount of precipitation, collected per unit time interval, WMO-No. 182) as a secondary 

parameter deriving from precipitation amounts, to automatic ones, throughout the integration 

of recorded intensity within a time interval, in order to obtain the rainfall intensity as a 

primary quantity. In 2001, during the Expert Meeting on Rainfall Intensity Measurements, 

recommendations concerning standardization of rainfall intensity measurements were 

formulated. Among others, a time resolution of 1 minute for output averaging time and the 

range 0.02 to 0.2 mm⋅h-1 as reporting ‘rain detected’ (Lanza et al., 2005). Snow measurement 

is possible in rain gauges as well, after the snow melting by providing a melting agent to the 
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gauge (Viessman and Lewis, 1996). In this dissertation, the term rain gauge is used to 

identify both snow and rain measuring instruments. 

A variety of methods have been developed to measure precipitation mainly due to a high 

variability in time and in space of the phenomena. It is possible to access point type data from 

rain gauges or network of rain gauges or spatial rainfall data originating from remote sensing 

by ground radar or by satellites. An example of remote sensing device is presented in Fig. 3.1, 

where an X-band weather radar is visible. 

 

Figure 3.1. Remote sensing X-band weather radar 

In ground observations, besides the distrometers and radars, the most common and useful 

measurement instruments are gauges, also considered in precipitation as a source of reference 

data (Tapiador et al., 2012). The rain gauges are classified into non-recording, (i.e. standard 

gauge – Hellmann, or storage gauge Fig. 3.2) and recording types (i.e. tipping-bucket gauge, 

float gauge or weighing gauge).  

 

Figure 3.2. Hellmann rain gauges 

The first type of gauge is designed for a daily, weekly, monthly or even seasonal reading. 

The construction consists of a cylindrical vessel (container) provided with or without a funnel 

through which the rainfall from the collector above it passes into the container. The rainfall 

depth is defined usually by a calibrated measuring stick. The results readings have to be 
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performed manually at regular time-intervals. The recording rain gauges allow continuous 

recording measurements of precipitation and depending on the type, can provide a high and 

well defined temporal resolution of the data. 

Tipping-bucket gauges generate an electrical signal after reaching a certain depth defined 

by the bucket capacity. Under the funnel, each rain gauge is equipped with a pair of triangular 

reservoirs (buckets) on a rotation shaft (visible on right in Fig. 3.3). During a rainfall, after 

one is filled up, the bucket tips and pours out the water into the drain cylinder and releases a 

signal. The rain then continues to fall into the second bucket. In this manner, the tipping of the 

buckets provides a measure of rainfall intensity and the results are registered by an 

electromagnetic recorder.  

 

Figure 3.3. Tipping-bucket rain gauge. From the outside (on left) and from the inside (on the right) 

 These kinds of instruments are the most common, nevertheless they are characterized by a 

high underestimation of heavy precipitation, i.e. because of the small collection area and the 

relatively slow recording, and neither they are not suitable for light or solid precipitation due 

to a high evaporation rate, clock drift, or the necessity of snow melting to log the signal 

(Vasvári, 2005; Tapiador et al., 2012). In addition, their long-term usage requires systematic 

maintenance and calibration. An example of tipping-bucket gauge calibration installation is 

given in Fig. 3.4. (Licznar et al., 2013). 
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Figure 3.4. Measuring set used to rain gauge calibration at IIHR – Hydroscience & Engineering laboratory, 

Iowa State University (USA) (Licznar et al., 2013) 

Siphon rain gauge (Fig. 3.5) operates on a pen provided with a floating element that 

moves upward as the level of water in the storage tank rises, and records the water amount on 

a chart. When the level equivalent to a fixed amount of water is reached, the rainfall is drained 

by a siphon into a collecting jar placed below the storage tank. On the graph, the amount from 

0 to a fixed maximum is registered. When the rainfall stops, a horizontal line is traced (sample 

chart visible in Fig. 3.6). 

 

Figure 3.5. Siphon rain gauge in field (on left) and (on right) the inside elements. From the top: the funnel, 

the recording pen, the floating element and the siphon 
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Figure 3.6. Sample pluviograph chart obtained by a siphon rain gauge recording 

The modern weighing-type rain gauges (exemplary weighing rain gauge in Fig. 3.7) are 

less common and measure the weight of precipitation collected in a vessel. The increase of the 

deposited weight (measured by a strain-gauge bridge – Fig. 3.8) is converted into a cumulated 

precipitation recorded in time. The lack of a funnel at the entrance of the gauge orifice, 

required for previously described tipping-bucket and siphon gauges, allows to record different 

types of precipitation, e.g. liquid precipitation (rainfall), solid precipitation (snow, graupel) or 

mixed precipitation (sleet). For all the above-mentioned types of precipitation, weighing type 

rain gauges are capable of recording the intensity of liquid water content.  

 

Figure 3.7. A MPS Systém weighing-type rain gauge 
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Figure 3.8. The strain-gauge bridge of an electronic weighing-type rain gauge 

However, these types of instruments are unable to recognize the rainfall type (snow or 

rain). Nevertheless, the weighing rain gauges were found to be the most accurate instruments 

for 1-minute rainfall intensity measurements with a good dynamical stability and short step 

response in comparison to other types of gauges (for further discussion see Vuerich et al., 

2009). Additionally, such devices could be easily provided with telemetry systems useful to a 

real-time monitoring purposes.  

The guidelines for the location of precipitation stations in urban areas are described in 

Section 4.3, and the weighing rain gauges of TRwS type, as well as the phenomenon of step 

response error, are described in detail in Section 4.4. 

3.2 Error in precipitation measurements 

The rain gauge measurement errors depend mainly on their source. Usually they can be 

classified as (i) systematic and (ii) random type of errors. Systematic errors (i) have been 

relatively well established and are mainly due to instrument imprecisions or the 

environmental influence on it. Studies about the identification and quantification of 

systematic errors have been conducted by analysing: wind and turbulence undercatch, 

evaporation and wetting or splashing losses, calibration effects, the effect of drop size, and 

wind speed on rainfall measurement as well as the occurrence of relationship between error, 

intensity and timescale of rainfall, or the existence of mechanical errors affecting the 

assessment of duration of short and high intensity events (Habib et al., 1999; Nespor et al., 

2000; Molini et al., 2001; La Barbera et al., 2002; Ciach, 2003; Testik and Gebremichael, 

2010). 



 

23 

 

The other less known types of discrepancies are defined as ‘local random errors’ (ii) and 

are caused by unpredictable changes, ether in instruments or in environmental data recording 

conditions. Studies conducted by Habib et al. (2001) and Ciach (2003) on tipping-bucket rain 

gauge measurements show a significant occurrence of such errors at short-time rainfall scales 

up to 10-15 minutes and a strong dependence of error from rainfall intensity, timescales, and 

the way of data collection and processing. 

However, the impact of measurement errors on the investigation results have not yet been 

precisely quantified. Such an error, omitted in practice, may affect significantly the extremes 

rainfall statistics of high resolution precipitation measurements, required for hydrological 

purposes (Lanza and Vuerich, 2010). Despite this, it is a very common practice to transfer 

rainfall data to large areas collected from sparsely distributed point gauges based on a 

quantitative estimation of the spatial variability of the precipitation field—rain gauges still 

remain the largest source of acquisition of observational precipitation data, mainly providing 

data for emergency flood alerts or to the calibration of radar rainfall measurement algorithms 

(Habib et al., 2001; Ciach, 2003; Tapiador et al., 2012).  

A possible solution nowadays to minimize an eventual measurement failure and to improve 

the quality of measured data is to increase the number of rain gauges at measurement stations 

to at least two units, in case of relatively cheap tipping-bucket rain gauges, as shown in Fig. 

3.9, where a pair of Hellmann rain gauges is presented (Ciach, 2003 and further reference). 

 

Figure 3.9. Tipping-bucket rain gauges 

Eventually, an even better solution is to supplement the old type siphon or tipping-bucket 

rain gauge, subjected to numerous limitations and errors, with the modern, more precise and 

easier in practical use, namely the weighing type gauges. In the following chapters, one of the 

biggest monitoring systems in Europe—the rain gauge monitoring system in Warsaw 

(Poland)—is described as a research field for complex multifractal analysis.  
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4. The rainfall data and the research field 

Warsaw city is located in the east-central part of Poland in the heart of the Masovian Plain. 

The city is divided north to south diagonally by the middle reach of one of the major Polish 

rivers: the Vistula (Wisła) River. The city is divided in two parts: the left bank, situated 

almost entirely in a moraine upland (Warsaw Plain), and the right bank, covered by the river 

valley (Vistula Valley). The boundary of both units is determined by the Warsaw 

Embankment, one of the most important factor of the natural environment of the city. It 

extends for almost 31 km along the city and constitutes the main element of the city 

ventilation system, controlling the direction of the winds discharging pollutants, and 

supplying clean air to Warsaw. The Vistula River is characterized by a low water level in 

autumn and early spring water saturation. The average annual vertical water level fluctuations 

reach 4-5 m, and extremely exceed 7 m (Pawlak and Teisseyre-Sierpińska et al., 2006). 

4.1 Warsaw climatic conditions 

The Warsaw agglomeration is characterized by a transitional-temperate climate where the 

clashing continental and Atlantic masses cause frequent weather changes throughout the year. 

For almost 8 months the polar-marine mass dominates, meaning that for nearly 3 months the 

climate is formed by the continental mass, and the arctic climate prevails for one month in the 

year. Even more rarely Warsaw is influenced by the dry hot and tropical mass. The average 

annual amount of solar radiation in Warsaw is 3538 MJ/m2. The average annual air 

temperature in Warsaw is 8.2˚C. The coldest month is January (average temperature of 

approx. -2.0˚C) and the warmest is July (average temperature is 18.0˚C) (Płażewski, 2014). 

In Warsaw, from the second half of the 20th century, a decreasing trend of winter 

temperature has been noted, especially in the downtown area, where the temperature increase 

is more pronounced. This behaviour is explained by the phenomenon of ‘urban heat island’ 

which predominates in compact construction and artificial surfaces. In this area, an increased 

air temperature compared to the surrounding areas is observed as a result of changes in 

radiation balance, differences in urban and non-urban thermal conductivity and heat capacity, 

as well as higher emissions of artificial heat and air pollution in this part of the town (Pawlak 

and Teisseyre-Sierpińska et al., 2006; Płażewski, 2014; Kicińska and Wawer, 2014). Peng et 

al. (2012) analysed 419 cities all over the world, including Warsaw, in terms of the diurnal 

and seasonal variation of the heat island intensity. They found that for 56 analysed cities in 

Europe the annual daytime heat island effect is higher than during the night. Furthermore, its 
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intensity is more pronounced in winter than in summer and, interestingly, the greener the city, 

the smaller the urban heat island effect, which underlines the importance of vegetation in 

large cities. 

4.2 Warsaw precipitation conditions 

The average total yearly precipitation for Warsaw, recorded by the meteorological station 

Warsaw-Okęcie and based on the observation for the 30-years period from 1971 to 2000, 

amounts to 519 mm. Whereas for the years 2001-2010 this value is slightly increased and 

amounts to 571 mm. The lowest average monthly precipitation values for the years 1971-2010 

are recorded in winter months (Tab.4.1): in January and February (25 mm) and in transitional 

periods: October (30 mm) and March (31 mm). The highest values are noticed in summer 

months: July (76 mm) and June (65 mm) (Kozłowska et al., 2013). 

Table 4.1. Monthly precipitation in Warsaw for years 1971-2012 (Kozłowska et al., 2013) 

Years 

(for Warsaw–Okęcie) 

Meteorological station 

Monthly precipitation in mm 
I II III IV V VI VII VIII IX X XI XII 

1971–2000 22 22 28 35 51 71 73 59 49 38 36 34 
2001–2010 34 34 39 22 60 48 84 22 33 5 29 81 
1971-2010a 25 25 31 32 53 65 76 50 45 30 34 46 

a own elaboration 

During the meteorological winter, defined as a three-month period from the beginning of 

December to the end of February, in the period range from 1965 to 1995, on average, the 

coldest month was January (-2.6˚C, 12 snow days) followed by February (-1.6˚C, 10 snow 

days) and December (-0.6˚C, 10 snow days). The average number of snow days ranged from 

19 days in 1990 to 50 days in 1968. Additionally, it is noticeable that the winters grew milder 

and shorter in the described 1965-1995 period (Płażewski, 2014). 

The Warsaw area is dominated by the west winds (W – 25.0%), but there are also present 

northwest winds (NW – 10.7%) during warm seasons and the southwest winds (SW – 10.5%) 

during the cold seasons. The North (N – 7.2%) and Northeast winds (5.9%) are the least likely 

to occur. The urban area hampers the dynamic movement of air masses and it is also a source 

of condensation nuclei which contributes to increase the total amount of precipitation. The 

spatial distribution and the amount of precipitation in the city is varied: in central parts the 

annual rainfall precipitations are lower than in the western districts. Similarly, the wind speed 

in the city centre is 60% lower than speed of the open suburban spaces. 

The Warsaw ventilation system is made of an external system, where the movement of air 

takes place by city sectors depending on the overall air circulation, and the internal local air 

circulation resulting from the type and arrangement of the buildings, road network system and 
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the distribution and size of green areas. The range of the internal ventilation system coincides 

roughly with the range of occurrence of Warsaw heat island (Pawlak and Teisseyre – 

Sierpińska et al., 2006). From a comparison between a rural station in Warsaw-Okęcie 

(situated near the airport, on the suburbs) and an urban one in Warsaw-University station 

(located on the left bank of Vistula River), a clear change in wind directions and speed is 

visible. The wind speed in the city centre is not only decreased on an average of 55%, but also 

deviated to the left by about 22.5˚, which is consistent with the Vistula Valley, lying on the 

SE-NW direction, and the main city streets (WSW direction). It is therefore concluded that 

the Warsaw wind is significantly impacted by urban buildings (being an area of increased 

roughness), and by the Vistula River valley (and it proximity to the University measurement 

station), as an important element of the terrain (Kossowska-Cezak and Bareja, 1998). 

4.3 Guidelines for the location of precipitation stations in urban areas 

Crucial factors determining the appropriate parameters to adopt in setting an urban station 

are the spatial-temporal scale and the classes of representativeness of a device. Both these 

factors are characterized below according to WMO guidelines. 

4.3.1 Observation scales 

During the precipitation data recording, the portion of the surroundings only ‘visible’ to the 

sensor therein placed—called ‘source area’—depends on the sensor height and the recording 

circumstances. In addition, many disadvantageous events can cause measuring interferences 

(Oke, 2006). In accordance to the WMO guidelines the attention is drawn, among others, to 

four different groups of phenomena (Nespor et al., 2000; Oke, 2006; Tapiador et al., 2012; 

Licznar et al., 2013; Pollock et al., 2016):  

1. the ‘rain shadow effect’, meaning the interception of rain out of its trajectory of falling 

to the ground by the obstructing elements like trees or buildings;  

2. the splashing of rain drops, due to the presence of sealed surface in the device 

surrounding as well as hanging objects above the gauge like tree fruits of leaves, likely 

to fall inside;  

3. the urban canopy layer (UCL) as complex wind layer depending on the mean height of 

the main roughness city elements like buildings or trees, only wherein the vertical 

exchange occurs;  

4. the air turbulence caused by wind gusts and the presence of the rain gauge itself, that 

may interfere with the proper amount of the recording rain.  
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The guidelines (WMO No 8, 2012) determine also three different urban scales defined as 

follows: the microscale (Fig. 4.1c) where it is possible to catch the city microclimate features, 

usually reflecting the local conditions and having a great impact on the measurement, the 

local scale (Fig. 4.1b)—the climate monitoring meteorological instruments are designed for—

and the mesoscale (Fig. 4.1a), whose features are not capable of being represented by a single 

urban station. 

 

Figure 4.1. Scheme of climatic scales and vertical layers found in urban areas: planetary boundary layer 

(PBL), urban boundary layer (UBl), urban canopy layer (UCL), rural boundary layer (RBL) 

(from WMO No. 8, 2012) 

Meteorological measurements, including the rainfall precipitations, are mainly performed 

inside the local scale, especially in the urban canopy layer, which is given by the height from 

the ground to the main roughness elements of the city. Herein, all the isolated microclimatic 

effects formed in microscale close to the source, are mixed and calmed by the turbulent local 

winds. In this way, the local climate is influenced by the blending effect, both horizontally, up 

to a few hundred meters, and vertically, where it persists in the roughness sublayer (RSL), 

from the ground up to the so-called mixing height. A precipitation recording device, focused 

on investigating the intra-urban patterns, has to be placed below this level to record the local 

environment of the gauge. Furthermore, in urban areas, due to the heat island effect, large 

roughness and stability condition, an additional height restriction arises: each local scale 

surface type is delimited by an internal boundary layer, whose height depends on the distance 

upwind to the borders of distinctly different surface type (i.e. fetch distance). By analogy, in 
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rural areas, where the heat island effect and surface roughness is lower, the surface type’s 

boundaries are further apart, the fetch distance is higher and the internal boundary layer is 

greater. If the source area is not sufficiently uniform, the provided data cannot be local 

representative (Oke, 2006; Licznar et al., 2014). In practice, for precipitation measurement, 

the standard is that the obstacles should be no closer to the rain gauge than two times their 

height. 

To reflect the meteorological measurement in the mesoscale the use of many instruments is 

required. In case of rainfall, the most common solution is to install a rain gauge network. In 

such a case the locations affected by microscale climate conditions should be excluded. 

Therefore, the location of the gauges in open spaces or nearby sharp-edged buildings should 

be avoided. High variable or even turbulent wind activity in UCL or RSL fields can be more 

dangerous than in case of natural obstacles (Fig. 4.2). 

 

Figure 4.2. 2-D flow around a building with flow normal to the upwind face (a) stream lines and flow zones; 

A -undisturbed, B - displacement, C - cavity, D – wake and (b) flow, and vortex structures (from 

WMO-No. 8) 

Considering all the above, it is recommended in urban areas to collocate the measurement 

devices like rain gauges in places where the standard exposure conditions on the ground are 

met, i.e. playgrounds, open parks with low density of trees, urban airports, etc. The best 

places to install rain gauges are those surrounded by trees, brushwood and bushes or other 

barriers against the wind. The less preferred option is to collocate the rain gauge on a roof-

level. In such locations, greater than normal wind speed and hence a greater error of 

estimation than on the ground surface occurs, therefore a conjunction with the wind 

instruments is necessary, to provide rain gauge output corrections (Oke, 2006).  
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4.3.2 Classes of representativeness 

The general guidelines for meteorological instruments and observations, WMO No. 8, 

indicate as preferred observation station for rainfall data a secured fenced area with 

dimensions of approximately 107 m, a device placed at a distance of min. 3 m from the 

fence and the surrounded area overgrown with regularly moved lawn. The rain gauge orifice 

should be place at a certain height of the range between 0.5-1.5 m above the terrain—in 

Poland it is set 1 m above the ground level.  

Furthermore, the usage of automatic recording precipitation gauges is recommended to 

provide better time resolution and reduction of evaporation and wetting losses in comparison 

to the manual ones. Particularly, from among three types of automatic rain gauges (the 

weighing-recording type, the tipping-bucket type, and the float type), only the weighing type 

is suitable for all kinds of precipitation measurements (both rain and snow). The output of 

such a device is an electronic signal, recorded continuously, being proportional to the input 

quantity. Normally, such types of gauges are not designed for emptying themselves 

automatically, so the capacity of maximum accumulation of a recording gauge given by the 

size of the internal container, is usually at the range at least comparable with annual 

precipitation total. 

In order to take into account the environmental operating conditions of the devices, which 

often distort the results and have impact on their representativeness especially in larger spatial 

scales, for meteorological probes (including the rain gauges) the concept of classes 

determining the representativeness of the data location is introduced by the above-mentioned 

guidelines (WMO No 8, 2012). These are defined below: 

  

Class 1, meets the following (optional) requirements (Fig. 4.3 and Fig. 4.4): 

• Flat, horizontal ground, surrounded by open space, slope less than 1:3 (19). The rain 

gauge surrounded by constant height obstacles under elevation angle between 14 and 

19 (the obstacles situated at a distance between 2 times and 4 times their height); 

• Flat, horizontal area, surrounded by open space, slope less than 1:3 (19). For rain 

gauges artificially protected against wind by so called wind-shields, obstacles of 

constant height are not necessary. In this case, all other barriers should be situated at 

minimum distance of 4 times their height; 
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Figure 4.3. Site condition for class 1 rain gauge (from WMO No. 8, 2012) – condition 1 

or 

 

Figure 4.4. Site condition for class 1 rain gauge (from WMO No. 8, 2012) – condition 2 

Class 2, (additional estimated uncertainty of 5% due to site) meets the following 

requirements (Fig. 4.5): 

• Flat, horizontal area, surrounded by open space, slope less than 1:3 (19); 

• Any possible obstacles should be situated at minimum distance of 2 times their height, 

(about the orifice height of the rain gauge); 

 

Figure 4.5. Site condition for class 2 rain gauge (from WMO No. 8, 2012) 

Class 3, (additional estimated uncertainty of 10% due to site) meets the following 

requirements (Fig. 4.6): 

• Flat, horizontal area, surrounded by open space, slope less than 1:2 (≤ 30); 

• Any possible obstacles should be situated at a distance exceeding their height; 

 

Figure 4.6. Site condition for class 3 rain gauge (from WMO No. 8, 2012) 
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Class 4, (additional estimated uncertainty of 25% due to site) meets the following 

requirements (Fig. 4.7): 

• Steeply sloping land (>30); 

• Any possible obstacles should be situated at a distance exceeding half of their height; 

 

Figure 4.7. Site condition for class 4 rain gauge (from WMO No. 8, 2012) 

Class 5, (additional estimated uncertainty up to 100% due to site) meets the following 

requirements (Fig. 4.8): 

• The obstacles (e.g. trees, roofs, walls) situated at a closer distance of half their height. 

 

Figure 4.8. Site condition for class 5 rain gauge (from WMO No. 8, 2012) 

Except gauges classified as mentioned above from 1 to 5, where 1 indicates the best 

conditions, considered representative, and 5 meaning inappropriate conditions for 

representative measurements due to the surrounding obstacles in the neighbourhood and 

which location of the devices should be avoided, the urban gauges are often characterized by 

high class values, distinguished with an additional letter S (e.g. 4S and 5S). 

4.4 Warsaw rain gauge network 

The rainfall data series are collected at the precipitation monitoring system of the 

Municipal Water Supply and Sewerage Company in Warsaw (MPWiK w m.st. Warszawie 

S.A.). The Warsaw rain gauge network (R01÷R25), installed in 2008, roughly covers the area 

of 517.2 km2 and each rain gauge is designed to collect rainfall data from almost 21 m2 of the 

city area, obtaining possibly a constant gauge density over the entire surface. Eight rain 

gauges are located on the right bank of the Vistula River, while 17 are situated on the left 
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bank, mainly in the city centre, where the areas of sealed surfaces constitute the most to the 

total rainwater surface outfall (Fig. 4.9).  

 

Figure 4.9. Locations of rain gauges in Warsaw 

The Warsaw rainfall monitoring network is assembled from the weighing type 

precipitation gauges of TRwS model 200E, manufactured by a Slovakian company MPS 

Systém Ltd., capable of measuring both rain and snow (Fig. 4.10). According to the 

manufacturer’s technical information, the type TRwS 200E/203E rain gauges are 

characterized by the following parameters: 

1. Orifice area: 200 cm2; 

2. Range of precipitation: 750 mm; 

3. Accuracy: 0.1%; 

4. Maximum rain intensity: 60 mmmin-1; 

5. Resolution: 0.001 mm; 

6. Measuring element: strain-gauge bridge; 

7. Air temperature measurement: -35C÷70C; 

8. Weighing range: 0÷12000 g; 

9. Operating humidity range: 0÷100%; 

10. Dimensions: 355×470 mm (Fig. 10); 

11. Weight: 4.5 kg. 

 

 



 

33 

 

 

 

Figure 4.10. Scheme with its dimensions (on left) of a rain gauge type TRwS 200E (on right) 

The principle of operation of TRwS 200E gauge is based on recording the increase in mass 

of the precipitation deposited in a rain tank, put on a strain-gauge bridge. The gauge is 

crowned with a standard intake of 200 cm2, intercepting rainfall to the inner tank. The 

electronic module calculates the amount of rainfall that occurred within a specified time 

period. The rain gauges are provided with heating elements on the inlets crown. Since the 

opening does not freeze in under zero temperatures, and the gauge’s openings are not blocked 

by ice, they can be operative also in winter. 

A qualitative gauge performance field tests with the implementation of a precise peristaltic 

pump revealed a dampening of the first 3 min of the initial phase and a longer 5 min 

broadening of the final phase of simulated rainfall hyetograph (Licznar et al., 2015). The 

phenomenon of a dampening or broadening of the registration data over the range of few 

minutes by rain gauges is known as step response error. Detailed laboratory test of different 

gauges confirmed the presence of a 3-minutes step error for rain gauge of type TRwS and 

revealed that the error magnitude as quite small in comparison to other analysed gauges 

(Lanza et al., 2005). 

Furthermore, during construction of the rain gauge network, the most important parameter 

is the optimal gauge location. It is significant to obtain a slightly higher density network 

measurement in the central part of the city where the degree of sealing surfaces is the highest 

and the sewage system is the richest, and the buildings are the tallest. The major part of the 
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network gauges (21 of 25) is located on the Warsaw MPWiK properties. All the gauges are 

installed 1 m above ground level, as requested by Polish meteorological standards.  

On the basis of the characteristics of each class of representativeness of the instruments 

location (described in Section 4.3.2) a classification of each rain gauge location is made. The 

results of this classification are summarized in Tab.4.2.  

All the gauges are connected to a GSM/GPRS modules and all the recorded data is stored 

as total mass (WABS) and 1-minute precipitation layer (PR1M) with a resolution of 0.001 g 

and 0.001 mm respectively. The so called Absolute Weight (WABS) in this case, is not only 

the weight of the precipitation inside the container, but the sum of both the weight of rain and 

the precipitation tank.  

Table 4.2. List of locations of Warsaw rain gauges and the assessment of the local measurement condition. 

Rain gauge Address Location on MPWiK 

ground 

Representativeness class according 

to WMO no 8 

R01 Wóycickiego St. No 4 
R02 Rudzka St. Yes 5 
R03 Arkuszowa St. Yes 4 
R04 Górczewska St. Yes 5 
R05 Ostroroga St. No 3 
R06 Dobra/Karowa St. Yes 5 
R07 Koszykowa/Krzywickiego St. Yes 2 
R08 Jerozolimskie Blvd/P. Tysiąclecia St. No 2 
R09 Chroscickiego/Obywatelska St. Yes 3 
R10 Dzwonkowa St. Yes 2 
R11 Grójecka/Kotoryńskiego St. Yes 5 
R12 Zaruskiego/Czerniakowska St. Yes 5 
R13 Powsinska/Limanowskiego St. Yes 4 
R14 Ken/Dolina Służewiecka St. Yes 3 
R15 Wyrazowa St. No 2 
R16 Przyczókowa/Vougla St. Yes 5 
R17 Stryjeńskich St. Yes 1 
R18 Mehoffera/Strumykowa St. Yes 2 
R19 Borecka St. (Białołęka) Yes 2 
R20 Rolanda/Rajmunda St. Yes 5 
R21 Waszyngtona St. Yes 4 
R22 Dzielnicowa St. Yes 5 
R23 Chełmżyńska/Gwarków St. Yes 4 
R24 Patriotów/Pajęcza St. Yes 4 
R25 Bysławska St. Yes 4 

 

The database of a 1-minute rainfall time series for the period from 15th September 2008 to 

19th November 2010 recorded on the network of all 25 gauges is used as a material of this 

dissertation. All the recorded data are presented below in Fig. 4.11. The locations of all the 25 

gauges of Warsaw rain gauge network is presented in Appendix I. 
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Figure 4.11. Hyetographs of Warsaw 1-minute rainfall data recorded in 2008-2010 by 25 rain gauges
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5. Fractal geometry 

First reports about the idea of fractal geometry, non-properly named at that time, can be 

found in 1872, when a mathematician Karl Weierstrass proved the existence of a function that 

produced a non-differentiable curve, previously introduced but not demonstrated by Riemann. 

During the decades, many attempts to handle the non-linear geometry has been done; the self-

similar sets were developed by G. Cantor (1883) and H. von Koch (1904), the definition of 

dimension was expanded by F. Hausdorff (1918), the attractors and repellors were studied at 

the same time by G. Julia and P. Fatou in 1918, and the generalization of self-similarity 

properties was done by P. Lévy. All these contributed to the development of the later fractal 

geometry by Mandelbrot (History of fractals). 

The term fractal—from Latin: fractus meaning broken—was coined and introduced for the 

first time by Benoit B. Mandelbrot in 1975 (Encyclopedia Britannica; Mandelbrot, 1975, 

1977) to describe jagged and broken objects that do not fit the patterns of traditional 

Euclidean geometry. Mandelbrot, more willing to visual representations of mathematical 

problems using high performance computing power to which he had access, developed Julia’s 

equation by mapping the equation values and created, now famous, the Mandelbrot set. By 

doing so, he defined a new geometry enabling the study of simple structures of nature not yet 

described by mathematic formulas. Instead of measuring the length of an object, he 

discovered to be able to measure its roughness. To do so, he had to rethink the basic concept 

of dimension. 

5.1 Fractal dimension 

The dimension of a standard Euclidean or topological object can be defined unequivocally 

as an integer value (0-dimensional for a point, 1-dimensional for a line, 2-dimension for a 

plane) providing us geometric information of the set, therefore its ‘qualitative’ properties, that 

is how an object fills the space. In fractal geometry, the notion of fractal dimension is used to 

measure the complexity of an object, here intended as a ‘quantitative’ definition of it, or rather 

how fast our measurement will change while varying the scale of observation. The fractal 

dimension determines an overall structure of the set, the degree to which it covers the space in 

which is embedded, in other words, the measure of it sparseness (e.g. Seuront, 2009). 

The mathematical expression of objects dimension is generally expressed by the 

Hausdorff-Besicovitch dimension, which assumes integer values in case of Euclidean objects 

http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Weierstrass.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Koch.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Hausdorff.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Julia.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Fatou.html
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and (in general) non-integer values for fractals. We talk about fractals if the so called 

‘capacity dimension’ of a physical object is different (always larger) than its topological 

(Lebesgue covering) dimension, but in any case, remains less than the space dimension in 

which it is settled (Shivamoggi, 2014). Fractals have a property of ‘self-similarity’, meaning 

that each section of the set constitutes a completed reduced-scale copy of the whole 

(Mandelbrot, 1967). The dimension of a self-similar figure follows a power law relation: 

 𝑁s  ≈  𝜆
𝐷 (1) 

where Ns is the number of self-similar objects created by dividing the original image by the 

scale factor λ, defined as the quotient between the largest scale of observation and the 

homogeneity scale (see section 6.1). It means that there is a proportionality between Ns and λD 

in the limit λ→∞ (e.g de Lima, 1998). In this way, the fractal dimension D is a non-integer 

number and it is determined by the equation:  

 𝐷 =  
𝑙𝑜𝑔 (𝑁𝑠)

𝑙𝑜𝑔  (𝜆)
 (2) 

where D is the Hausdorff - Besicovitch dimension, which coincides with the similarity 

dimension and the capacity dimension for self-similar objects (Mandelbrot, 1967). As specific 

case of fractals, the Equation (2) is also suitable for the definition of Euclidean dimensions.  

A fractal measurement, in a probabilistic framework considered even more fundamental 

than the fractal dimension, is the codimension. Given the fractal dimension DA of a fractal set 

A, the codimension cA is the dimension of its complementary space expressed as follows:  

 cA = D – DA (3) 

where D is the dimension of the topographic (Euclidean) space wherein the fractal set is 

embedded. Frequent events are characterized by high values of dimension of a set and thus by 

low values of codimension.  

However, a certain limitation occurs for cA>D which implies DA<0, not admissible for a 

negative definition of Hausdorff-Besicovitch dimension (Seuront, 2009; Lovejoy and 

Schertzer, 2013). More versatile than the geometric definition of codimension is the 

probability of a D-dimensional object of size 1/λ to intersect the set A defined as the ratio 

between the number of non-overlapping objects NA necessary to cover the set and total 

number of D-dimensional objects ND necessary to cover the entire space containing the set A 

(de Lima, 1998; Seuront, 2009; Lovejoy and Schertzer, 2013): 

 
𝑁𝐴
𝑁𝐷

≈
𝜆𝐷𝐴

𝜆𝐷
= 𝜆𝐷𝐴−𝐷 = 𝜆−𝑐 (4) 

http://mathworld.wolfram.com/LebesgueCoveringDimension.html
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While the dimension stands for the measure of relative sparseness, the codimension is the 

measure of absolute sparseness, (Seuront, 2009; Lovejoy and Schertzer, 2013). 

5.2 Box counting method 

To calculate the dimension of complicated fractal (or even not self-similar) objects the box 

counting method is preferred. It consists on covering the image with defined, gradually 

decreasing mesh size non-overlapping grids (called boxes) of size 1/λ and determining the 

number of boxes (box-counting) containing at least a part of the object. The resulting number 

of boxes Nλ will be proportional to the box size L ≈ (1/λ) according to Equation (1): 

 𝑁𝜆  ≈  𝐿
−𝐷 (5) 

where D is the fractal dimension given by the Equation (2) as the ratio of the number of boxes 

containing the object to the magnification or the inverse of grid/box size, usually identified as 

the fractal dimension (Lovejoy and Schertzer, 2013). Graphically, by plotting the values of 

log(N) against the value of box size log(λ) (from the Equation (2)) a scale-invariant set will 

exhibit a linear relation defined by the power law (defined by Equation (1)) and the fractal 

dimension will be determined by the slope of the line fitted to the data. Nevertheless, the 

dimension of measured object cannot exceed the dimension of the unit used to carry out the 

measurement, which can be seen as a limitation of the method as well as problem that may 

arise in case of low data resolution or size of unit boxes tending to zero while rescaling.  
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6. Multifractals 

The theoretical and observational approach to the statistical properties of rainfall 

phenomena was developed at the beginning of 1960s (Marani, 2003). The high nonlinear 

dynamics of rainfall precipitation changes in spatial and in temporal scale have led, during 

last decades, to the development of applied mathematics and to an expansion of scaling 

theories, based on the invariance of properties across scales, as well as the diffusion of 

multifractal geometry (de Lima, 1998; de Lima and Grasman, 1999; Lovejoy and Schertzer, 

2006), mainly for the study of atmospheric purposes, especially for meteorology, thus rainfall 

phenomena. 

A multifractal approach in theory deals with the description of self-affine objects in place 

of simpler self-similar mono fractals. It is mainly focused on the analysis of intensity changes 

(rainfall intensity) of a non-linear process across the entire hierarchy of scales (time 

framework).  

6.1 Properties of multifractals 

In context of the turbulence formalism, a multifractal behaviour exhibits a hyperbolic 

intermittency over an intensity scale (Fraedrich and Larnder, 1993). In a time domain of 

rainfall processes, the intermittency is referred to two aspects of variability: (i) the alternation 

of wet and dry periods, that is the variability of the support of the measure (Mascaro et al., 

2013) or the percentage of no-rain periods within a rainfall event and at high rainfall 

frequencies (which strongly influence the rain measurements) it can be considered as a 

random variable, and (ii) as a sudden variation of rainfall intensity, i.e. the intensity 

fluctuations of a given support (Molini et al., 2001; Molnar and Burlando, 2005; Mascaro et 

al., 2013).  

A multifractal set is a set of non-uniformly interlaced fractals exhibiting multiscaling, 

scale-invariance and variability of features. In nature, one usually must deal with multifractal 

phenomena revealing more complex scaling relation than monofractals. In short, it can be said 

that multifractal objects are somehow ‘supported’ by a combination of simple self-similar 

fractals of low dimensions (Mandelbrot, 1989; de Lima, 1998), each of them characterized by 

a fractal dimension and single scaling exponent.  

The multifractal theory deals with multiple scaling, that is the generalization of scaling 

properties of natural phenomena. A single fractal interpretation of a rain event provides only 

the information about the rainfall occurences, while the multifractal apporach allows to study 
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the variability over time and space of a such high non-linear process like rain, for different 

levels of intensity. To obtain a significant description of the multiple scaling of a process, a 

multifractal object can be described by nothing but an infinite number of fractal dimensions 

(dimension function) and infinite scaling exponents (scaling exponent function) (de Lima, 

1998; Mandelbrot, 1989; Pathirana et al., 2003). 

Because of scaling, the scale-invariance of a phenomenon is given by a power-law 

behaviour of its energy spectra (e.g. Tessier, 1993; de Lima, 1998; Burlando and Rosso, 

1996), and can be tested by standard spectral analysis (described in section 6.4). However, 

some deviations from power law behaviour are possible (Fraedrich and Larnder, 1993; 

Olsson, 1995; de Lima and Grasman, 1999; Olsson and Burlando, 2002; Pathirana et al., 

2003): whether a multiple scaling regions are present in a graphical representation of the data, 

some breaks in the scaling regime at few hours may occur. It has not yet been explained if the 

nature of scaling breaks is related directly to the rainfall structure fluctuations or to the 

limitations of the measuring device (Olsson, 1995; Harris et al., 1997; Marani, 2003; Licznar, 

2009), nevertheless, deviations described above are reflected in several multifractal analyses 

conducted on rainfall time-series from different climatic locations. To determine the scaling 

behaviour providing information about the existence of scaling breaks, among the most 

frequently used, two methods (described further in detail) have been chosen: (i) the spectral 

analysis, which has shown a pronounced spectral break for various resolution data sets in the 

range of few minutes to few hours (e.g. Olsson and Burlando, 2002) and (ii) the empirical 

probability distribution function (PDF). These together with the multifractal parameters 

analysing techniques, lead to a divergence of results somehow related to the rainfall process 

nature (Olsson, 1995). 

Multifractal processes are also characterized by high variability, concerning a large range 

of scales, from high scales down to the small ones. Particularly, the latter corresponds to the 

‘inner’ scale of a phenomenon where the very small scales causes that the processes are 

homogeneous, the intensity is constant and the variability vanishes. It is practically impossible 

to register the innermost scale of a process experimentally; the limitations of the available 

devices allow only an average (or even accumulated) discrete registration of the densities of a 

continuous process, and that depends on the device resolution.  

As shown in Fig. 6.1, there is a strong dependence of the range of intensity values on the 

scale of observation for a continuous process. The rainfall intensity decreases with the 

increasing of observation resolution. 
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Figure 6.1. Illustration of the relation between the intensity of rainfall process and the temporal resolution of 

recorded data. Original series recoded by gauge R05 in Warsaw, at 29th September 2009 

Furthermore, the method of data recording significantly affects the obtained measured 

values. In recording geophysical processes, the ‘observable’ scale gains importance in the 

context of ‘missing’ the smallest scale of observation, and thus the true scale of homogeneity 

during experiments. As noted by Schertzer and Lovejoy (1989), de Lima (1998) and Licznar 

(2009) there is a noticeable loss in context of singular statistics of small scale behaviour.  

According to the traditional mathematical approach, it is desirable to describe all 

measurements of natural processes by function, assuming that the obtained function will 

reflect the continuous process at the scale of discrete observation tending to zero. This 

practice puts aside the strong variable behaviour occurring on a smaller scale than on that 

observable. Is therefore necessary to use measures instead of using functions to describe 

natural continuous processes (de Lima, 1998; Licznar, 2009). Since the Lebesgue measures 

are not applicable here because of the non-integer values of fractal dimensions, the D-

dimensional Hausdorf measure should be used (as already described in section 5.1). 

Consequently, the intensity of a multifractal process is defined as follows: 

 𝜀𝜆 ≈  𝜆
𝛾 (6) 

where 𝜀 is the intensity (or density) of a multifractal process at the scale ratio λ, and 𝛾 the 

singularity or order of singularity. These singularities correspond to all the range of 

intensities of a process, from the very high to the very low. The parameter 𝛾, is scale-

independent and characterizes ‘qualitatively’ the strength of the process intensity on a given 
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scale resolution. Usually, as the scale λ → ∞ for all singularities 𝛾>0 and 𝜀λ → ∞ (Schertzer 

and Lovejoy, 1989; de Lima, 1998).  

Hereby, the multitude of intensity levels leads to obtain an infinite number of fractal 

dimensions, dependent on the order of singularity 𝛾. In this way, the so-called fractal 

dimension function, D(𝛾), and, consequently, the codimension function c(𝛾) is defined as 

follows: 

 c(γ)  =  D –  D(γ) (7) 

where D is the dimension of the embedding space and D(𝛾) is the fractal dimension (also non-

integer, i.e. fractal) of the ‘support’ of singularities of order greater than 𝛾. In terms of 

probabilities, according to the equation (Tessier et al., 1993): 

 Pr(ελ  ≥  λ
γ) ≈ λ−c(γ) (8) 

the codimension of the singularities shows the changes of histograms depending on resolution 

and provides an exponent for each intensity level of the process. 

6.2 Classification of multifractals 

To characterize multifractal processes, a classification of bare and dressed processes is 

used most frequently. These terms, used in theoretical physics, were introduced in multifractal 

geometry by Schertzer and Lovejoy (1987) in order to identify two types of nature of cascade 

processes (Licznar, 2009; Lovejoy and Schertzer, 2013).  

Bare processes are theoretical and all their moments are finite (λ is finite), whereas dressed 

processes are derived from observation, usually on a larger scale than the ‘inner scale’ of a 

process. For dressed processes, there is a divergence for all moments greater than a critical 

value depending also on the space dimension (Lovejoy and Schertzer, 2013). This divergence 

comes from the more ‘violent’ variability of dressed processes characterized by larger 

singularities than the ones resulting from bare processes, for the same probability. 

The bare multifractals arise because of fine-grained process (Tessier et al., 1993), shown 

on the left-hand side in Fig. 6.2, where descending process from larger to smaller scales 

occurs (Lovejoy and Schertzer, 2013). The opposite process is the coarse-grained process, 

(right-hand side in Fig. 6.2), where the dressed data obtained experimentally are averaged in 

time or in space on ascending scales. The small-scale interactions are considered in dressed 

processes despite of smoothing of data, hence the origin of the term indicating that they are 

‘dressed’ with the small-scale interactions (Licznar, 2009; Schertzer and Lovejoy, 1989; 

Lovejoy and Schertzer, 2013). 
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Figure 6.2. Illustration of construction of ‘bare’ (on left-hand side) and ‘dressed’ (on right-hand side) 

multifractal process. On the bottom centre the scale factor equals to λ = 27. Reproduced from Lovejoy 

and Schertzer (2013) 
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6.3  Box counting method in multifractals 

To describe a multifractal, a sequence of generalized fractal dimensions is used. To 

provide a statistical description of self-similarity properties of fractals, the multifractal 

formalism is applied (Lynch, 2004; Saa et al. 2007). In practice, by applying the box counting 

method (described in section 5.2) to a multifractal object, the sought value is the sum of 

measure of interest 𝑝𝑁λwithin a given box Nλ. For multifractals, the dimension expressed by 

Equation (1) takes the following form: 

 𝑝𝑁λ ≈ L
D  (9) 

where L is the box size and D the fractal dimension, considered here as local variable. To 

determine the multifractal properties of a set, the moments of order q of the measure 𝑝𝑁λare 

calculated according to the function: 

 𝑚𝑞(𝐿) = ∑ p𝑁λ
q
 

n(L)

n=1

 (10) 

where n(L) is the total number of non-empty boxes. Therefore the generalized dimension of 

the set (e.g. D0 for capacity dimension) is dependent on the moment q and is defined by 

(Lynch, 2004):  

 𝑚𝑞(𝐿) ~ L
(q−1)Dq (11) 

Rainfall process, as an example of natural multifractal phenomena, are characterized by 

scale invariance as well as by intermittency which, given a sampling time, provides additional 

information about the variability of the intensity of the time series. All the mentioned 

properties are subject to verification in this dissertation, by using the multifractal methods 

described in following sections. 

6.4 Spectral density analysis 

An efficient computational tool for time series analysis as well as time series modelling are 

spectral methods, also known as the Fourier transform methods (Pathirana et al., 2003; 

Licznar et al., 2011). These methods involve converting (by the Fourier transform equations) 

the data series in time domain, where the data is described as a function of time, into a 

frequency domain where the amplitude of the data is a function of frequency. 
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Indeed, in a scaling field, a power-law dependency between the power spectrum and the 

corresponding frequency is observed holding the equation: 

 𝑃(𝑓) ≈ 𝑓−𝛽 (12) 

 

where f is the frequency, P(f) is the power energy of the spectrum and β is the spectral 

exponent and it act as an indicator of the of the range of scales of the analysed field. The 

Equation (12) indicates that in a log-log plot there is a linear relationship between the 

frequency and the spectrum energy of the process (Pandey et al., 1998; Licznar, 2009). 

In data series modelling, a spectrum analysis is based on the power spectral density 

function (PSD function), focused mainly in detention of the seasonal (cyclic) components of 

the process, shown as spectrum peaks on the signal graphs, and their separation from that 

randomly present i.e. noise (STATSOFT Electronic Statistic Textbook). In environmental 

engineering this approach is widely used i.e. in forecasting water consumption, wherein the 

occurring daily and weekly periodicity must be considered while creating a model. 

Given a discrete time series of precipitation x(n), recorded in strictly defined and constant 

time intervals, by using the discrete Fourier transform (DFT) can be converted in a discrete 

series of harmonic frequency-domain values X(m), in accordance to the equation: 

 𝑋(𝑚) =  ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑛𝑚/𝑁
𝑁−1

𝑛=0

 (13) 

where j equals to 1 , N is the total integer sample number, n is the sample number and m is 

the harmonic number. 

Numerical calculations necessary to carry out the DTF transformation requires substantial 

memory and processing time resources, due to the rapidly increasing amount of data 

undergoing calculations. Here, it is of use the faster equivalent to DFT, namely the fast 

Fourier transform (FFT), also called the base-2 algorithm. The function involves the 

Danielson - Lanczos lemma that assumes the idea to break up the series, and rewrite it as the 

sum of two discrete Fourier transforms, each of length N/2; one is formed from the even-

numbered samples and the other from the odd-numbered samples. For that reason, an even 

dimension of the data series N is recommended (Lyons, 2006; Wolfram Mathworld). 

The Warsaw data series are subjected to FFT algorithm and the resulting sequence of 

harmonic values X(m) is ultimately used to compute the power spectrum P(f) for N/2 + 1 of 

the frequency f according to the methods described in detail by Licznar (2009). To execute the 

calculations, two scripts – SPECTRUM_Warsaw and EvaluateSpectrum2b - are used. A 

http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/EvenNumber.html
http://mathworld.wolfram.com/OddNumber.html
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limiting factor for the considered upper frequency range is critical Nyquist frequency fc 

determined by the temporal resolution of Warsaw precipitation, described by: 

 fc =
1

2∆
  (14) 

where Δ is equal to 1 minute which is the recording time resolution of the data. Subsequently 

a smoothing of the output calculation spectrum for the high frequency using MAIN script is 

carried out, considered as a standard practice by other researches (i.e. de Lima, 1998; Licznar, 

2009). Thus, a PSD function following the P(f) dependence a double logarithmic scale is 

obtained. 

6.5 Functional box-counting method 

The functional box-counting method was developed at the end of the 20th century by 

Lovejoy (et al., 1987), as a method to obtain a functional description of the dimension D. It is 

based on the classical box-counting method, since the test sets are repeatedly covered entirely 

with non-overlapping boxes of fixed and increasing each time dimension 1/λ. Whenever the 

number of boxes containing at least one element of the set (non-empty boxes) is counted, the 

amount of non-empty boxes is presented in logarithmic scale as a function of the box 

dimension. A fractal set exhibits a linear relationship between the number of the boxes and 

the corresponding boxes size, and the slope of the curve determines the fractal dimension. In 

terms of 1-dimension time series, the box size becomes a time interval, and a non-empty box 

is the one containing at least a non-zero rain element.  

The innovation proposed by Lovejoy is to introduce, beside the box size, a boundary 

precipitation intensity rate, then to count the number of boxes containing rain, the amount of 

which is below the given threshold limit (intensity threshold Thr), and to repeat the counting 

process of each time for the increasing boundary intensity rate. By this means, it is possible to 

perform an analysis of the fractal dimension variability depending on the variation of 

boundary conditions. Finally, by relating the obtained fractal dimension D(Thr) to the order of 

singularity γ, it is possible to indirectly obtain the codimension function c(γ), conforming to 

the approximation Thr ≈ λγ. The main advantage of this method is that there is no need to use 

statistical moments; nevertheless, a significant limitation of the method stands in the 

“saturation” effect which occurs for certain intensity threshold values, above which, all the 

boxes are filled with rainfall. Such a situation may cause artificial breaks on the resulting 

graphs.  
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For the Warsaw precipitation time series, time intervals from 1 minute to 1048576 minutes 

(~2years) and for boundary precipitation intensity rates of 0, 0.04, 0.08 and 0.16 mm/min are 

analysed. To perform the functional box-counting analysis for Warsaw time series a special 

application BOX_Warsaw in Pascal and an additional MATLAB script called BoxPlot for 

visualization of the results are developed. 

6.6 Trace moment method (TM) 

A technique allowing to perform a multifractal analysis with no need of using the Legendre 

transformation is the trace moment method (TM) focused on determining the moments 

scaling exponent function, K(q) and the codimension function, c(q).  

The method is based on the analysis of the moments of order q of the density 𝜀λ within the 

timescales λ and in part uses the principle of the functional box counting method already 

described in section 6.5. Statistical moments q are expressed as central moments, whose low 

values are commonly used in statistics, and are preferred over the ordinary moments. 

A multifractal process exhibits a defined relation between the moments of its intensity 𝜀λ,i 

(for i = 1,..., λD) and the resolution scale λ. The scaling moment function K(q) is the linking 

function of the average qth moments 〈ελ
q〉 of the intensities of a multifractal process at 

different resolutions with the scales of this process resolution levels λ, as defined by the 

equation (Lovejoy et al., 1987; Lovejoy and Schertzer, 1990): 

 〈ελ
q〉  ≈  λK(q)  (15) 

where q is the order of statistical moments and K(q) the moments scaling exponent function. 

Because of the singular behaviour for the small-scale limit λ→∞, the Equation (15) tends to 

infinity for all moments q>1, since K(q) is an increasing function, so K(q)>0 for q>0 (de 

Lima, 1998); furthermore, the moments are calculated only for integers values, which leads to 

an inaccurate estimation of the K(q) curve. 

A possible solution is to study the scaling moments using the fluxes (integrals) of the 

densities of a process defined as the trace moment of the flux over the set A as its ensemble 

average, expressed as follows: 

 Trλ [ελ
q]  =  〈∫(𝜀𝜆)

𝑞

 

𝐴

𝑑𝑞𝐷𝑥〉  (16) 

where the flux is called the qth – order trace moment, at resolution λ. It is therefore possible to 

obtain the fluxes of the statistical moment values also for not integer q values (q<1), 

overcoming the limitations imposed by applying the usual statistical moments.  
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By using the functional box counting method, the set A is covered with non-overlapping 

boxes of side 1/λ, it means that a set A is divided in λD sub-sets Aλ,i, (for i = 1,... λD), given that 

for rainfall time series the boxes are defined as 1-dimensional time segments of length 1/λ. 

Then, the flux of a single sub-set is defined as: 

 ∏𝐴𝜆,𝑖 = ∫ 𝜀𝜆΄𝑑
𝐷𝑥

 

𝐴𝜆,𝑖𝜆΄

 (17) 

where λ<λ΄ intended as the ratio of scale of interest to the smallest scale of homogeneity and 

𝜀λ’ is the intensity of ‘inner’ scales, components of 𝜀λ of the sub-sets Aλ,i. For each one of the 

sub-sets the intensity 𝜀λ,i is determined by summing the flux over all the sub-sets needed to 

cover the set A. Therefore, at resolution λ, the Equation (16) defines the qth-order trace 

moment becomes: 

 Trλ [ελ
q]  ≈  〈∑(𝜀𝜆,𝑖)

𝑞
𝜆𝐷

𝑖=1

𝜆−𝑞𝐷〉 (18) 

Finally, the above described average intensities 𝜀λ are raised to powers q, and due to an 

existence of a relationship between Equation (18) and the scale λ and moment scaling 

function K(q) defined in Equation (15), according to de Lima (1998) could be expressed as 

follows: 

 Trλ [ελ
q]  ≈ 𝜆𝐷𝜆𝐾(𝑞)𝜆−𝑞𝐷 = 𝜆𝐾(𝑞)−(𝑞−1)𝐷 = 𝜆(𝑞−1)(𝐶(𝑞)−𝐷)  (19) 

The final value of the K(q) function for order moments q is the slope of the linear relationship 

between the log values of the flux moments log(Trλ[𝜀λ
q]) and the log values of scales log(λ). 

A more detailed trace moment description could be found in papers of Lovejoy and Schertzer 

(1990) and Lovejoy et al. (1987). 

Additionally, the TM method determines the codimension function c(q), here defined as: 

 𝑐(𝑞) =
𝐾(𝑞)

𝑞 − 1
 (20) 

where K(q) is the moments scaling exponent function and q is the order of the statistical 

moments. It relates to the dimension function D(q) by: 

 D(q) = D – c(q) (21) 

wchich is defined as the distance between the value of K(q=0) = -c and the origin of the axis 

(de Lima, 1998; Licznar, 2009).  

The TM analysis of the Warsaw precipitation time series is carried out by a calculation 

program written in Pascal called TRACE_Warsaw, and a MATLAB script called TracePlot, 

for scales from 1 minute up to 11.4 days (λ=16384 to λ=1). 



 

49 

 

6.7 Probability distribution/multiple scaling (PDMS) 

The statistical analysis of multifractal sets can be achieved either by scaling the statistical 

moments of the process intensity, i.e. by applying the trace moment method (TM) as 

described above, or alternatively by applying the PDMS method, focused on determining the 

scale invariant probability distribution, that is the codimension c(𝛾) of a rainfall process, 

whose intensity exceeds certain sequentially increasing algebraic thresholds, dependent on 

scale ratio proportional to λγ (Schertzer and Lovejoy, 1988). 

The analysis is undertaken over a large range of scales, by covering the entire set of 

elements, in case of Warsaw the rainfall time series, with disjoint boxes (time intervals) as in 

the case of box-counting method, of size (length) λ and counting the number of non-empty 

intervals Nλ(𝛾) with the intensity 𝜀λ verifying the inequality: 

 
𝑙𝑜𝑔(𝜀𝜆)

log(𝜆)
≥  γ (22) 

By modifying the Equation (8), the probability distribution for decreasing scale ratio λ and 

for many different values of 𝛾 is given by: 

 Pr(ελ  ≥  λ
γ) ∝

𝑁λ(γ) 

𝑁λ 
= F λ−c(γ) (23) 

where F is the proportionality pre-factor slowly varying with λ and weakly depending on 𝛾 

(de Lima, 1998). In practice, it is possible to estimate the values of c(𝛾) as the slopes of the 

probability distributions curves Nλ(𝛾)/Nλ functions versus λ scale ratios for the given 𝛾 levels, 

in a log-log graphs (Schertzer and Lovejoy, 1988; Lovejoy and Schertzer,1991).  

The PDMS analysis of the Warsaw precipitation time series is supported by a Pascal 

program called PDMS_Warsaw and a MATLAB script called PDMSPlot. The analysis is 

carried out for 24 values of singularity orders 𝛾 of the range γ ∈ [0.04; 0.96].  

6.8 Double trace moment method (DTM) 

Double trace moment method (DTM) is a generalization of the classical trace moment 

method and it is widely used to estimate the universal multifractal parameters α, C1 and H 

(Schertzer and Lovejoy, 1987; de Lima, 1998) especially from conservative multifractal 

fields, for which the flux of the process is conserved while going from scale to scale (Pandey 

et al., 1998). For further description of the universal multifractal parameters refer to Section 

6.9.  

The generalization of TM method is here achieved through the introduction of a second 

(double) moment η to the analysis of data. The intensity 𝜀λ’, related directly to the finest 
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(known) resolution λ΄ of the process, is hereby raised to power η (being a real positive 

number) and then normalized with the ensemble average 〈ελ΄
η〉 of the entire set: 

 ελ΄
(η) =

ελ΄
η

〈ελ΄η〉
 (24) 

where ελ΄
(η) is the η-normalized intensity 𝜀λ’, widening the dynamic range of the process 

which can be subjected to analysis. 

Based on the η - power normalization defined in Equation (24), the flux Π described by 

Equation (17) is transformed in a ‘η - flux’ Π(η) in according to the relation: 

 ∏ 

 

𝜆΄

(η)

(𝐴𝜆,𝑖) = ∫ 𝜀𝜆΄
(𝜂)𝑑𝐷𝑥

 

𝐴𝜆,𝑖

 (25) 

where λ<λ΄ and ελ΄
(η) is the η-normalized intensity 𝜀λ’ at scale resolution λ intended as a 

component of the intensity 𝜀λ,i associated with sub-sets Aλ,i. Similarly, at resolution λ, the qth – 

order double trace moment is defined as: 

 Trλ [ελ
(η)q]  ≈  𝜆𝐾(𝑞,𝜂)−(𝑞−1)𝐷 (26) 

where K(q,η) is a double moments scaling exponent function and for η = 1, K(q,η) is 

consistent with K(q), defined by the trace moment method. Practically, as for TM method, the 

DTM function K(q,η) is obtained as the slope of plots of log(Trλ [𝜀λ
(η)q]) against log(λ) for 

different moments q and, in this case, also for different values of η. 

In addition, the re-normalized version of multifractal process is applicable as the initial 

step for the probability distributions/multiple scaling function and for the determination of co-

dimension function as well, here defined equal to c(𝛾,η), being a dual function in relation to 

K(q,η) (for details see de Lima, 1998 and Licznar, 2009). 

The DTM analysis of the Warsaw precipitation time series is performed using the 

DTM_Warsaw Pascal program and a MATLAB script called DTMPlot. The analysis is 

carried out for 12 values of moment order q ∈ [0.9; 2.1] and 20 specific η values, η ∈ [0.13; 

10.00]. 

6.9 Universal multifractal parameters 

The statistics of multifractals can be described by scaling exponent function K(q), however 

as there is only a conservation K(1) = 0 and convexity constraint on this function, it implies an 

infinity of parameters to describe the scaling behaviour of an ideal multifractal process 

(Pathirana et al., 2003; Lovejoy and Schertzer, 2013). Therefore, the concept of universality is 

introduced, which assumes an existence of a few relevant parameters among the infinity of 
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them, especially taking into consideration a realistic system, liable to perturbations, rejecting 

some theoretical features. Such a system is expected to ‘converge’ to some universal attractor 

in the same way as a class of models based on the same domain attractor leads to the same 

processes defined by few parameters (Tessier et al., 1993; Licznar, 2009; Lovejoy and 

Schertzer, 2013). In this way, the definition of K(q) by an infinity of parameters is reduced 

only to tree universal parameters: α, C1 and H. For further discussion, see Tessier et al. (1993) 

and Lovejoy and Schertzer (2013). 

To obtain a bare multifractal process (see Section 6.2), discrete cascades are used. These 

kinds of generators apply fixed scale ratios at each cascade step leading to not realistic 

physical processes. For satisfactory results, instead of using an infinite number of cascade 

steps, over a wide range of scales it is possible to introduce many intermediate steps (Fig. 6.3) 

to ‘densify’ the steps. This way of processing is a valid alternative to obtain a process 

exhibiting ‘universal’ behaviour (de Lima, 1998; Lovejoy and Schertzer, 2013). It is therefore 

possible to obtain a multifractal process in according to the relation: 

 ελ ≈  e
Γλ (27) 

where Γλ is the generator of the process. Thus, the modelling of multifractal processes is given 

by multiplying densities with densities, what in practice means adding generators to 

generators of the type Γλ ≈ ln (ελ) (in Equation (27)) (De Lima, 1998). Consequently, the 

average qth moment 〈ελ
q〉 in Equation (15) takes the form as follows: 

 〈eqΓλ〉  ≈  eKλ(q)  ≈  eK (q)ln (λ) (28) 

Then, Kλ(q)  ≈ K (q) ln(λ), resulting from Equation (28) is called the second 

characteristic function of generator Γλ. 

 

Figure 6.3. Scheme of densification of scales. Reproduced from Lovejoy and Schertzer (2013) 
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The bare generator Γλ of a scale-invariant multiplicative cascade process must follow the 

basic properties (de Lima, 1998): 

1. the (finite resolution) generator is a random noise process restricted to the range [1, λ]; 

this ensures that the process will be smooth on scales smaller than λ-1; 

2. the second characteristic function 𝐾𝜆(𝑞) of the generator 𝛤𝜆 has a logarithmic behaviour 

with scale (λ→∞) to assure multiple scaling; 

3. the probability distribution of positive fluctuations of the generator 𝛤𝜆 must fall-off more 

quickly than exponentially, to have some finite moments q≥0; 

4. the generator must be normalized so that Kλ(1) = 0 (i.e. 〈𝜀𝜆
 〉 =1) to assure (canonical – 

energy) conservation of the flux. 

Properties 1. and 2. define the presence of so called pink noises, also called 1/f noise, that 

is the proportionality of the spectrum of generator and the inverse of the wave-number: 

𝐸𝛤(𝜔) ≈ 𝜔
−1. 

A generator that satisfies all the above-mentioned properties and is also an example of pink 

noise is the ‘universal’ class of multifractals, based on Lévy stochastic variables (de Lima and 

Grasman, 1999), characterized by a Lévy index α, determining the order of divergence of the 

statistical moments of the generator: 

 Pr(−𝛤 ≥ 𝑠) ≈ 𝑠−𝛼, for 𝑠 ≫ 1    =>     〈(−𝛤)𝑞〉  ≥ ∞ , for q>α (29) 

where 0<α<2 and s in an intensity threshold. 

Generators based on Equation (29) are ‘universal’ and characterized by two fundamental 

equations, describing the scale probability distribution c(𝛾) and the moments scaling exponent 

function K(q) as follows (Tessier et al., 1993): 

 𝑐(𝛾 − 𝐻) =  

{
 
 

 
 
𝐶1 (

𝛾

𝐶1𝛼΄
+
1

𝛼
)
𝛼΄

𝐶1 𝑒𝑥𝑝 (
𝛾

𝐶1
− 1)

 
for α ≠ 1 

 

for α = 1, 

(30) 

 

 𝐾(𝑞) −  𝑞𝐻 = 

{
 
 

 
 𝐶1
𝛼 − 1

(𝑞𝛼 − 𝑞) 
 

𝐶1 𝑞 ln(𝑞) 
1

1
       

 
for α ≠ 1 

 

for α = 1, 

(31) 
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where in Equation (31) q = 
𝑑𝑐

𝑑𝛾 
≥ 0, α is valid for the interval [0, 2] and α΄ fulfils the 

relation: 

 
1

𝛼
+ 
1

𝛼΄
= 1         for α ≠ 1  (32) 

The parameters described by Equations (30) and (31) that is α, C1 and H are the ‘universal’ 

multifractal parameters, described in detail below (de Lima, 1998; Bernardara, 2007): 

H – characterizes the deviation from conservation (that is: 〈𝜀𝜆
 〉 = 𝜆−𝐻), it is also called index 

of nonstationarity (smoothness of data). Usually is determined experimentally. As is 

demonstrated by Pandey et al. (1998), for conserved processes H = 0, and the thus 

functions in Equations (30) and (31) become two-parameter α and C1 function. For the 

analysis of the Warsaw field, the precipitation series are generated as for a conserved 

process (the generation process of synthetic rainfall series made as for conserved process 

is described in Section 6.11). 

C1 – is the index of intermittency; it describes the sparseness or inhomogeneity (i.e. the 

distance from homogeneity) of the mean of the process. It stands for the codimension of 

the singularity of the mean: for non-conserved processes C1 = c(C1-H). For conserved 

processes is at the same time the order of singularity and the codimension of the mean of 

the process. A process with C1 = 0 is homogeneous. 

α – is the degree of multifractality, or the deviation from monofractality. Is fundamental to the 

classification of multifractal process. It is also the Lévy index already described. The 

influence of α parameter on the magnitude of codimension function and moment scaling 

function curvature is shown in Fig. 6.4:  

a)  b) 

Figure 6.4. Universal scaling exponent functions for α from 0 to 2. a) Codimension functions, c(𝛾)/C1; 

b) Moment scaling functions, K(q)/ C1. From Lovejoy and Schertzer (2013) 

The degree of multifractality is also suitable to determine the universality classes, defined 

as the magnitude of the parameter α (de Lima, 1998): 
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• Unconditionally hard multifractals are given for the interval 1≤α≤2. In particular 

o α = 2, are the log-normal (Gaussian) sets, 

o 1<α<2, are the (log) Lévy processes with unbounded singularities, 

o α = 1, corresponds to log-Cauchy multifractals; 

• Conditionally hard multifractals are defined in the interval 0≤α≤1, corresponding to 

the (log) Lévy processes with bounded singularities. They arise as an integration of 

such multifractals over an observational set with large dimension D, leading to a 

soft behaviour; 

• Monofractals corresponding to the case α = 0, whose singularities all have the same 

fractal dimension. 

6.10 Hierarchical analysis  

The previous sections described the path to the determination of the universal multifractal 

parameters, whose results are presented and discussed in Chapter 7. Once the parameters are 

obtained, at each rain gauge a group of universal parameters is assigned and their variability 

among the stations of the Warsaw rain gauge network is analysed by using the cluster 

analysis. The method is a data-mining tool, used both for meaningful or useful definition of 

groups based only on the information provided by the data (Tan et al., 2005). The analysis 

implies at first the aggregation of data into groups (or clusters) on the basis of their similarity, 

and then the determination of similarities (or differences) between the groups. 

There are many types of clustering methods (Tan et al., 2005), but the most common are 

the (agglomerative) hierarchical techniques, where is permitted to the cluster to have 

subclusters, i.e. nesting of subclusters until one overall cluster containing all the elements 

remains. The final result is given by a tree-like diagram called a dendrogram on which the 

cluster-subclusters relationships are displayed as well as the order of merging data.  

In the analysis of rainfall data, the groups of parameters for each rain gauge is considered 

as a single cluster of equal distance to the other. To determine the similarity between clusters 

specific measures of distance are used starting from the basic single link (minimum of 

distance between any two points in any two clusters) and ending with complex formulas 

depending on the analysis purposes. A detailed description of the measures is available in Tan 

et al. (2005).  
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For the Warsaw analysis, the data are subject to cluster investigation by using all the 

methods available in MATLAB software that is the combination of metric distance functions 

with the linkage methods according to the Tab.6.1 (Mathworks documentation): 

Table 6.1. Summary of the distances functions and linkage methods used in hierarchical analysis of 

Warsaw data 

Metric distance function Description  Linkage method 
euclidean Euclidean distance  Average 
squaredeuclidean Squared Euclidean distance  Centroid 
seuclidean Standardized Euclidean distance  Complete 
cityblock City block metric  Median 
minkowski Minkowski distance  Single 
chebychev Chebychev distance  Ward 
mahalanobis Mahalanobis distance  Weighted 
cosine One minus the cosine of the included angle between points  
correlation One minus the sample correlation between points  
spearman One minus the sample Spearman's rank correlation  

hamming Hamming distance  
jaccard One minus the Jaccard coefficient  

 

The suitability of the methods employed in cluster analysis is performed by determining 

the cophenetic correlation, which is a measure of how faithfully the dendrograph represents 

the dissimilarities among observations. All the obtained results are presented and discussed in 

Chapter 7.  

6.11 Universal multifractal generator 

To generate synthetic rainfall data, a generator GENERATOR_R, satisfying all the 

requirements described in Section 6.9, is adopted. It is based on the Multifractal Fields 

Simulation Software Eps1D created by S. Lovejoy in 2014 (McGill University). The original 

Eps1D code was developed to generate 1-dimensional multifractal fields. All the simulations 

are performed in MATLAB software. 

The input data are: the resolution λ of the field, the multifractality index α, the 

codimension index C1 and a switch to make the process causal (switch ≅ 0) or not  

(switch = 0). The generation process is set up for the universal parameters characterizing 3 

single rain gauges (R06, R15 and R25 - Fig. 6.5) and two groups of gauges (RM23 and RM22 

- Fig. 6.6) whose parameters are averaged for 23 rain gauges (excluding R15 and R25 gauges) 

and 22 rain gauges (excluding R06, R15 and R25 gauges) respectively. 
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Figure 6.5. Locations of gauges R06, R15 and R25 for which synthetic series are generated from universal 

cascades for gauge – specific α and C1 parameters, at the frame of so called single simulations 

 

 

Figure 6.6. Locations of gauge groups RM23 and RM22 containing 23 and 22 gauges respectively for which 

synthetic series were performed from universal cascades for gauge – group averaged α and C1 

parameters, at the frame of so called average simulations 

RM23 RM22 
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All the simulations are performed for 1-minute resolution data. The length of the time 

series is λ = 220 minutes (λ ≈ 2 years). However, the quality analysis of the obtained data (in 

detail described in Section 6.12 and Chapter 7) revealed that the casual feature of the 

generator lead to obtain also very small values of precipitation intensities, far below the 

resolution of the rain gauges claimed by the manufacturer as 0.001 mm (compare to rain 

gauges technical data presented in Section 4.4), which implies the need for elimination of all 

the generated values smaller than 0.001 mm. For this purpose, a script called FILTR has been 

created in order to accumulate very small values below the recording resolution of the device. 

A detailed description of the obtained results is provided in Chapter 7. 

After the generating process, the synthetic rainfall data are subjected to quality analysis, by 

the comparison of their certain statistical parameters to the ones derived for observation 

series. The analysis is carried out through the determination of the statistics of both types of 

the data series using the probability of occurrence of rain P(R>r) and the intermittency E(p0). 

Both the measures are described in the following Section. 

6.12 Evaluation of generated rainfall time series  

The qualitative assessment of the obtained data series in GENERATOR_R is performed by 

comparing the statistical parameters of the generated data to the statistics of recorded rainfall 

time series. The parameters taken into consideration during assessment were already selected 

by other researches in selected evaluation of synthetic rainfall data quality originating from 

multifractal generation (Molnar and Burlando, 2005; Licznar, 2009; Licznar et al., 2011a; 

Rupp et al., 2012). The first parameter is the probability of rain P(R>r), computed by the 

complementary cumulative distribution function (cCDF). The basic CDF function is the 

fraction of density that falls below some particular value x CDF = Pr(X<x), where x is a 

random variable, whose distribution is defined as Pr(x), and here is used to evaluate the 

ability of the model to reproduce cumulative distribution frequency (Rupp et al., 2012). The 

complementary CDF is defined as 1 − CDF = 1 − Pr(X<x) = Pr(X ≥ x)—that is the 

probability that the signal power will be above the average power level (Clauset A.). While 

the second parameter is the intermittency E(p0), defined as the expected value (or the 

probability) of the no-rain occurrence, given by percentage of zero-rain values for 11 time 

scales λ = 1, 5, 10, 20, 40, 80, 160, 320, 740, 1580, 2560 minutes (~43hours). The comparison 

of both the parameters between generated data and the recorded series allows the assessment 

of the performance of the generator. To perform the statistical analysis of data two MATLAB 
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scripts are written: CCDF and EP0 and the computation are conducted for the data obtained 

directly from the generator as well as for the data after filtering process (after synthetic series 

postprocessing by FILTR procedure). 
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7. Results and discussion 

In this Chapter, the results of analysis of the 1-minute rainfall data collected by the 

Warsaw rain gauge network from September 2008 to November 2010 are presented. The 

analysis is carried out using fractal and multifractal methods already described in Chapter 5, 

i.e. spectral density analysis (Section 6.4), functional box-counting method (Section 6.5) trace 

moment method (Section 6.6), probability distribution/multiple scaling (Section 6.7) and 

double trace moment method (Section 6.8), in order to determine the universal multifractal 

parameters. Thereafter, results of fractal and multifractal studies are used for taxonomic 

division of analysed rain gauges into groups of gauges displaying similarities. Synthetic 

precipitation series are generated from universal cascade generators parametrized by derived 

multifractal parameters α, C1 and H. Finally, these synthetic precipitation series are analysed 

and statistically compared versus recorded series based on the complementary cumulative 

distribution function and the intermittency studies (Section 6.12). 

Hereafter, having in mind sample set of results for a 25-gauge group, all the obtained 

results are presented and discussed in detail only for selected rain gauges. These are 

distinctive gauges: R06, R15 and R25. The gauge R06 is chosen as the city centre location; 

the R15 due to its location at the Warsaw airport, and the R25 as the city limits location (for 

further discussion see Section 7.7). For the remaining rain gauges, the results are assembled in 

Appendices II – VI. 

7.1 Functional box-counting method 

Results of the functional box-counting method for rain gauges R06, R15 and R25 are 

presented in Figs 7.1÷7.3. The similar results of functional box-counting method for 

remaining Warsaw’s rain gauges are accessible in Appendix II, Section A. The relationships 

between the log values of non-empty boxes and the log values of the size of the analysed 

boxes are plotted in all figures. The analysis is performed for four different intensity 

thresholds: 0, 0.04, 0.08 and 0.16 mm/min. For the first intensity threshold of 0 mm/min, the 

ranges of linear relationships are delineated and outlined by the dotted lines in plots. 
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Figure 7.1 Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain 

gauge R06 

 

 

Figure 7.2 Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain 

gauge R15 
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Figure 7.3 Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain 

gauge R25 

Ranges of linear relationships between the number of non-empty boxes and their size are 

evident on log-log plots for all 25 rain gauges. Three different ranges of scaling relationship 

are clearly visible on the graphs. Range I occurs between 1 and 30 minutes, range II between 

60 and 300 minutes (i.e. between 1 and 5 hours), and range III – between 8640 and 1048576 

minutes (i.e. 6 days and almost 2 years). For all the observed ranges of intensity threshold, the 

calculated slopes of linear relationship are presented in Tab.7.1. The results for all other 

gauges and chosen intensity thresholds are provided in Appendix II, Section B. 
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Table 7.1. Slope values of the relationships between the number of non-empty boxes and their sizes for the 

identified time ranges, for 1-minute time series of rainfall intensities in Warsaw from September 2008 to 

November 2010 

Rain gauge Intensity threshold 
Range of times/box sizes 

1-30 min 60-300 min 8640-1178710 min 

R01 

0 

mm/min 

-0.86 -0.51 -1.02 
0.04 -0.57 -0.32 -1.00 
0.08 -0.52 -0.22 -0.93 

0.016 -0.47 -0.12 -0.86 

R02 

0 

mm/min 

-0.84 -0.53 -1.01 
0.04 -0.53 -0.32 -0.99 
0.08 -0.49 -0.22 -0.94 

0.016 -0.44 -0.15 -0.85 

R03 

0 

mm/min 

-0.87 -0.54 -1.01 
0.04 -0.56 -0.34 -0.99 
0.08 -0.50 -0.23 -0.94 

0.016 -0.48 -0.15 -0.84 

R04 

0 

mm/min 

-0.88 -0.52 -1.02 
0.04 -0.57 -0.32 -0.99 

0.08 -0.54 -0.23 -0.92 
0.016 -0.50 -0.14 -0.83 

R05 

0 

mm/min 

-0.84 -0.51 -0.95 
0.04 -0.53 -0.33 -0.92 
0.08 -0.49 -0.23 -0.85 

0.016 -0.43 -0.13 -0.78 

R06 

0 

mm/min 

-0.87 -0.52 -1.00 
0.04 -0.57 -0.33 -0.98 
0.08 -0.51 -0.24 -0.92 

0.016 -0.48 -0.17 -0.81 

R07 

0 

mm/min 

-0.86 -0.53 -0.99 
0.04 -0.55 -0.35 -0.98 
0.08 -0.51 -0.24 -0.92 

0.016 -0.50 -0.14 -0.81 

R08 

0 

mm/min 

-0.86 -0.54 -0.99 
0.04 -0.55 -0.36 -0.97 
0.08 -0.53 -0.25 -0.93 

0.016 -0.47 -0.15 -0.87 

R09 

0 

mm/min 

-0.88 -0.52 -0.93 
0.04 -0.58 -0.34 -0.90 
0.08 -0.56 -0.23 -0.83 

0.016 -0.52 -0.16 -0.73 

R10 

0 

mm/min 

-0.87 -0.52 -1.02 
0.04 -0.59 -0.32 -0.99 
0.08 -0.54 -0.24 -0.92 

0.016 -0.51 -0.15 -0.82 

R11 

0 

mm/min 

-0.86 -0.55 -1.00 
0.04 -0.59 -0.34 -0.97 
0.08 -0.52 -0.24 -0.93 

0.016 -0.48 -0.15 -0.84 

R12 

0 

mm/min 

-0.87 -0.55 -1.02 
0.04 -0.60 -0.34 -0.98 
0.08 -0.52 -0.25 -0.91 

0.016 -0.47 -0.17 -0.82 

R13 

0 

mm/min 

-0.87 -0.51 -0.99 
0.04 -0.59 -0.33 -0.96 
0.08 -0.54 -0.23 -0.92 

0.016 -0.51 -0.16 -0.85 

R14 

0 

mm/min 

-0.84 -0.57 -1.03 
0.04 -0.58 -0.33 -0.99 
0.08 -0.53 -0.25 -0.92 

0.016 -0.53 -0.16 -0.82 
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Rain gauge Intensity threshold 
Range of times/box sizes 

1-30 min 60-300 min 8640-1178710 min 

R15 

0 

mm/min 
-0.82 -0.48 -1.00 

0.04 -0.61 -0.34 -0.95 
0.08 -0.48 -0.28 -0.92 

0.016 -0.44 -0.18 -0.86 

R16 

0 

mm/min 
-0.88 -0.53 -1.02 

0.04 -0.58 -0.34 -0.99 
0.08 -0.52 -0.24 -0.91 

0.016 -0.50 -0.15 -0.83 

R17 

0 

mm/min 
-0.86 -0.52 -1.02 

0.04 -0.58 -0.35 -0.98 
0.08 -0.53 -0.26 -0.91 

0.016 -0.50 -0.19 -0.81 

R18 

0 

mm/min 
-0.84 -0.50 -1.03 

0.04 -0.55 -0.32 -1.01 
0.08 -0.51 -0.21 -0.93 

0.016 -0.43 -0.13 -0.84 

R19 

0 

mm/min 
-0.86 -0.50 -1.02 

0.04 -0.60 -0.31 -0.99 

0.08 -0.52 -0.23 -0.91 
0.016 -0.43 -0.16 -0.83 

R20 

0 

mm/min 
-0.88 -0.52 -1.00 

0.04 -0.59 -0.33 -0.98 
0.08 -0.53 -0.25 -0.91 

0.016 -0.47 -0.14 -0.83 

R21 

0 

mm/min 
-0.87 -0.53 -1.00 

0.04 -0.57 -0.36 -0.98 
0.08 -0.52 -0.25 -0.92 

0.016 -0.47 -0.16 -0.83 

R22 

0 

mm/min 
-0.88 -0.52 -1.00 

0.04 -0.58 -0.33 -0.97 
0.08 -0.51 -0.24 -0.91 

0.016 -0.46 -0.16 -0.83 

R23 

0 

mm/min 
-0.85 -0.52 -1.01 

0.04 -0.59 -0.31 -0.98 
0.08 -0.52 -0.23 -0.91 

0.016 -0.48 -0.16 -0.79 

R24 

0 

mm/min 
-0.89 -0.53 -0.93 

0.04 -0.61 -0.34 -0.92 
0.08 -0.54 -0.24 -0.88 

0.016 -0.49 -0.17 -0.77 

R25 

0 

mm/min 
-0.89 -0.55 -0.94 

0.04 -0.54 -0.34 -0.92 
0.08 -0.50 -0.21 -0.84 

0.016 -0.44 -0.13 -0.70 

 

A mutual comparison and statistical analysis of the obtained slopes for all 25 Warsaw rain 

gauges (Tab.7.2) indicates statistical similarities between the rain gauge data within the same 

intensity threshold. For all four thresholds, the slopes are very close to the mean value as 

evidenced by a low standard deviation, even though the variability of the slopes slightly 

increases with the increasing of intensity. The external ranges of linear relationships (I and 

III) for the intensity threshold equal to 0 mm/min are very close to each other, and amount on 

average to -0.86 and -1.00 (Tab.7.2). Similar results are found by Licznar (2009) for 5-minute 

precipitation data series from gauges located in Wrocław, about 350 km south-west of 

Warsaw: -0.91 and -1,00 respectively. 
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Table 7.2. Basic statistics of the slope values obtained from box–counting method for three distinctive time 

ranges and for the analysed intensity thresholds for Warsaw rain gauge network 

Intensity threshold 0 mm/min 0.04 mm/min 

Range I II III I II III 
Average -0.86 -0.53 -1.00 -0.57 -0.33 -0.97 
Median -0.87 -0.52 -1.00 -0.58 -0.33 -0.98 
Standard deviation 0.02 0.02 0.03 0.02 0.01 0.03 
Minimum -0.89 -0.57 -1.03 -0.61 -0.36 -1.01 
Maximum -0.82 -0.48 -0.93 -0.53 -0.31 -0.90 
First quartile (25th %) -0.88 -0.53 -1.02 -0.59 -0.34 -0.99 
Third quartile (75th %) -0.86 -0.52 -0.99 -0.56 -0.32 -0.97 

Intensity threshold 0.08 mm/min 0.16 mm/min 

Range I II III I II III 
Average -0.52 -0.24 -0.91 -0.48 -0.15 -0.82 
Median -0.52 -0.24 -0.92 -0.48 -0.15 -0.83 
Standard deviation 0.02 0.02 0.03 0.03 0.02 0.04 
Minimum -0.56 -0.28 -0.94 -0.53 -0.19 -0.87 
Maximum -0.48 -0.21 -0.83 -0.43 -0.12 -0.70 

First quartile (25th %) -0.53 -0.25 -0.92 -0.50 -0.16 -0.84 
Third quartile (75th %) -0.51 -0.23 -0.91 -0.46 -0.14 -0.81 

 

The slope values of the middle plots’ sections for all the 25 rain gauges differ from the two 

external ranges; for instance, for the rain gauges R06, R15 and R25 these range slopes are 

equal to -0.52, -0.48 and -0.55 respectively (Tab.7.1), whereas the overall value of 25 rain 

gauges is -0.53. The middle range of linear relationship (range II) between 60 and 300 

minutes is considered the multifractal dimension of the geometrical “support” of rainfall 

occurrence (de Lima, 1998; Licznar, 2009). Hereby, the multifractal dimension of the 

geometrical “support” of rainfall occurrence for the Warsaw rain gauge network is D ≈ 0.53. 

For comparison, for a 5-minute data series from Wrocław, Licznar (2008) reported the 

multifractal dimension of support D ≈ 0.58 (Licznar, 2009), while for 1-minute rainfall data 

series from Vale Formoso (Portugal) de Lima (1998) obtained D ≈ 0.50. 

The above-mentioned authors point out a limitation to the functional box-counting method 

to the proper investigation of multifractal dimensions in the two external ranges due to the 

“saturation” effect, visible here for scales smaller than 30 minutes and larger than 6 days. The 

saturation of the III range is easily explained: for scales larger than 6 days, all boxes are filled 

with data, so the number of non-empty (full) boxes is always equal to the number of boxes. 

Therefore, the decreasing slope of the graph is given by the decreasing overall number of 

boxes of higher dimension, thus the slope of range III will be always 1. 

The case of I range is more complex: for time scales smaller than 30 minutes (range I), the 

slope of the graph indicates the occurrence of almost non-zero rainfall periods, i.e., the set of 

observed data almost entirely covers the available space of time. The presence of such a 

critical scale in box-counting method can be explained by the poor ability of the measuring 

device to capture the intermittency and variability of rain (no rain periods). It could result 
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from superposition of gauge resolution and step response error, i.e. the already discussed 

phenomenon of dampening/broadening (averaging) of the registration data by rain gauges 

over the range of few minutes. 

From the analysis of the middle section of the plots (I range), a dependency emerges 

between the absolute values of the slope and the magnitude of the threshold: the values of the 

slope, for all the analysed rain gauges, decreases with the increasing of the intensity threshold. 

To the intensity thresholds: 0, 0.04, 0.08 and 0.16 correspond the average slope values for 25 

Warsaw rain gauges equal to: -0.53, -0.33, -0.24 and -0.15, i.e. the fractal dimension D is 

respectively: 0.53, 0.33, 0.24 and 0.15. It follows that for infinite magnitude values an infinite 

number of fractal dimension would be found, so it implies an infinite hierarchy of dimension. 

This is the first proof that the precipitation process has a multifractal structure, thus the further 

application of multifractal analysis techniques is justified. 

7.2 Spectral density analysis 

The resulting power spectra plots obtained for the Warsaw gauges by the spectral density 

analysis are presented in a log-log scale. The plots are smoothed for high frequencies. The 

sample energy spectra obtained for 1-minute of the Warsaw gauges time series for rain gauges 

R06, R15 and R25 are presented in Figs 7.4÷7.6. They evidently display scale-invariant 

behaviour over a range of scales. The power-law described by Equation (12) holds for two 

distinctive ranges of highest frequencies. The first range of frequencies plot in Fig. 7.4 starts 

from 29 1/h and ends at 0.7 1/h, while the second is in the range from 2 to 0.042 1/h. The 

spectrum plot shown in Fig. 7.5 presents the first range from 30 1/h up to 0.7 1/h, while the 

second range is delimited is set between 2.5-0.042 1/h. Finally, in case of the spectrum in Fig. 

Fig. 7.6, the first range includes frequencies from 1.7 to 30 1/h, whereas the second range 

starts at a frequency of 2.2 1/h and reaches up to 0.042 1/h. For both the ranges the linear 

regressions of log(P(f)) and log(f) are marked on the graphs with a dotted line and their slopes 

are stated. Similar behaviour is found in almost all the remaining Warsaw rain gauges 

(Appendix III, Section A). To determine the power spectral densities of the Warsaw 

precipitation 1-minute time series, recorded from September 2008 to November 2010, a 

Pascal program SPECTRUM_Warsaw and a MATLAB script EvaluateSpectrum2b are used. 
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Figure 7.4. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to 

November 2010, for rain gauge R06 

 

 

Figure 7.5. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to 

November 2010, for rain gauge R15 
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Figure 7.6. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to 

November 2010, for rain gauge R25 

Most of the energy spectra exhibit no distinct spectral peaks, indicating the presence of 

periodicity in the time series; only in case of R09 and R23 a slight peak can be seen for the 

frequency corresponding to about 2 months (Figs III.8 and III.21 Appendix III, Section A). 

As shown in Tab.7.3, in almost every case for high frequencies the spectrum slope, i.e. the 

exponent β1, is greater than 1 (excluding R03 and R06), and is equal on average to 1.68. 

Moving down in frequency, excluding the significantly outlying R06, a spectral “brake” is 

observable in correspondence of the frequencies ranging from 0.42 to 0.91 1/h (i.e. 25-55 

minutes). This spectral brake agrees with the critical scale obtained during functional box-

counting analysis (Figs 7.4÷7.6, range of break: 30-60 minutes). By that means, on a time 

scale corresponding to a frequency of about f = 1.8 1/h (≈33 minutes) a transition region from 

one scaling behaviour (for higher frequencies) to another (for lower frequencies) is 

recognizable. For the latter, the fluctuation of energy spectra is significant but, at least up to a 

frequency of about 0.042 1/h (that is 24 hours) a power law relation is still observable. The 

spectral exponent β2 for this range of frequencies is smaller than 1 in almost all the cases 

(excluding R17) and on average is 0.68. All the mentioned above parameters had been read 

directly from the graphs. 
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Table 7.3. Spectral exponents of two scaling regimes for 1-minute time series energy spectra, from 25 rain 

gauges with basic statistics 

Rain gauge β1 β2 
Break point 

(minutes) 

R01 1.53 0.63 35 

R02 1.60 0.57 40 

R03 1.00 0.72 32 

R04 1.85 0.74 25 

R05 1.20 0.57 55 

R06 0.81 0.60 150* 

R07 1.74 0.77 43 

R08 1.34 0.85 40 

R09 1.75 0.77 35 

R10 1.92 0.72 30 

R11 1.72 0.80 27 

R12 1.79 0.67 33 

R13 1.53 0.61 40 

R14 2.01 0.73 30 

R15 1.71 0.91 29 

R16 1.91 0.80 25 

R17 1.86 1.00 32 

R18 1.56 0.59 46 

R19 1.91 0.59 33 

R20 2.06 0.51 32 

R21 2.12 0.51 27 

R22 1.32 0.48 50 

R23 1.72 0.59 38 

R24 2.18 0.63 26 

R25 1.85 0.68 25 

    Average 1.68 0.68 34 

Median 1.74 0.67 32 

Standard deviation 0.34 0.13 8 

Minimum 0.81 0.48 25 

Maximum 2.18 1.00 55 

First quartile (25th 

%) 

1.53 0.59 28 

Third quartile (75th 

%) 

1.91 0.77 40 

*value omitted as extremely outlying at calculation of set statistics 

 

The basic statistics demonstrate variability of the analysed values within the set of the time 

series from 25 Warsaw rain gauge network. The values of the spectral exponents change 

between 0.81 and 2.18 for β1 and between 0.48 and 1.00 for β2. Despite the clear variation of 

extreme values, it should be noted that the analysed sets of parameters are relatively tightly 

clustered around the mean values, as evidenced, especially for β exponents, by a low value of 

standard deviation and the proximity of the first and third quartiles to the mean values.  

The above described results concerning the rain gauge network in Warsaw are in good 

agreement with the results obtained by the study conducted by Licznar et al. (2011) in 4 

locations in Germany revealing a spectral break at 60 minutes. The values of spectral 

exponents for rainfall data collected by 4 rain gauges are: β1 greater than 1, and β2 around 0.5 

(Licznar et al., 2011). The same study conducted by Licznar (2009) in Wrocław (Poland) for 

rainfall data series recorded in 1964 and 1997 provides similar results: the spectral break 
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occurs for 110 and 85 minutes and the values of spectral exponents amount to 0.27 and 0.28 

for β1, and 1.40 and 1.11 for β2 (Licznar, 2009; Licznar et al., 2011). Analogously, de Lima 

(1998) obtained β1 equal to 0.73 and 0.96, and β2 equal to 0.15 and 0.21 for rainfall data series 

collected in Vale Formoso (Portugal) and Nancy (France). Furthermore, spectral breaks are 

observed respectively for frequencies corresponding to around 100 minutes for Vale Formoso 

and from 17 to 80 minutes for Nancy (de Lima, 1998). 

In all the above-mentioned studies, a scale invariant behaviour is detected over a range of 

scales as well as the spectrum break, which, however occurs for different time scales; this fact 

is strictly related to the difficulty of calculating the exact point where the spectral break arises, 

and therefore, the determination of the precise value of the spectral exponent β is problematic. 

A detailed study conducted by de Lima (1998) on over 20-years rainfall time series 

demonstrates that there is no fundamental character of the observed energy spectral break; 

indeed, on analysed power spectra of different η-power renormalized rainfall process, the 

spectral break does not occur at a fixed scale, and by that means, it does not depend on the 

intensity of the process. Therefore, the presence of a break is directly related to the scale-

depending difficulties of measuring and/or the technique adopted to processing data. 

It is reasonable to say, that the quantization of the rainfall process by the currently 

available measuring devices, like those forming the Warsaw rain gauge network, affects 

significantly the proper reflection of natural rainfall process for time series resolution smaller 

than 5 minutes. Thus, it raises the question whether such a level of resolution in recording 

data it is achievable by generally accessible devices. Studies conducted by Menabde et al. 

(1997) on 17 hours of 15-seconds rainfall rime series, recorded by a high-time-resolution rain 

gauge in Norfolk Island and Matawai (New Zealand) confirm the scale invariant behaviour 

and moreover, the presence of a single spectral exponent (β = 1,52 – Norfolk Island and β = 

1,37 – Matawai) for the time scales form 4 minutes up to 17 hours. Despite the high resolution 

of the data, the analysis is not performed by Menabde et al. (1997) for time scales smaller 

than 4 minutes, clearly avoiding quantization of data for higher frequencies. 

It is important to note that the discussed energy spectra are obtained for a precipitation 

time series (containing both liquid and solid precipitation records) whereas the mentioned 

studies of de Lima (1998) and Licznar (1998) were limited to only rainfall time series 

analysis. In Warsaw, most rainfall precipitation falls between May and August (Fig. 7.7) and 

the summer precipitation, in many cases (R06 and R15), is twice (or triple) that of winter 

precipitation when low intensity events dominate. In addition, winter precipitation is 

dominated by stratiform-type, long-lasting and small or moderate intensity events. Whereas in 
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summer, except long-lasting and small intensity stratiform events, one can expect also 

convective rainfalls of shorter durations but much higher and more variable intensities. In 

order to have a better insight into this phenomenon, sample energy spectra are calculated for 

separate periods of summer and winter half-years. 

 

Figure 7.7. Monthly rainfall in Warsaw (2009) for gauges R06, R15 and R25 

Sample energy spectra for summer and winter season, for rain gauges R06, R15 and R25 are 

presented in Figs 7.8÷7.10 (all the remaining result are listed in Appendix III, Section B). As 

for the already discussed all year long spectra, the seasonal graphs present a scale-invariant 

(power-law) behaviour over a range of scales, occurring in almost all the cases, although 

winter spectra are generally characterized by a smoother behaviour. The analysis of seasonal 

energy spectra reveals the presence of spectral breaks, but at shifted frequencies locations are 

compared to a year-long series. As shown in Tab.7.4, the spectral break in summer is formed 

for frequency corresponding on average to times of 61 minutes, while the winter spectral 

break is observed form small frequencies, corresponding on average to time of 13 hours and 

24 minutes. 

The above discussed observations confirm the hypothesis that the precipitation forming 

mechanisms have influence on energy spectra shape. The vivid shift of a spectral break 

occurrence for separate summer and winter half-years could be explained by the seasonality 

of precipitation: summer precipitation generally occurs as short-duration and high intensity 

storms; during summertime, there is a high frequency of convective storms, forming along a 

fast-moving cold front, whereas winter stratiform precipitation occurs usually as low-intensity 
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rain or snow, generated by a slow-mowing cold fronts. A stratiform precipitation can be 

distinguished from a convective event if its vertical air velocity is less than the terminal fall 

velocity of ice crystals and snow (Houze, 1993). Most probably, the estimated times of 

spectral breaks of 61 minutes, and 13 hours and 24 minutes could be associated with the 

duration times of respectively shorter convective storms and much longer stratiform 

precipitations in Warsaw.  

Table 7.4. Spectral energy breaks for 1-minute summer and winter time series, from 25 rain gauges with 

their basic statistics. 

Rain gauge 

Summer season Winter season 

Break point 

min - 

R01 67 16h 24 min 

R02 56 28h 11 min 
R03 67 34h 28 min 
R04 59 14h 17 min 
R05 59 10h 55 min 
R06 56 14h 17 min 
R07 74 13h 9 min 
R08 85 18h 46 min 
R09 77 7h 16 min 
R10 60 9h 48 min 
R11 61 12h 20 min 
R12 52 14h 19 min 
R13 61 6h 32 min 
R14 61 12h 30 min 
R15 85 4h 30 min 
R16 61 10h 12 min 
R17 222* 5h 24 min 
R18 51 34h 31 min 
R19 231* 4h 30 min 
R20 55 17h 33 min 
R21 43 4h 12 min 
R22 51 153h 50 min* 
R23 61 16h 40 min 
R24 55 11h 41 min 
R25 55 9h 32 min 

   Average 61 13h 24 min 
Median 60 12h 25 min 
Standard deviation 11 8h 26 min 
Minimum 43 4h 27 min 
Maximum 85 34h 28 min 
First quartile (25th %) 55 8h 29 min 
Third quartile (75th %) 64 16h 30 min 
*value omitted as extremely outlying at calculation of set statistics 
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Figure 7.8. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R06 in 2009. 

Summer season (upper graph) and winter season (lower graph) 
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Figure 7.9. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R15 in 2009. 

Summer season (upper graph) and winter season (lower graph) 
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Figure 7.10. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R25 in 2009. 

Summer season (upper graph) and winter season (lower graph) 
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In multifractal studies, the β exponent plays an important role in the determination of the 

universal nonstationarity index H, which is obtained by the comparison of the spectral 

exponent of the examined non-stationary process to the spectral exponent of a stationary 

process (the calculation steps are discussed in detail in Section 7.7). To this end, the last step 

of spectral density analysis is the estimation of the β exponent for the overall time series i.e. 

for the total average of analysed frequencies. In Figs 7.11÷7.13 the overall slopes of the 

sample rain gauges R06, R15 and R25 are presented. The graphical results for the remaining 

22 of the Warsaw rain gauges are set up in Appendix III, Section C. 

The calculated spectral exponents of the Warsaw time series are listed in Tab.7.5. These 

values are the ones considered for the estimation of the multifractal parameter H. 

 

Figure 7.11. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R06 with the 

overall slope 
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Figure 7.12. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R15 with the 

overall slope 

 

 

Figure 7.13. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R25 with the 

overall slope 
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Table 7.5. Spectral exponents of energy spectra for 1-minute time series from 25 rain gauges with basic 

statistics calculated for the whole frequency range 

Rain gauge β 

R01 0.577 

R02 0.569 

R03 0.522 

R04 0.662 

R05 0.504 

R06 0.448 

R07 0.660 

R08 0.613 

R09 0.645 

R10 0.647 

R11 0.641 

R12 0.644 

R13 0.558 

R14 0.670 

R15 0.643 

R16 0.676 

R17 0.709 

R18 0.573 

R19 0.621 

R20 0.603 

R21 0.604 

R22 0.532 

R23 0.601 

R24 0.677 

R25 0.681 

  
Average 0.611 

Median 0.621 

Standard deviation 0.063 

Minimum 0.448 

Maximum 0.709 

First quartile (25th %) 0.573 

Third quartile (75th %) 0.660 

 

To sum up the spectral analysis, it can be said that the obtained results for the Warsaw 

rainfall time series indicate a scale-invariance of the local rainfall process, occurring 

particularly for time scales from 1 minute up to at least 24 hours. This peculiarity is even 

more pronounced in a seasonal analysis, where a scale-invariant behaviour reflects the 

features of summer/winter precipitation, defined by convective/stratiform nature of the 

process. Furthermore, the spectral breaks, separating two different scaling domains, 

demonstrate the existence of more than one scaling behaviour (typical of monofractals) and 

involves the application of more complex methods of Warsaw precipitation series studies, 

such as multifractal methods. 

7.3 Trace moment method (TM) 

The sample results for rain gauges R06, R15 and R25 obtained by applying the trace 

moment method to the 1-minute Warsaw precipitation time series are presented in Figs 
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7.14÷7.16 in double logarithmic scale. The results of the remaining 22 rain gauges are set up 

in Appendix IV, Section A. The graphs display the relationships between the log values of the 

average q moment of the rainfall intensity ελ and the logarithms of the scale coefficients λ. 

The analysis is performed using TRACE_Warsaw program and the results are plotted by 

means of TracePlot script for time scales from 1 minute (λ = 16384) to over 16384 minutes 

(11 days, λ = 1). The calculations are carried out for 27 values of the moments q ∈ [0.01; 

7.00], depending on the intensity of the event rain: 14 values smaller than 1 for low-intensity 

rains (to be found on the left side of the pictures) and 13 greater than or equal to 1 for high-

intensity events (on the right side of the pictures). For simplicity, the pictures present only 

selected values of the moments q (to be read in the legend). 

All the results obtained for the 25 rain gauges have a similar nature. It is possible to notice 

the linear relationship between the log mean values of the moments and the log scaling values 

λ, indicating the scaling nature of the analysed rainfall time series. However, for the highest 

and lowest values of time scales, a deviation of the expected power law (linear) behaviour is 

visible: a power-law line slope is decreasing at a time scale around 32 minutes to 1 hour (i.e. 

log(λ) ≈ 3.01÷2.41, so t ≈ 16÷64 min) for all the q moments. It is consistent with the results 

obtained so far by spectral density analysis and functional box counting where similar 

magnitude time scales were identified as “break” in scaling. 

 The lowering of the slope values is particularly evident for low-intensity precipitation (i.e. 

q<1) in all the 25 plots, especially for the lowest values of q (0.05, 0.3) at a time scale around 

34 hours to 11 days (i.e. log(λ) ≈ 0.9÷0.0, thus t ≈ 2048÷16384 min). Whereas in the same 

range of scales, this kind of the slope lowering behaviour is slightly visible for the high-

intensity precipitation (i.e. q>1). Actually, the higher the q moment, the more magnified the 

highest rainfall intensities and averaged q-moments values are, determined by their 

magnitude. 

It follows that the precipitation series during recording are subjected to a clear 

overestimation of lower intensities and a slight underestimation of higher intensities. The 

obtained results are comparable with those achieved by de Lima (1998) for data from Vale 

Formoso, where a power law deviation at a time scale of around 30 minutes to 1 hour is 

observed as well as the same under/overestimation of the smallest and highest rainfall 

intensities. 
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Figure 7.14. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 

1-minute precipitation data series from Warsaw rain gauge R06, for q<1 (on left) and for q>1 (on 

right). The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure 7.15. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 

1-minute precipitation data series from Warsaw rain gauge R15, for q<1 (on left) and for q>1 (on 

right). The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure 7.16. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 

1-minute precipitation data series from Warsaw rain gauge R25, for q<1 (on left) and for q>1 (on 

right). The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

The second part of the trace moment analysis is focused on the determination of the 

moment scaling function K(q) which, in turn, is strictly related to the codimension function 

c(γ) obtained by the probability distribution/multiple scaling method, described in the 

following Section. Hereby, the results of K(q) function are discussed together with the results 

of c(γ) function in Section 7.5. 

7.4 Probability distribution/multiple scaling (PDMS) 

PDMS method is mainly focused on determining the codimension function c(γ), i.e. the 

scaling of the probability distributions of the given process (described in detail in the 

following Section). To reach this goal, it must first be appointed the relationship of the 

probability of exceeding rainfall-intensity levels of singularity γ, observed on scales of 

resolution λ, against the scale ratio λ. Such relationships sample log-log plots for selected 

Warsaw rain gauges R06, R15 and R25 as shown in Figs 7.17÷7.19. The analysis is 

performed for 24 values of singularity γ ∈ [0.04; 0.96], using PDMS_Warsaw program and 

PDMSplot script. For simplicity, the graphs refer only to selected singularity orders γ (to be 

read in the legend). The remaining plots for other 22 gauges are provided in Appendix V, 

Section A. 

In all the analysed cases a scale relation of the probability Pr(ελ ≥ λγ) is well preserved, as 

evidenced by a linear shape of the log-log values, particularly for the singularity levels γ close 
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to 0.4. For the specific case of γ = 0.4, the linear fitting is almost exact (what is visible by the 

dotted line in the plots). The resulting slopes of linear relationships for γ = 0.4, for the sample 

rain gauges are -0.480, -0.441 and -0.475 respectively, and the average slope for all the 

Warsaw rain gauges is equal to -0.475. The absolute value of the slope corresponds to the 

codimension value of c(γ) for γ = 0.4 (see Fig. 7.24 in the following Section). 

The overestimation of low intensity precipitation and underestimation of highest intensity 

precipitation in recorded series as reported by several authors (e.g. de Lima, 1998; Licznar, 

2009) and confirmed by the already discussed results could also be observed for the Warsaw 

gauges log-log plots for probability exceeding rainfall. The observed course of the plots 

suggests the presence of two different scaling regimes (reported by e.g. Tessier and al., 1996), 

one for time scales from 1 minute to 1 hour and another from 1 hour up to 11 days. 

Interestingly, the scale time around 1 hour (log(λ) = 2.4, λ = 251, t = 63 min) constitutes a 

kind of boundary value between two different scaling regimes: the linear behaviour of the 

probability plots deviates upwards from the straight line for small singularities (related to low-

intensity events) and downwards for high-intensity events, remaining however in a power-law 

relation. The discussed results are very similar to those observed by Licznar (2009) for 

rainfall time series for Wrocław.  

 

Figure 7.17. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of 

singularity γ relation against scale parameter λ, obtained for 1-minute precipitation data series from 

Warsaw rain gauge R06. The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure 7.18. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of 

singularity γ relation against scale parameter λ, obtained for 1-minute precipitation data series from 

Warsaw rain gauge R15. The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure 7.19. Log-log plot of the probability of exceeding rainfall-intensity levels for selected values of 

singularity γ relation against scale parameter λ, obtained for 1-minute precipitation data series from 

Warsaw rain gauge R25. The time scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

7.5  Multifractal exponent functions 

The statistical description of a multifractal process, as for all other random variables, leads 

to the analysis of the probability distribution or its statistical moments. In multifractal 

processes a duality exists between probabilities and moments, both related to each other by a 
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type of Legendre transform (Frish and Parisi, 1985; Schertzer and Lovejoy, 1993). Thus, the 

scaling behavior, verified by the trace moment analysis (Figs 7.14÷7.16) and probability 

distribution/multiple scaling analysis (Figs 7.17÷7.19), may be also described by multifractal 

exponent functions: the moment scaling function K(q) and the codimension function c(γ) (see 

Sections 6.1 and 6.6). 

The sample empirical moments scaling function K(q), determined by the trace moment 

method, are plotted in Figs 7.21÷7.23 for Warsaw rain gauge R06, R15 and R25. Their shapes 

are almost identical and similar to shapes obtained for other 22 gauges (the remaining plot are 

presented in Appendix IV, Section B). Regions of linear and non-linear relationship, below 

and above one single point, of coordinates (2.48; 0.73) are visible on the graphs. The abscissa 

of this point is identified as the critical order moments qD and the ordinate as K(qD) of a 

process. 

All the 25 plots of empirical K(q) function for Warsaw gauges exhibit linear relationship 

for moment larger than 2.48. They differ from the theoretical moment scaling function K(q), 

defined by Schertzer and Lovejoy (1987, 1993). The theoretical K(q) function has a fully 

curvilinear shape presenting two intersections with the x axis, K(q) = 0, namely at q = 1 and  

q = 0 (Fig. 7.20 left), wherein the latter condition is fulfilled only for multifractals filling the 

available space in simple manner (Lovejoy and Schertzer, 2013). 

 

Figure 7.20. Shape of the theoretical scaling exponent functions K(q) and c(γ) for multifractal first-order 

phase transformations (from Lovejoy and Schertzer, 2013) 

As shown on the sample graphs of empirical K(q) function, the curvilinear shape is 

perceivable only for the lowest values of the moments. Moreover, the empirical K(q) function 

equals to 0 only in case of q = 1. Both the straightness and the presence of only one zero point 

is typical for real rainfall time series. It is an expected behavior due to the deviations detected 

in TM plots (Figs 7.14÷7.16), and it corresponds to the results obtained by other researchers 

(e.g. de Lima, 1998; Licznar, 2009). 
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Figure 7.21. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data 

series from Warsaw rain gauge R06 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure 7.22. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data 

series from Warsaw rain gauge R15 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure 7.23. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data 

series from Warsaw rain gauge R25 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

Additionally, if the processes covers the available 1-dimensional space in a more complex 

manner, the empirical moment scaling function K(q) provides the value of codimension, 

defined as the intercept of the function for K(q = 0) = -c. In this way, c is the codimension of 

the “support” of the process and it is strictly related to the dimension as follows: 

 c = 1 - D (33) 

Based on the plots, the Warsaw time series codimension value amounts to 0.35, and the 

average dimension D is equal to D = 1 - c = 0.65.  

The empirical codimension functions c(γ), determined by the probability 

distribution/multiple scaling method, for selected rain gauges are plotted in Fig. 7.24 (the 

remaining plots are presented in Appendix V, Section B). The shape of the curve is consistent 

with the theoretical codimension function (Fig. 7.20 right) namely, includes both linear and 

non-linear sections. The non-linear behavior concerns the middle section of the plots, for 

orders of singularity from 0.08 to 0.65±0.06. For orders γ > 0.65 the curves become linear, 

and γ ≈ 0.65 is identified as the critical singularity γD.  

First order multifractal transformation, resulting from the observation (recording) carried 

out in a scale larger than the scale of the internal homogeneity of the actual process, are often 

due to the limitations of measuring instruments, is characterized by a linear behavior of the 

c(γ) function, for γ > γD. The equation of such a line, allows to determine the value of qD as 

the slope, and K(q) as the negative value of the intercept.  
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Figure 7.24. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R06, R15 and R25, for time scales from 

1 minute 11.4 days 
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For singularity orders, γ > γD, the fitting lines (blue lines in figures) and their equations are 

visible on the graphs. The estimated slopes for the selected rain gauges R06, R15 and R25 are 

equal to 2.26, 2.40 and 2.25 respectively (Fig. 7.24). The overall slope value for the entire 

network is on average 2.44±0.26. As it could be noticed, the empirical c(γ) codimension 

function for all the 25 Warsaw gauges are characterized by strong variability of the slopes for 

the linear sections marking the first-order multifractal phase transformation. 

Regarding the intercepts of the fitted lines, they are equal to -0.72, -0.82 and -0.57 

respectively for gauges R06, R15 and R25, and for all the network the intercept is on average 

-0.74±0.36. In accordance to the duality between the codimension and the moment scaling 

functions, the slope and its negative intercept of the fitting line defined by c(γ), should satisfy 

the critical scaling moment qD and its corresponding function value, defined by K(q). It is 

easily seen that the overall value of the slope (2.44±0.26), i.e. qD = 2.44, as well as the 

negative intercept -0.74±0.36, i.e. K(qD) = 0.74, are both defined by c(γ), and coincide with 

values of the coordinates of the beginning point of the linear section of K(q) that is (2.48; 

0.73). Hence, the duality of those two parameters confirms the correctness of the 

independently performed the PDMS and the TM analysis of Warsaw time series. 

The PDMS method additionally defines the fractal dimension of the geometrical “support” 

of the process, already determined by functional box counting method. It is determined by the 

intersection of the obtained fitting lines for values γ > γD with the line of equation c(γ) = γ (as 

visible in Fig. 7.24). The resulting point of coordinates (D; D) is defined by Schertzer and 

Lovejoy (1993) as the mentioned fractal dimension. For the selected rain gauges R06, R15 

and R25, D is equal to 0.57, 0.59 and 0.46 respectively. The overall value for the entire 

network is D = 0.55±0.05. These results coincide with the values already obtained by the 

functional box counting method namely D = 0.52, 0.48 and 0.55 for rain gauges R06, R15 

and R25 and the average value for 25 rain gauges set D ≈ 0.53. The results are also close to  

D ≈ 0.65 obtained by the TM method as an average value for 25 gauges’ group. 

7.6 Double trace moment method (DTM) 

The DTM analysis, focused on the determination of order moments q for η-normalized 

intensities of events, is performed using the modified version of the DTM_Warsaw program 

and by a MATLAB script DTMPlot. The calculations, set for several values of parameters, 

thus oriented to the estimation of basic universal multifractal parameters, cover ranges of 

moment order q ∈ [0.9; 2.1] and η ∈ [0.13; 10.00]. As a result, sample plots of log|K(q,η)| 

against log(η) for selected order moments q (indicated in the legend), are provided in Figs 
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7.25÷7.27. These figures concern Warsaw rain gauges R06, R15 and R25; the remaining plots 

for other 22 gauges are set up in Appendix VI, Section A). 

 

Figure 7.25. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute 

precipitation data series from Warsaw rain gauge R06 

 

 

Figure 7.26. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute 

precipitation data series from Warsaw rain gauge R15 
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Figure 7.27. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute 

precipitation data series from Warsaw rain gauge R25 

The confirmation of the “universality” of the process is granted by the parallel shapes of 

the obtained graphs, observed for the entire period of analysis. Two scaling “breaks” causes 

the characteristic “S”-shaped bend of the curves and the linear relation of the middle section 

of the graph (dotted lines) is therefore delimited by two critical orders of moments qmin and 

qmax. The section between these two values is the one suitable for the estimation of universal 

parameter α, as the slope of the graph of the linear relationship, according to the relation for 

conservative processes (H = 0): 

 𝐾(𝑞, η)  =  ηα 𝐾(𝑞) (34) 

Based on Equation (34), it is possible to rewrite the Equation (31) as follows: 

 𝐾(𝑞, 𝜂) =  

{
 
 

 
 𝐶1
𝛼 − 1

𝜂𝛼(𝑞𝛼 − 𝑞) 
 

𝐶1𝜂 𝑞 ln(𝑞) 
1

1
       

 
for α ≠ 1 

 

for α = 1, 

(35) 

where α assumes values at the range [0;2], and q>0 for α≠2. 

From the log-log plots the values of log(η) limiting the linear relationships (namely 

log(η)min and log(η)max) are read for each order moment q. Then, the values of η are 

calculated, and the critical moments are determined by the product of the moments q and η 

(for further discussion please refer to Tessier et al. 1993). All the estimated values for the 

sample rain gauges R06, R15 and R25 are listed in Tab.7.6 (the values obtained for all the 

remaining gauges are given in Tables VI.a in Appendix VI, Section B). The critical moments 
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for selected rain gauges R05, R15 and R25 are equal to: 0.98, 1.00 and 1.07 for qmin and 2.89, 

2.94 and 2.90 for qmax respectively. The overall averaged results obtained for the entire 

Warsaw network are qmin = 1.04±0.06 and qmax = 2.91±0.23. Nevertheless, it has to be 

underlined that the estimate of critical moments is liable to subjective error while reading data 

from graphs. Indeed, it should be noticed that estimated values of qmax for Warsaw gauges 

(qmax = 2.91±0.23) is higher than the already discussed values of qD form the TM (qD = 2.48) 

and the PDMS studies (qD = 2.44±0.26).  

Table 7.6. Critical moments qmin and qmax estimated based on Figs 7.25÷7.27 for selected values of order 

moment q, obtained for 1-minute precipitation series from Warsaw rain gauges R06, R15 and R25 

R06 

Curve for q 
Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 

1.10 -0.1 0.79 0.87 0.4 2.51 2.76 

1.20 -0.1 0.79 0.95 0.3 2.00 2.39 

1.30 -0.1 0.79 1.03 0.3 2.00 2.59 

1.40 -0.2 0.63 0.88 0.3 2.00 2.79 

1.50 -0.2 0.63 0.95 0.3 2.00 2.99 

1.60 -0.2 0.63 1.01 0.3 2.00 3.19 

1.70 -0.2 0.63 1.07 0.2 1.58 2.69 

1.80 -0.2 0.63 1.14 0.2 1.58 2.85 

1.90 -0.3 0.50 0.95 0.2 1.58 3.01 

2.00 -0.3 0.50 1.00 0.2 1.58 3.17 

2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 0.98 Average 2.89 

Standard deviation 0.08 Standard deviation 0.27 

 

 

R15 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 

1.10 -0.1 0.79 0.87 0.4 2.51 2.76 

1.20 -0.1 0.79 0.95 0.4 2.51 3.01 

1.30 -0.1 0.79 1.03 0.3 2.00 2.59 

1.40 -0.1 0.79 1.11 0.3 2.00 2.79 

1.50 -0.2 0.63 0.95 0.3 2.00 2.99 

1.60 -0.2 0.63 1.01 0.3 2.00 3.19 

1.70 -0.2 0.63 1.07 0.2 1.58 2.69 

1.80 -0.2 0.63 1.14 0.2 1.58 2.85 

1.90 -0.3 0.50 0.95 0.2 1.58 3.01 

2.00 -0.3 0.50 1.00 0.2 1.58 3.17 

2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.00 Average 2.94 

Standard deviation 0.08 Standard deviation 0.22 
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R25 

0.90 0.00 1.00 0.90 0.4 2.51 2.26 

1.10 -0.10 0.79 0.87 0.4 2.51 2.76 

1.20 -0.10 0.79 0.95 0.3 2.00 2.39 

1.30 -0.10 0.79 1.03 0.3 2.00 2.59 

1.40 -0.10 0.79 1.11 0.3 2.00 2.79 

1.50 -0.10 0.79 1.19 0.3 2.00 2.99 

1.60 -0.20 0.63 1.01 0.3 2.00 3.19 

1.70 -0.20 0.63 1.07 0.3 2.00 3.39 

1.80 -0.20 0.63 1.14 0.2 1.58 2.85 

1.90 -0.20 0.63 1.20 0.2 1.58 3.01 

2.00 -0.20 0.63 1.26 0.2 1.58 3.17 

2.10 -0.30 0.50 1.05 0.2 1.58 3.33 

Average 1.07 Average 2.90 

Standard deviation 0.12 Standard deviation 0.36 

 

Estimations of the universal parameter α, as the slope of log|K(q,η)| against log(η) for the 

range of data delimited by qmin and qmax, and consequently, the parameter C1 are the final step 

of the DTM analysis. All the obtained results for selected gauges R06, R15 and R25 are listed 

in Tab.7.7 (and in Tables VI.b in Appendix VI, Section B for all the remaining 22 gauges of 

the set). For the sample rain gauges R06, R15 and R25 the parameter α amounts to 0.938, 

0.546 and 0.848. The value of α parameter for 25 gauges set is α = 0.77±0.09.  

Because of α ≠ 1, the Equation (35) becomes suitable to the estimation of C1 as follows 

(the identity K(q) ≡ K(q,1) is visible in Fig. 7.28): 

 𝐾(𝑞)  ≡  𝐾(𝑞, 1)  =
𝐶1

𝛼 − 1
 (𝑞𝛼 − 𝑞) (36) 

For the selected rain gauges R06, R15 and R25 the universal parameters C1 are 0.413, 0.439 

and 0.337 respectively. The overall value of C1 for the whole analysed group of 25 gauges in 

Warsaw is equal to C1 = 0.40±0.02. 

 

Figure 7.28. Empirical moment scaling function K(q) obtained by TM method on the background of K(q,1) 

obtained by DTM method (based on the results for gauge R06) 
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The degree of multifractality α determines the universality class of an event. According to 

the classification of the multifractals for 0≤α≤1 in case of Warsaw gauges, it is a (log) Lévy 

process with bounded singularities, presenting soft behaviour, what means, is a dressed 

process (see Section 6.2). The universal multifractal parameters α and C1 are also used to 

determine the critical moment qD associated with multifractal first-order phase transition, 

according to the equation: 

 
𝐶1

𝛼 − 1
 
𝑞𝐷

𝛼 − 𝑞𝐷
𝑞𝐷 − 1

= 𝐷 (37) 

By that means, for α = 0.77, C1 = 0.40 and D = 0.55 i.e. averaged values for a set of 25 

Warsaw gauges, the critical moment qD is equal to 2.50. This value is at least comparable to 

qD = 2.48 and qD = 2.44±0.26 originating from the TM and the PDMS studies respectively. 

Table 7.7. Calculation of α and C1 parameters for 1-minute precipitation series from Warsaw rain gauges 

R06, R15 and R25 

Gauge R06 

Curve for q K(q,1) α C1 

1.10 -1.378 0.971 0.400 

1.20 -1.060 1.034 0.396 

1.30 -0.868 1.038 0.396 

1.40 -0.726 0.931 0.404 

1.50 -0.612 0.935 0.407 

1.60 -0.517 0.935 0.410 

1.70 -0.435 0.958 0.412 

1.80 -0.363 0.961 0.414 

1.90 -0.299 0.848 0.433 

2.00 -0.241 0.853 0.436 

2.10 -0.189 0.856 0.438 

Average 0.938 0.413 

Standard deviation 0.066 0.015 

   

Gauge R15 

1.10 -1.352 0.563 0.433 

1.20 -1.042 0.559 0.432 

1.30 -0.856 0.596 0.430 

1.40 -0.722 0.593 0.431 

1.50 -0.616 0.544 0.436 

1.60 -0.529 0.543 0.437 

1.70 -0.454 0.553 0.438 

1.80 -0.388 0.555 0.439 

1.90 -0.330 0.496 0.449 

2.00 -0.278 0.498 0.450 

2.10 -0.231 0.500 0.451 

Average 0.546 0.439 

Standard deviation 0.035 0.008 
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Gauge R25 

1.10 -1.454 0.865 0.337 

1.20 -1.142 0.888 0.333 

1.30 -0.955 0.910 0.329 

1.40 -0.818 0.921 0.327 

1.50 -0.709 0.923 0.326 

1.60 -0.618 0.816 0.335 

1.70 -0.538 0.819 0.337 

1.80 -0.468 0.814 0.339 

1.90 -0.406 0.822 0.341 

2.00 -0.349 0.826 0.343 

2.10 -0.297 0.719 0.359 

Average 0.848 0.337 

Standard deviation 0.061 0.009 

7.7 Universal multifractal parameters 

In this section, the final results of the multifractal studies are presented. In Tab.7.8 the 

universal multifractal parameters α, C1 and H, together with the global scaling exponent β are 

listed. The parameters in Tab.7.8 concern 1-minute precipitation time series from all the 25 

rain gauges of the Warsaw rain gauge network, and cover the period from September 2008 to 

November 2010. The universal parameters α and C1 are determined by the double trace 

moment method (DTM) already described in Section 7.6, whereas the global scaling exponent 

β is estimated by the spectral density analysis, discussed in Section 7.2.  

Knowing the parameters α and C1, the universal parameter H is calculated according to the 

following equation 

 𝐻 = 
𝛽 − 1

2
+ 
𝐶1(2

𝛼 − 2)

2(𝛼 − 1)
 (38) 

The overall multifractal parameter H = 0.06±0.02 for all the Warsaw gauging network 

together with the already determined parameters α = 0.77±0.09 and C1 = 0.40±0.02 forms a 

parameter set very similar to the results obtained by Tessier et al. (1996) for 30 locations in 

France, for rainfall data from 1 day to 30 years (α = 0.7±0.2, C1 = 0.4±0.1 and H = -0.1±0.1). 

Moreover, comparable results are reported by de Lima (1998) for Vale Formoso, Portugal  

(α = 0.49, C1 = 0.51 and H = -0.13) and Licznar (2009) for Wrocław, Poland (α = 0.69,  

C1 = 0.34 and H = -0.01). 

However, to quantify the level of variability of universal multifractal parameter among the 

network, the taxonomic investigation is performed using the hierarchical analysis. The 

calculations are performed for two groups of multifractal parameters: first group covers a set 

of all the 3 parameters α, C1 and H, the second only α and C1, assuming H = 0 (as for 

conserved process). The universal multifractal parameters for specific gauges of Warsaw 
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network are in majority of cases very similar. The results are summarized in dendrograms, 

where the distance between rain gauges is measured by metric distance and linkage methods 

listed in Tab.6.1.  

Table 7.8. Universal multifractal parameters α, C1 and H, and the global scaling exponent β for Warsaw rain 

gauges, for 1-minute time series, recorded from September 2008 to November 2010 

Rain gauge 
Parameter 

α C1 H β 

R01 
Average 0.80 0.40 0.05 0.58 
St. dev. 0.03 0.01 - - 

R02 
Average 0.79 0.40 0.04 0.57 
St. dev. 0.04 0.01 

  
R03 

Average 0.81 0.39 0.01 0.52 
St. dev. 0.04 0.01 

  
R04 

Average 0.65 0.38 0.04 0.66 
St. dev. 0.04 0.01 

  
R05 

Average 0.76 0.42 0.02 0.50 
St. dev. 0.04 0.01 - 

 
R06 

Average 0.94 0.41 0.00 0.45 
St. dev. 0.07 0.02 - 

 
R07 

Average 0.75 0.40 0.08 0.66 
St. dev. 0.05 0.01 - 

 
R08 

Average 0.70 0.39 0.05 0.61 
St. dev. 0.04 0.01 - 

 
R09 

Average 0.73 0.39 0.07 0.65 
St. dev. 0.06 0.01 - 

 
R10 

Average 0.72 0.40 0.07 0.65 
St. dev. 0.04 0.01 - 

 
R11 

Average 0.72 0.40 0.07 0.64 
St. dev. 0.05 0.01 - 

 
R12 

Average 0.82 0.38 0.07 0.64 
St. dev. 0.04 0.01 - 

 
R13 

Average 0.71 0.43 0.05 0.56 
St. dev. 0.03 0.01 - 

 
R14 

Average 0.82 0.38 0.08 0.67 
St. dev. 0.05 0.01 - 

 
R15 

Average 0.55 0.44 0.08 0.64 
St. dev. 0.04 0.01 - 

 
R16 

Average 0.74 0.38 0.08 0.68 
St. dev. 0.05 0.01 - 

 
R17 

Average 0.71 0.40 0.10 0.71 
St. dev. 0.04 0.01 - 

 
R18 

Average 0.83 0.40 0.05 0.57 
St. dev. 0.05 0.01 - 

 
R19 

Average 0.87 0.39 0.07 0.62 
St. dev. 0.04 0.01 - 

 
R20 

Average 0.87 0.40 0.07 0.60 
St. dev. 0.05 0.01 - 

 
R21 

Average 0.93 0.39 0.07 0.60 
St. dev. 0.06 0.01 - 

 
R22 

Average 0.78 0.40 0.03 0.53 
St. dev. 0.05 0.01 - 

 
R23 

Average 0.74 0.40 0.05 0.60 

St. dev. 0.03 0.01 - 
 

R24 
Average 0.74 0.40 0.09 0.68 
St. dev. 0.03 0.01 - 

 
R25 

Average 0.85 0.34 0.06 0.68 
St. dev. 0.06 0.01 - 

 
Average 0.77 0.40 0.06 0.61 

Standard deviation 0.09 0.02 0.02 0.06 
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In Figure 7.29 the results of clustering for all three universal parameters: α, C1 and H using 

average linkage and Euclidean distance are plotted. The vertical scale shows the binding 

distance, whereas the names of the rain gauges are presented on horizontal scale. The majority 

of gauges is in a single group. The gauges of similar bending distance smaller than 0.051 are 

marked in red. The biggest binding distance is observed only for three outlying gauges R21, 

R06 and R15. In case of gauges R21 and R06 the binding distances are comparable and are 

equal to 0.058 and 0.067 respectively, whereas for gauge R15 the binding distance is equal to 

0.124. It has to be underlined, that this last value is at least twice bigger than the binding 

distances obtained among other 22 closely located on dendrogram gauges. 

 

Figure 7.29. Dendrogram resulting from cluster analysis of universal multifractal parameters α, C1 and H for 

Warsaw rain gauge network, using average linkage and Euclidean distance 

Due to a conserved nature of rainfall processes (confirmed by the obtained values of H 

oscillating around 0), the similarity of gauges based only on 2 remaining α and C1 parameters 

is investigated. The results of these studies in the form of dendrograms are plotted in Fig. 7.30 

and Fig. 7.31. The largest distance from the nearest neighbour defined both by Euclidean and 

Minkowski distance is equal to 0.240 for gauge R15 and 0.166 for both the gauges R21 and 

R06. The behaviour of the remaining gauges is very similar as in case previous analysis 

shown in Fig. 7.29. They are grouped practicaly in one big cluster with binding distances 

(defined by Euclidean and Minkowski distance) not exceeding the boundary value of 0.104. 

This value could not be directly compared to the distances presented in Fig. 7.29. However, it 

should be noticed, that also in case of Fig. 7.30 and Fig. 7.31 the binding distance for the 
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outermost outlying gauge R15 exceeds by double the binding values of the other gauges 

forming the main cluster. 

 

Figure 7.30. Dendrogram resulting from cluster analysis of universal multifractal parameters α and C1 for 

Warsaw rain gauge network, using average linkage and Euclidean distance 

 

Figure 7.31. Dendrogram resulting from cluster analysis of universal multifractal parameters α and C1 for 

Warsaw rain gauge network, using average linkage and Minkowski distance 

A quality measure of all the combination of methods used during hierarchical analysis is 

the cophenetic correlation, showing the goodness of fit of the clustering: the closest to 1 is the 
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value of this correlation, the better is the result. Among all the obtained dendrograms, the 

above-presented in Fig. 7.29÷7.31 are the ones with the highest value of cophenetic 

correlation, equal to 0.831 and 0.834 respectively for the analysis of all 3 and only 2 universal 

parameters. For other combinations of linkage methods and distance definition smaller values 

of cophenetic correlation are reached as it could be seen from the Tab.7.9. 

Table 7.9. Cophenetic correlation values obtained for different combination of linkage method and distance 

definition 

Cophenetic correlation 

Linkage method 
Average Centroid Average Centroid 

For α, C1 and H For α and C1 

Metric distance 

Euclidean 0.831 0.830 0.834 0.834 

Seuclidean 0.643 0.673 0.660 0.652 
Cityblock 0.812 0.808 0.799 0.798 

Minkowski 0.831 0.830 0.834 0.834 

Chebychev 0.830 0.829 0.834 0.834 

Mahalanobis 0.633 0.628 0.652 0.630 
Cosine 0.658 0.661 0.643 0.684 

Correlation 0.623 0.631 -0.249 -0.258 
Spearman NaN -0.087 * * 
Hamming 0.062 -0.008 * * 
Jaccard 0.062 -0.008 * * 

*values too small 
     

 

The similarity of the majority of the Warsaw gauges with respect to their multifractal 

parameters is in good agreement with former results of Licznar et al. (2015) analysis 

performed on the same dataset but with alternative methodology, based on studies of BDCs 

(breakdown coefficients distributions) for hierarchy of sub-daily timescales. In the mentioned 

study of Licznar et al. (2015) the clearly outlying gauges were the gauges R15 and R25. Their 

outlying position on dendrograms was explained by the location of gauges in untypical for 

urban precipitation field conditions. Gauge R15 is an airport gauge and in its neighbourhood 

there are no buildings, trees or other obstacles typical for city centre. Gauge R25 is located in 

city limits and is surrounded by green areas of forests and grasslands. Most probably this type 

of neighbourhood eliminates or drastically reduces the effects of urban heat island which has 

to have influence on recorded precipitation. This in mind, in subsequent part of the research, 

both gauge R15 and R25 are selected for generation of synthetic precipitation series from 

continuous universal cascade generators. Finally, to the group of outliers, gauges R06 and 

R21 should be added. They are closely located geographically in the centre of Warsaw. This 

is the section of the city with the highest density of high buildings. In addition, gauge R06 is 

located very close to the Vistula River. Most probably this specific and close location of 

gauge R06 and R21 explain both small binding distance among both gauges and bigger 

binding distances to other Warsaw gauges. Consequently, this gauge R06 is also selected for 
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generation of synthetic precipitation series from continuous universal cascade generator. The 

location of the above-mentioned gauges R06, R15 and R25 representing the variability of 

universal cascade parameters among Warsaw precipitation field is shown in Fig. 7.32.  

 

Figure 7.32. The locations of the rain gauges chosen as the most representative of the variability of Warsaw 

rain gauge network: R06, R15 and R25 

7.8 Universal multifractal generators 

In this section, results of synthetic precipitation time series generation by means of 

continuous universal cascades generators are presented. Generators are parametrized by 

universal parameters derived for selected specific gauges R06, R15 and R25, as well as, for 

average parameters for other remaining 22 gauges (excluding R06, R15 and R25) or 23 

gauges (excluding R15 and R25) of the Warsaw precipitation field. Samples of generated  

1-minute precipitation series are presented and their quality with respect of precipitation 

variability and intermittency is assessed determining the probability of rain by the 

complementary cumulative distribution function (cCDF) and investigating the probability of 

zero rainfall occurrence E(p0) for a hierarchy of sub-daily timescales. A comparison of cCDF 

and E(p0) parameters between synthetic and recorded precipitation time series is carried out. 

Finally, attempts of correction of the intermittency structure of generated precipitation time 

series by means of specially developed post processing filter algorithm FILTR are reported. 
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7.8.1. Synthetic precipitation time series 

In order to generate a synthetic precipitation time series for the Warsaw gauging network, 

the universal multifractal generator, a MATLAB script GENERATOR_R, is oriented to the 

simulation of 1-minute resolution data of length λ = 220 minutes (λ ≈ over 2 years). The 

synthetic data are generated on basis of the universal multifractal parameters α, C1 and H, 

assuming a conservative nature of the data, thus H = 0. The simulations are carried out five 

times: three times for single rain gauges R06s, R15s and R25s (“s” stands for synthetic) and 

two times for groups of gauges RM23s and RM22s, whose parameters are averaged for 23 

rain gauges (excluding of R15 and R25) and 22 rain gauges (excluding R06, R15 and R25) 

respectively.  

In Figure 7.34 sample synthetic results obtained for R06s are presented. The overall view 

of time series suggests the proper structure of rainfall time series. Precipitation is distributed 

irregularly in time in the form of rainfall clusters of variable temporal intensity with 

alternating (almost) no-rain periods. However, some peaks of very high rainfall intensity 

reaching up to 6-8 mm/min are visible. Simultaneously, in more detail (the enlarged section of 

the obtained time series is presented in Fig. 7.34), very small rainfall intensity values, far 

below the resolution of rain gauges (0.001 mm) are very frequent. These features of generated 

time series are discussed further in more detail. Despite that, positive observations about the 

quality of generated time series could also be derived from the evaluation of the total annual 

precipitations - TAP. The TAPs of the synthetic time series are very close to the observed 

values, i.e. the TAP of R06s is 612 mm/year, whereas the TAP of R06 is equal to 659 

mm/year; for R15s the TAP is 544 mm/year (for R15 is 502 mm/year), and for R25s the TAP 

is 480 mm/year (for R25 is 424 mm/year). To some extent the differences in TAP values for 

observed and synthetic time series could be explained by the fact, that the synthetic series do 

not cover entirely two years of observation (210 minutes are ≈1.995 years), since the length of 

the simulated data should be a multiple of 2, and 210 is the closest value to two years of 

observation.  
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Figure 7.33. Sample result of the universal multifractal generator. The plot of an almost 2-year time series for R06s 

 



 

101 

 

 

Figure 7.34. Sample result of the universal multifractal generator. An enlarged section of the time series, with 

very small values of rainfall intensities (one magnitude below weighing gauges’ resolution)  

 

7.8.2. Evaluation of generated synthetic precipitation time series 

From the perspective of future engineering use of a synthetic time series, the generation of 

synthetic data from continuous universal cascades is focused on obtaining the most probable 

rainfall events as possible. The generated time series should represent probable realizations of 

local rainfall process. Thus, the statistical features of the synthetic rainfall series should be 

similar to the observed ones. 

The first step of the evaluation of the generated synthetic rainfall time series R06s, R15s 

and R25s and RM22s and RM23s originating from the single gauge or set of gauges’ models, 

is based on the studies of probabilities of non-zero rainfall values occurrence P(R>r) in 

synthetic and real datasets. For this purpose, a MATLAB script CCDF calculating the 

complementary cumulative distribution function is implemented and the ability of the 

universal continuous cascades to reproduce cumulative distribution frequency of rainfall is 

assessed.  

The probability distributions of the synthetic time series R06s, R15s and R25s are 

compared with the distributions of the respective observed time series in Figs 7.35÷7.37. The 

same non-zero rainfall distributions for time series R06s, R15s and R25s are drawn on the 

background of similar distributions found for recorded series from all 25 rain gauges of the 

Warsaw network in Figs 7.38÷7.40. All distributions in Figs 7.35÷7.40 are plotted in 

logarithmic scales to highlight the tails of the distributions, most interesting from the point of 

view of extreme values analysis.  
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Figure 7.35. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R06s against the cCDF for observed precipitation time series for Warsaw rain 

gauge R06 

 

 

Figure 7.36. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R15s against the cCDF for observed precipitation time series for Warsaw rain 

gauge R15 
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Figure 7.37. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R25s against the cCDF for observed precipitation time series for Warsaw rain 

gauge R25 

The best agreement between cCDFs for synthetic and observed time series is maintained 

for gauge R25 (Fig. 7.37). Both cCDF curves have quite similar shapes. However, a 

noticeable departure of synthetic vs. observed curve is observed for rainfall intensities 

exceeding 0.04 mm/min. The universal cascade model seems to produce a rainfall series with 

higher temporal rainfall intensities occurring more frequently than in observed time series. 

Whereas, for rainfall intensities less than 0.04 mm/min. an opposite phenomenon is found. 

Frequencies of occurrence of small temporal rainfall intensities in synthetic series (exceeding 

however the minimum boundary level of 0.001 mm, i.e. weighing gauge resolution) are 

obviously lower than for observed time series. Quite similar observations could also be made 

for other two gauges R06 (Fig. 7.35) and R15 (Fig. 7.36). But for these gauges the departure 

of the cCDF for synthetic and observed time series is more visible (especially for gauge R15). 

In addition, the point of both curves intersection is shifted from 0.04 mm/min. to about 0.055 

mm/min. and 0.1 mm/min. in case of gauges R06 and R15 respectively. 

Owning in mind the rather limited size of accessible observational sets and to understand 

better the magnitude of diagnosed differences between cCDFs for synthetic and observed time 

series, distributions of P(R>r) for synthetic series R06s, R15s and R25s are additionally 

compared to distributions produced for all 25 Warsaw rain gauges in Figs 7.38÷7.40.  
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Figure 7.38. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R06s against the cCDFs for observed precipitation time series for all 25 

Warsaw rain gauges 

 

 

Figure 7.39. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R15s against the cCDFs for observed precipitation time series for all 25 

Warsaw rain gauges 
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Figure 7.40. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R25s against the cCDFs for observed precipitation time series for all 25 

Warsaw rain gauges 

It is clear that the noticeable variability of cCDFs is natural inside the gauges distributed 

over the whole area of Warsaw city. In practice, distribution of P(R>r) for synthetic series 

R25s is completely positioned inside the group of Warsaw gauges distributions. The cCDF for 

synthetic series R06s is also very close to the bunch of distributions originating from real 

precipitation observations. Only for very specific gauge R15 located at the airport, 

discrepancies in distributions of P(R>r) for synthetic and real Warsaw gauges distributions 

are more pronounced. It is clear that the universal cascade generator for this gauge does not 

capture well the heavy-tail observed in Warsaw rainfall data.  

Nonetheless, obtained results for all three gauges should be evaluated at least as promising, 

with respect to already published by Molnar and Burlando (2005), Licznar et al. (2011a, 

2011b) distributions of P(R>r) for synthetic series generated by means of canonical and 

microcanonical discrete cascade models. Above mentioned authors reported also the lack of 

an ideal imitation of cCDFs for synthetic vs. observed precipitation series for a majority of 

tested models, despite working in coarser time resolution of only with 5 or 10-minute time 

series and implementing simple cascades, parametrized by numerous factors and capable only 

to disaggregate quasi-daily precipitation totals. 

The evaluation of performance of the universal continuous cascade models for two groups 

of gauges RM23 and RM22, whose parameters are averaged for 23 rain gauges (excluding of 

R15 and R25) and 22 rain gauges (excluding R06, R15 and R25) respectively, is conducted in 

the same way, as for single rain gauges. The creation of these two models for two groups of 
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gauges is guided by the assumption, that exclusion of outlaying rain gauges would allow to 

develop models parametrized by average universal parameters, capable of generating 

synthetic series preserving better statistical properties of precipitations throughout Warsaw. 

The distributions of P(R>r) for synthetic series RM23s are compared to distributions derived 

for all 25 Warsaw rain gauges in Fig. 7.41. As it might have been expected, the elimination of 

specific gauges like R15 and R25 allows to create model for averaged parameters reproducing 

quite well the distributions of non-zero rainfall intensities in synthetic series.  

 

Figure 7.41. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series RM23s against the cCDFs for observed precipitation time series for all 25 

Warsaw rain gauges 

Results presented for synthetic series RM22s in Fig. 7.42 are not only comparable but even 

slightly better than already discussed results for synthetic series R06s. Distributions of P(R>r) 

of synthetic time series RM22s are also very close to the bunch of distributions originating 

from real precipitation series. Overestimation of occurrence frequency for the highest rainfall 

intensities is only apparent. These findings are in logical consequence of the fact that the 

gauge R06 is located in the Warsaw city centre. But it has to be remembered that gauge R06 

displayed simultaneously some outlying tendency diagnosed by clustering analysis. Thus, 

performance of continuous cascade model parametrized for universal parameters average for 

22 gauges (with additional exclusion of gauge R06) is even better. This model is capable of 

generating synthetic series with distributions of P(R>r) close to the bunch of observed 

precipitation distributions, also for a distribution tail, i.e. for highest rainfall intensities values. 
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Figure 7.42. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series RM22s against the cCDFs for observed precipitation time series for all 25 

Warsaw rain gauges 

Results found for models for groups of gauges RM23 and RM22 with respect to analysis of 

cCDFs for synthetic and observed time series should be evaluated as acceptable and satisfying 

the needs of urban hydrology. As suggested by Licznar (2010), some overprediction of high 

intensity rainfall values in synthetic time series is acceptable if the major filed of synthetic 

series application is the hydrodynamic simulation of urban drainage systems, for the purpose 

of their design and hydraulic performance evaluation. 

The second step of the evaluation of synthetic precipitation time series quality is the 

assessment of the rainfall intermittency. It is made using MATLAB script EP0, calculating the 

probability of no-rain occurrence E(p0) for precipitation time series (synthetic and observed) 

across timescales t = 1÷2560 min (≈43 hours). 

The results of E(p0) calculations for synthetic series for single gauges R06s, R15s, R25s 

and for groups of gauges RMS23s and RM22s are shown in Figs 7.43÷7.45, and Fig. 7.46 and 

Fig. 7.47 respectively. 
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Figure 7.43. Comparison of intermittency found for the synthetic time series R06s and for observed 

precipitation time series for all 25 Warsaw rain gauges 

 

 

Figure 7.44. Rainfall intermittency calculated for the synthetic time series R15s against the all the observed 

Warsaw rain gauges 
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Figure 7.45. Rainfall intermittency calculated for the synthetic time series R25s against the all the observed 

Warsaw rain gauges 

 

 

Figure 7.46. Rainfall intermittency calculated for the synthetic time series RM23s against the all the observed 

Warsaw rain gauges 
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Figure 7.47. Rainfall intermittency calculated for the synthetic time series RM22s against the all the observed 

Warsaw rain gauges 

The results plotted for all gauges and groups of gauges in Figs 7.43÷ 7.45, and Fig. 7.46 

and Fig. 7.47 reveal a total lack of compatibility between synthetic and observed precipitation 

time series with respect of rainfall intermittency. The intermittency of rainfall, measured as 

the probability of a zero-rainfall occurrence for synthetic rainfall, is almost reduced to zero on 

all plots with exception of gauge R15. But also in the case of gauge R15 and synthetic time 

series R15s, the probability of a zero rainfall occurrence, even for the shortest time interval of 

1-minute, does not exceed 0.2 and is still almost 5 times smaller than for the observed time 

series. An explanation of these observations is found in Fig. 7.34, presenting the zoomed 

section of synthetic time series dominated by small but still non-zero rainfall intensities. A 

generation of such small precipitation intensity values could be considered as a peculiar 

feature of continuous cascades. Theoretically, a simple ad hoc solution of this error might be 

imposing some boundary rainfall intensity value below which all time series elements should 

be zeroed. This solution has a clear disadvantage of reducing the total precipitation in a series. 

Moreover, it should be not implemented since we are not able to answer the fundamental 

question: to which extent arrival of very small precipitation intensity values in a series could 

be a natural feature for precipitation process, and which are not able to be recorded due to 

gauge resolution limits? 

For these reasons, to correct a synthetic series, a special filtering algorithm FILTR in 

MATLAB has been prepared. The functioning of this filter, at least to some level of 

generality, reflects the functioning of electronic weighing type gauges. The following  
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1-minute precipitation depths in series are accumulated by filter as precipitation in inner 

container of the gauge. At the same time the following 1-minute precipitation depths in a 

series are supplemented by zeros until the accumulated precipitation depth does not exceed 

the resolution of gauge equal to 0.001 mm. In such cases the accumulated precipitation is 

written in the resulting series as 1-minute precipitation depth adjusted to resolution of 0.001 

mm. The remaining depth value less than 0.001 mm is accumulated with next precipitation 

depths in original synthetic series. Obviously, the filtering algorithm FILTR does not change 

the total precipitation depth in a series, and produces precipitation series with non-zero 

rainfall intensities with resolution of 0.001 mm/min. as in the case of the Warsaw gauge 

records. Synthetic precipitation time series postprocessed by the filtering algorithm FILTR are 

afterwards named as R06sf, R15sf, R25sf, RM23sf and RM22sf respectively for analysed 

single gauges and gauges groups. 

One can expect to observe some influence of filtering algorithm FILTR application for 

already discussed probabilities of non-zero rainfall values occurrence P(R>r) in synthetic 

series. In order to assess the magnitude of this influence, the cCDFs are calculated for 

postprocessed synthetic series R06sf, R15sf, R25sf, RM23sf and RM22sf and compared with 

the cCDFs for original synthetic precipitation series as well as recorded precipitation series 

(see Figs 7.48÷7.52). The results obtained for all synthetic series are consistent. They prove 

that proposed filtering algorithm FILTR does not affect the distributions of P(R>r) for 

synthetic series. The only observed modification is manifested by the minimal shift downward 

of cCDFs sections for the smallest boundary values of r below 0.005 mm.  
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Figure 7.48. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R06s and R06sf against the cCDFs for observed precipitation time series for 

all 25 Warsaw rain gauges 

 

 

Figure 7.49. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R15s and R15sf against the cCDFs for observed precipitation time series for 

all 25 Warsaw rain gauges 
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Figure 7.50. The complementary cumulative distribution function (cCDF) calculated for the synthetic 

precipitation time series R25s and R25sf against the cCDFs for observed precipitation time series for 

all 25 Warsaw rain gauges 

 

 

Figure 7.51. The cumulative distribution functions calculated for the synthetic time series RM23s and 

RM23sf after filtering against the cCDF all the observed Warsaw rain gauges. The graphs for data 

before (in blue) and after filtering (in red) almost entirely coincide 
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Figure 7.52. The cumulative distribution functions calculated for the synthetic time series RM22s and 

RM22sf after filtering against the cCDF all the observed Warsaw rain gauges. The graphs for data 

before (in blue) and after filtering (in red) almost entirely coincide 

The effects of developed filtering algorithm FILTR on the preservation of the rainfall 

intermittency in postprocessed synthetic time series could be seen in Figs 7.53÷7.57. Is clear 

that the application of filtering algorithm effectively increases probabilities of no-rain 

occurrence E(p0) in synthetic series across all timescales. Moreover, in postprocessed series  

a natural phenomenon of E(p0) values reduction with increasing time intervals is observed. 

However, for most plots, E(p0) values coincide with probabilities derived for the set of 

precipitation time series recorded by 25 Warsaw gauges only for the shortest and longest time 

interval. The only exception could be noticed for gauge R15 where almost all E(p0) values for 

different time intervals are located among E(p0) values characterizing observed time series by 

the Warsaw gauges. Still, the perfect fit between E(p0) values calculated for synthetic times 

series R15sf and observed time series originating from gauge R15 is not reached. In addition, 

E(p0) calculated for synthetic times series R15sf exceeds respective E(p0) values for observed 

time series. Concluding the discussion of intermittency in postprocessed synthetic time series, 

it should be underlined that the noticeable underestimation of probabilities of no-rain 

occurrence for time intervals at the range of 10 minutes to 640 minutes was also reported by 

Licznar et al. (2011a) for a synthetic time series generated by means of discrete canonical 

cascades models. It seems that only in case of discrete microcanonical cascade models one 

can expect perfect projection of intermittency pattern of observed rainfall series. But it is 

achieved in rather primitive manner, by forcing some certain frequencies of 0/1 or 1/0 breaks 

(empirically estimated for observational series) at following cascade levels. 
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Figure 7.53. Comparison of intermittency found for the synthetic time series R06sf (after filtering) and for 

observed precipitation time series for all 25 Warsaw rain gauges 

 

 

Figure 7.54. Comparison of intermittency found for the synthetic time series R15sf (after filtering) and for 

observed precipitation time series for all 25 Warsaw rain gauges 
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Figure 7.55. Comparison of intermittency found for the synthetic time series R25sf (after filtering) and for 

observed precipitation time series for all 25 Warsaw rain gauges 

 

 

Figure 7.56. Rainfall intermittency calculated for the synthetic time series RM23sf after filtering against the 

all the observed Warsaw rain gauges 
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Figure 7.57. Rainfall intermittency calculated for the synthetic time series RM22sf after filtering against the 

all the observed Warsaw rain gauges 
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8. Summary and final conclusions 

In this dissertation, an attempt to assess the scaling and the intermittency parameters 

variability over urban precipitation field of capital city of Poland, Warsaw, is made based on 

precipitation records on the network of 25 electronic weighing gauges. The assessment is 

based on the fractal and multifractal analysis techniques, not implemented never before for 

such a large rainfall data collection in Poland. For this purpose, 1-minute precipitation year-

round time series recorded from September 2008 to November 2010 were analysed by using 

the following fractal and multifractal methods: spectral density analysis, functional box-

counting method, trace moment method, probability distribution/multiple scaling and double 

trace moment method. The multifractal analysis is conducted for a hierarchy of time scales 

from 1 minute (λ = 16384) to over 11 days (λ = 1) and their results are confronted together 

and interpreted from perspective of electronic weighing gauges functioning. 

Concluding the fractal and multifractal studies, the universal multifractal parameters α, C1 

and H are estimated for the first time for a network of urban gauges in Poland. Subsequently, 

derived universal multifractal parameters are used for taxonomy studies performed with 

application of clustering methods focused on identification of rain gauges displaying 

similarities as well as the outlaying ones. A discussion and interpretation of obtained results 

are conducted on the base of previously published studies concerning variability of the 

Warsaw precipitation field as well as based on an analysis of information about local 

conditions of specific gauges’ exposure.  

In the final part of the research, synthetic precipitation series are generated by means of 

continuous universal random cascade models for the first time in Poland. Cascades generators 

are parameterized by universal parameters derived for specific Warsaw rain gauges or rain 

gauge clusters displaying similarity of multifractal parameters. The generated synthetic 

precipitation time series are subject to statistical evaluation, performed by comparing 

complementary cumulative distribution function (cCDF) and the intermittency (E(p0)) 

calculated for synthetic vs. observed time series. Finally, a special filtering algorithm is 

proposed in order to correct intermittency characteristics of synthetic precipitation time series.  

Based on literature studies and performed complex studies of the Warsaw precipitation 

time series, the following conclusions are formulated: 

1. The 1-minute precipitation time series recorded on the network of 25 rain gauges in 

Warsaw are a 1-dimensional multifractal set. Their proper analysis requires 

application of fractal and multifractal techniques. 
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2. The time structure of the recorded precipitation time series is characterized by a scale-

invariant behaviour, over a wide range of scales, corresponding to time scales from 1 

minute to at least 11 days. Simultaneously simple scaling structure of analysed time 

series is noticeable complicated by the scaling break, detected for scales corresponding 

to times at the range from 30 minutes to 1 hour. 

3. In the analysed precipitation sets, a multifractal first-order phase transformation is 

detected. This statistical feature is characteristic for multifractal processes observed in 

scales higher than the inner homogeneity scale of a process. This observation reveals 

the presence of relevant metrological limitations in recording properly intermittency 

and small scale variability of precipitation intensities by the electronic weighing rain 

gauges installed on the Warsaw network. In addition, evident distortions of the 

codimension functions c(γ) and the moment scaling functions K(q) are originating 

from the rain gauges limited precision at recording the smallest and the highest rainfall 

intensities, as well as from imperfect recording of rapid variations of rainfall 

intensities. To some extent, all these limitations could be explained by the diagnosed 

step response error, typical for electronic weighing type gauges.  

4. The degrees of multifractality α determined for precipitation series recorded by all 25 

Warsaw rain gauges are at the range 0≤α≤1. Thus, point precipitation in Warsaw could 

be considered as a (log) Lévy process with bounded singularities, presenting soft 

behaviour (a dressed multifractal process). 

5. As revealed by cluster analysis of universal multifractal parameters: α, H and C1 set, 

the majority of Warsaw gauges display similarity of multifractal properties for 

recorded rainfall time series. The same analysis showed outlying behavior for gauges 

R06 and R15. Most probably the outlying behavior of these gauges, manifested by 

miscellanies universal multifractal parameters could be at least partly explained by 

untypical locations of measuring devices exposure.  

6. Universal continuous cascades could be used in practice for generating synthetic 

rainfall series of fine temporal resolution of 1-minute in Warsaw. Keeping in mind the 

very close to zero values of parameter H, the generation of synthetic precipitation 

could be realized as for a conservative process and for model parameterization on 

knowledge of only: α and C1 values. 

7. Based on the analysis of synthetic precipitation series analysis, by means of the 

complementary cumulative distribution function (cCDF) of non-zero rainfall values, 

the performance of continuous universal cascade models in preserving variability of 
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temporal rainfall intensities for Warsaw gauges could be rated as at least good for all 

analysed groups of gauges and specific gauges, with the only exception of the outlying 

gauge R15. 

8. Continuous universal cascade models developed for Warsaw gauges are not capable of 

generating synthetic series with intermittency characteristics comparable to observed 

precipitation time series, recorded with limited resolution of 1 mm/min. Developed 

accumulation filtering algorithm FILTR allows for synthetic series postprocessing and 

significantly corrects intermittency of rainfall at synthetic series. Still however the 

probability of zero rain occurrence in postprocessed precipitation time series does not 

fit exactly the same probability values derived for observational time series for all time 

scales. There is a vivid need for future research concerning improvement of 

intermittency preservation at synthetic precipitation series generated by continuous 

universal cascade models 

9. The general results of universal multifractal parameters variability analysis among the 

Warsaw precipitation field, and results of the overall performance evaluation of 

developed universal cascade models at the generation of synthetic precipitation series 

suggest a large potential for the use of these models in urban hydrology. A practical 

possibility of a generation of synthetic rainfall series, representative of almost the 

entire city through a single continuous universal cascade model parametrized by only 

two values and their further use for hydrodynamic drainage systems modelling, should 

be explored more deeply in the future.  
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List of symbols and abbreviations 

Symbols 

𝐸𝛤(𝜔)  – energy spectrum of the multifractal generator Γ (1/f noise) 

A – fractal set of dimension D 

Aλ – sub-set of a given set A observed on a D-dimensional space, at a scale 

resolution λ 

c(q)  – codimension function 

c(𝛾,η) – codimension function of a η-power renormalized process 

C1 – multifractal parameter - degree of non-homogeneity of a process; singularity 

of the mean of a process 

cA – (fractal) codimension of a given set A 

D – fractal dimension 

D(q) – dimension function for moments q of the density of a process 

D(𝛾)  – fractal dimension function defined for the singularities 𝛾  
DA – fractal dimension of a given set A 

E(p0) – intermittency of rainfall  

f – frequency; for temporal processes f = 1/t 

fc – critical Nyquist frequency 

H – multifractal parameter - degree of non-conservation of a process 

K(q) – moments scaling exponent function 

K(q,η) – double-moment scaling exponent function proper to a η-power renormalized 

process (for η ≠ 1). 

Kλ(q) – second characteristic function of generator Γλ 

L – size of non-overlapping box; L ≈ (1/λ) 

m – harmonic number in DTF 

N – Total integer sample number in DTF 

n – sample number in DTF 

NA – number of non-overlapping objects necessary to cover a given set A 

ND – number of D-dimensional objects necessary to cover the entire space 

containing the given set A 

Ns – number of self-similar objects created by dividing the original image by the 

scale factor λ 

Nλ – number of non-overlapping boxes of size L 

Nλ(𝛾)  – number of n-dimensional boxes of size L satisfying 𝜀λ≥λ𝛾 

P(f)  – power energy of the energy spectrum 

P(r)  – probability of occurrence of rain 

q – order of statistical moment 

qD – critical order moment for divergence of statistical moments 

qmax – critical moment defined as qmax = min(qs, qD) 

qmin – critical moment of the exponent function K(q), with 0<qmin<1 

qs – critical order of the statistical moment caused by undesampling 

R – Number of rain gauge, for R = 01,…,25 

RMs – synthetic time series for group of rain gauges’ parameters, for R = 22 and 23 

Rsf – synthetic time series after filtering, for R = 01,…,25 

Thr – Intensity threshold 

X(m)  – discrete harmonic time series continuous in frequency domain 

x(n)  – discrete time series continuous in time domain 
〈… 〉  – ensemble average 
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∏𝜆΄(𝐴𝜆)  – flux density over the sub-set Aλ for λ΄>λ 

α – multifractal parameter - degree of multifractality; the Lévy index 

α΄ – parameter related to the Lévy index by relation 1/α + 1/α΄ = 1 

β – spectral exponent 

Γ  – generator of a multifractal process 

Δ – time resolution of the registered data 

η – second moment used to renormalize a process 

λ – scale ratio; the quotient between the largest scale of observation and the 

homogeneity scale 

λ΄ – the finest known scale resolution of a process  

𝛾 – order of singularity of the intensity of a process 

𝜀λ – intensity (or density) of a multifractal process at the scale ratio λ 

𝜀λ – (non-dimensional) intensity of a process on a scale of resolution λ 

𝜀λ,i – all (non-dimensional) intensity of a process observed on a D-dimensional 

space, at a scale resolution λ, for i = 1,..., λD 

𝜀λ’ – intensity of ‘inner’ scales, component of 𝜀λ of the sub-set Aλ 

𝜀λ’ 
(η) – η-power renormalized intensity of a process on fines scale of resolution λ΄ 

Γλ  – multifractal generator of the density 𝜀λ of a process; Γλ = 𝑙𝑛(𝜀λ) 

 

 

Abbreviations 

 

cCDF – complementary cumulative distribution function 

CDF – cumulative distribution function 

DFT – discrete Fourier transform 

DTM – double trace moment method 

FFT – fast Fourier transform 

PDMS – probability distribution/multiple scaling method 

PSD – power spectral density analysis 

RSL – roughness sublayer 

TM – trace moment method 

UCL – urban canopy layer 
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LOCATION OF THE WARSAW RAIN GAUGE NETWORK 

The rain gauge network consists in 25 rain gauges (here called R01, R02, …, R25). The black arrows 

indicate the distance from the closest surrounding objects (possible obstacles due to which height 

precipitation shadow effect may occur). The numbers in rectangles show the height of the obstacles 

above terrain level. 

 

 

Figure I.1. Location site of rain gauge R01 of the Warsaw rain gauge network (in Wóycickiego St.) 
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Figure I.2. Location site of rain gauge R02 of the Warsaw rain gauge network (in Rudzka St.) 
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 6,5 m 
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Figure I.3. Location site of rain gauge R03 of the Warsaw rain gauge network (in Arkuszowa St.) 
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Figure I.4. Location site of rain gauge R04 of the Warsaw rain gauge network (in Górczewska St.) 
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Figure I.5. Location site of rain gauge R05 of the Warsaw rain gauge network (in Ostroroga St.) 
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Figure I.6. Location site of rain gauge R06 of the Warsaw rain gauge network (in Dobra/Karowa St.) 

 

R06 

 12 m 

 12 m 



 

[7] 

 

 

Figure I.7. Location site of rain gauge R07 of the Warsaw rain gauge network (in Koszykowa/Krzywickiego St.) 
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Figure I.8. Location site of rain gauge R08 of the Warsaw rain gauge network (in Jerozolimskie Blvd/P. Tysiąclecia) 
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Figure I.9. Location site of rain gauge R09 of the Warsaw rain gauge network (in Chroscickiego/Obywatelska St) 
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 3,5 m 
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Figure I.10. Location site of rain gauge R10 of the Warsaw rain gauge network (in Dzwonkowa St.) 
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Figure I.11. Location site of rain gauge R11 of the Warsaw rain gauge network (in Grójecka/Kotoryńskiego St.) 
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Figure I.12. Location site of rain gauge R12 of the Warsaw rain gauge network (in Zaruskiego/Czerniakowska St.) 
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Figure I.13. Location site of rain gauge R13 of the Warsaw rain gauge network (in Powsinska/Limanowskiego St.) 
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Figure I.14. Location site of rain gauge R14 of the Warsaw rain gauge network (in Ken/Dolina Służewiecka St.) 
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Figure I.15. Location site of rain gauge R15 of the Warsaw rain gauge network (in Wyrazowa St.) 
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Figure I.16. Location site of rain gauge R16 of the Warsaw rain gauge network (in Przyczókowa/Vougla St.) 
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Figure I.17. Location site of rain gauge R17 of the Warsaw rain gauge network (in Stryjeńskich St.) 
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Figure I.18. Location site of rain gauge R18 of the Warsaw rain gauge network (in Mehoffera/Strumykowa St.) 
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Figure I.19. Location site of rain gauge R19 of the Warsaw rain gauge network (in Borecka St. (Białołęka)) 
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Figure I.20. Location site of rain gauge R20 of the Warsaw rain gauge network (in Rolanda/Rajmunda St.) 
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Figure I.21. Location site of rain gauge R21 of the Warsaw rain gauge network (in Waszyngtona St.) 
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Figure I.22. Location site of rain gauge R22 of the Warsaw rain gauge network (in Dzielnicowa St.) 
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Figure I.23. Location site of rain gauge R23 of the Warsaw rain gauge network (in Chełmżyńska/Gwarków St.) 
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Figure I.24. Location site of rain gauge R24 of the Warsaw rain gauge network (in Patriotów/Pajęcza St.) 

 

R24 



 

[25] 

 

 

Figure I.25. Location site of rain gauge R25 of the Warsaw rain gauge network (in Bysławska St.) 
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FUNCTIONAL BOX-COUNTING PLOTS 

 

Section A 

Functional box-counting log-log plots obtained with 1-minute rainfall from Warsaw, from 2008 to 

2010. A box of unit-size corresponds to 1 minutes. The plots display time scales from 1 minute up to 

over 2 years for four different intensity thresholds, that is: 0, 0.04, 0.08 and 0.16 mm/min. The dotted 

line underlines the linear relationship between the analyzed parameters. 

 

 

Figure II.1. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R01 
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Figure II.2. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R02 

 

 

Figure II.3. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R03 
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Figure II.4. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R04 

 

 

Figure II.5. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R05 
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Figure II.6. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R07 

 

 

Figure II.7. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R08 
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 Figure II.8. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R09 

 

 

Figure II.9. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R10 
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Figure II.10. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R11 

 

 

Figure II.11. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R12 
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Figure II.12. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R13 

 

 

Figure II.13. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R14 
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Figure II.14. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R16 

 

 

Figure II.15. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R17 
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Figure II.16. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R18 

 

 

Figure II.17. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R19 

 

 



 

[35] 

 

 

Figure II.18. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R20 

 

 

Figure II.19. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R21 
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Figure II.20. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R22 

 

 

Figure II.21. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R23 
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Figure II.22. Results of functional box-counting method for 1-minute rainfall time-series from Warsaw, for rain gauge R24 
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Section B 

Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size 

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0 mm/min. 

Table  II.1. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0 mm/min 

n R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 

1 62982 65056 75278 67622 40764 62207 63054 60302 46306 66844 68021 74929 54722 84808 39440 75133 66358 59848 57568 65007 67620 60116 59272 52723 61888 

2 33987 35369 40626 36174 22191 33536 33934 32689 24812 35972 36914 40336 29759 46396 21564 40484 36032 32402 31126 34942 36214 32345 32333 28094 33039 

4 18065 18966 21522 19020 11901 17786 18075 17493 13093 19045 19603 21429 15783 24885 11658 21334 19104 17384 16607 18462 19116 17093 17361 14705 17299 

8 9792 10353 11559 10138 6478 9556 9776 9509 7000 10219 10517 11558 8478 13637 6428 11391 10306 9524 8987 9856 10279 9137 9449 7797 9180 

16 5494 5934 6462 5612 3708 5332 5530 5367 3904 5708 5902 6468 4713 7830 3754 6300 5786 5455 5085 5474 5783 5068 5395 4266 5019 

32 3270 3596 3854 3283 2279 3162 3308 3167 2273 3356 3504 3811 2758 4790 2340 3662 3441 3325 3046 3204 3423 2950 3235 2465 2881 

64 2077 2312 2444 2040 1487 2019 2111 1977 1413 2110 2169 2375 1717 3093 1552 2281 2175 2169 1944 2013 2184 1843 2080 1499 1747 

128 1385 1584 1638 1350 1029 1376 1423 1315 913 1407 1420 1559 1158 2093 1097 1504 1459 1501 1310 1331 1475 1216 1433 980 1142 

256 971 1131 1145 928 728 954 1007 899 623 978 952 1065 815 1470 792 1052 1026 1084 932 931 1043 835 1021 672 767 

512 706 811 829 671 546 690 735 649 456 713 682 752 592 1046 587 757 747 812 695 672 758 598 746 479 539 

1024 523 591 596 491 395 503 527 463 331 518 483 532 434 719 438 543 541 601 518 495 552 433 547 351 386 

2048 361 385 395 341 271 338 344 314 234 359 324 358 307 456 305 370 368 406 359 338 366 303 360 243 261 

4096 229 239 237 222 167 216 215 198 147 231 202 230 196 266 201 232 228 247 226 212 220 196 226 157 163 

8192 136 131 130 131 101 125 122 117 89 133 121 132 117 142 121 132 134 141 132 125 123 119 128 90 95 

16384 70 68 68 70 54 65 63 64 50 70 65 70 63 71 66 70 70 71 70 66 66 64 67 47 52 

32768 35 35 34 35 29 33 32 33 26 35 33 35 32 35 33 35 35 35 35 33 35 34 34 25 27 

65536 17 17 17 17 15 17 16 16 13 17 17 17 16 17 16 17 17 17 17 17 17 17 17 12 15 

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8 

262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 

524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure II.23. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0 mm/min 
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size 

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.04 mm/min. 

 

Table  II.2. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.04 mm/min 

n R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 

1 6483 6088 7095 6614 3895 6116 6670 6827 4768 6952 6378 6998 6192 7006 6073 7027 7226 6417 6287 6627 7156 6433 6149 6142 4225 

2 4027 3883 4457 4113 2477 3840 4245 4308 2950 4281 3989 4325 3835 4358 3687 4409 4486 3989 3890 4128 4466 4021 3817 3795 2720 

4 2567 2570 2874 2645 1630 2459 2774 2834 1889 2690 2536 2715 2412 2756 2303 2815 2852 2599 2443 2603 2882 2542 2424 2356 1768 

8 1703 1795 1938 1761 1134 1639 1881 1935 1258 1771 1680 1787 1591 1835 1498 1871 1893 1774 1606 1712 1940 1698 1601 1530 1210 

16 1205 1299 1386 1234 823 1158 1333 1364 879 1239 1167 1230 1111 1269 1034 1309 1322 1279 1114 1192 1359 1195 1115 1054 877 

32 898 973 1048 911 630 865 981 997 654 903 842 888 810 936 745 960 976 964 805 877 988 873 818 764 661 

64 677 755 797 688 489 665 746 741 504 678 628 662 614 712 565 744 740 753 618 667 758 659 616 571 510 

128 541 599 607 532 391 528 597 557 395 530 492 512 485 550 432 581 567 601 488 523 597 511 480 439 408 

256 435 491 487 439 318 425 480 436 323 427 391 416 404 442 334 465 452 481 388 427 483 410 393 344 328 

512 364 408 399 360 274 356 390 357 261 360 320 338 328 367 272 373 364 402 323 356 388 336 327 277 262 

1024 301 339 331 300 219 281 316 284 210 291 260 270 264 303 222 304 290 330 267 291 299 272 270 228 209 

2048 230 259 249 228 168 223 239 213 166 232 202 209 202 238 174 238 222 261 215 216 231 214 210 178 167 

4096 170 184 182 169 117 161 168 158 115 171 146 154 149 167 132 174 163 191 160 162 167 157 160 129 121 

8192 113 113 113 109 80 109 108 102 79 114 99 107 99 110 95 112 107 123 110 109 107 103 107 84 85 

16384 68 66 66 64 49 64 61 59 47 66 60 64 57 65 56 65 64 69 64 64 63 59 62 46 52 

32768 35 35 34 34 28 33 32 32 25 35 33 35 32 35 33 35 35 35 35 33 35 32 34 25 27 

65536 17 17 17 17 15 17 16 16 13 17 17 17 16 17 16 17 17 17 17 17 17 16 17 12 15 

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8 

262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 

524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure II.24. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.04 mm/min 
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size 

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.08 mm/min. 

 

Table  II.3. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.08 mm/min 

n R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 

1 2268 2088 2412 2396 1397 2136 2394 2536 1800 2454 2431 2402 2404 2567 2414 2453 2571 2188 2085 2253 2307 2195 2142 2111 1238 

2 1400 1322 1488 1493 888 1335 1501 1549 1097 1496 1486 1493 1461 1582 1524 1529 1599 1366 1312 1396 1417 1372 1341 1321 792 

4 918 886 975 964 590 883 992 1007 680 979 966 990 942 1035 1027 1023 1035 899 869 905 941 896 884 867 520 

8 621 636 699 668 420 637 703 708 459 674 669 691 642 727 737 714 716 639 613 624 663 622 620 593 369 

16 467 480 530 494 319 470 533 522 328 490 500 509 475 534 567 520 530 478 447 456 500 475 464 431 284 

32 372 378 416 371 256 364 412 403 263 379 395 389 365 409 458 398 416 369 347 360 378 371 346 323 218 

64 301 309 334 308 214 289 324 328 213 303 321 312 297 330 380 316 334 297 283 299 305 304 276 263 184 

128 259 258 282 250 182 249 272 271 178 249 265 262 248 276 318 265 276 247 236 249 260 255 224 219 164 

256 226 220 240 218 157 207 233 232 156 213 224 224 220 234 265 223 226 217 200 217 226 222 201 190 145 

512 203 196 220 191 138 180 200 200 135 188 195 193 190 204 228 191 202 198 175 186 195 193 176 162 125 

1024 180 175 194 171 122 156 179 171 114 166 170 163 167 181 192 167 171 176 155 160 168 170 158 141 113 

2048 148 145 155 139 99 128 147 141 97 136 139 134 138 148 152 140 141 147 131 128 139 140 125 120 95 

4096 114 119 120 110 80 102 110 112 78 108 113 106 106 111 115 110 106 115 105 102 104 106 101 94 75 

8192 83 85 85 79 58 81 81 82 55 77 82 77 80 80 81 77 77 84 78 76 77 75 74 68 57 

16384 53 53 56 49 39 49 48 53 34 49 53 48 49 48 49 49 46 53 48 50 49 48 47 39 39 

32768 32 32 32 32 25 31 30 31 22 31 32 30 31 30 31 30 28 32 30 29 31 31 30 24 24 

65536 17 17 17 17 14 17 16 16 13 17 16 16 16 17 16 16 17 17 17 16 17 16 17 12 15 

131072 8 8 8 8 7 8 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8 

262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 

524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure II.25. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.08 mm/min 
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Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010. A box of unit-size 

corresponds to 1 minutes. The log-log plots display time scales from 1 minute up to over 2 years for intensity threshold equal to 0.16 mm/min. 

 

Table  II.4. Results of functional box-counting method obtained with 1-minute rainfall for 25 rain gauges in Warsaw, from 2008 to 2010 and intensity threshold 0.16 mm/min 

n R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 

1 798 774 882 861 479 781 894 950 695 936 946 870 970 991 944 919 955 709 698 777 824 848 756 751 394 

2 497 501 554 537 305 495 554 597 434 572 589 548 589 607 598 566 582 455 454 489 512 536 461 466 249 

4 336 341 364 360 212 331 372 398 286 376 394 368 378 398 409 364 380 314 319 324 337 366 303 308 164 

8 241 249 266 250 159 245 261 297 198 260 281 264 272 275 302 264 267 238 242 243 244 262 219 222 120 

16 188 200 208 189 126 184 196 226 145 197 220 203 206 205 240 198 210 196 186 183 190 207 175 171 100 

32 157 169 164 150 109 150 157 189 118 160 175 169 168 160 203 164 171 155 155 149 160 172 141 139 85 

64 138 147 139 133 94 131 128 156 103 136 145 138 142 136 173 140 144 133 141 127 136 143 124 112 72 

128 126 135 124 112 86 116 112 135 90 114 130 122 124 120 160 126 127 120 126 114 123 128 110 99 65 

256 116 122 112 103 79 102 100 123 81 103 115 112 113 109 141 116 112 111 115 107 108 115 102 95 62 

512 111 114 107 98 77 94 93 113 74 95 109 100 104 98 132 106 104 104 106 101 99 107 95 83 58 

1024 103 105 102 92 71 84 89 106 69 89 101 91 95 92 119 95 93 98 99 94 88 99 88 74 55 

2048 91 89 84 81 63 74 82 94 61 79 90 78 83 80 98 83 77 87 85 81 81 88 75 66 48 

4096 80 79 73 68 53 62 68 79 51 68 73 65 68 68 82 73 64 74 69 69 67 71 60 52 39 

8192 62 60 56 55 42 49 52 63 39 54 57 54 58 54 63 56 51 57 54 55 54 56 47 41 33 

16384 40 39 37 34 29 32 31 40 24 34 38 35 39 34 40 35 33 37 35 36 36 36 31 26 22 

32768 24 25 24 23 21 23 22 28 16 21 24 23 25 22 26 24 23 25 23 23 25 24 21 17 15 

65536 14 15 13 13 14 15 13 15 10 12 15 13 15 13 14 14 14 14 14 14 15 14 13 9 10 

131072 8 8 8 7 7 8 7 7 6 7 8 8 8 6 8 8 8 8 8 7 8 8 8 5 6 

262144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 

524288 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1048576 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure II.26. Log-log plot of functional box-counting method for 1-minute rainfall time-series from Warsaw, for all the 25 rain gauges, and intensity threshold 0.16 mm/min
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ENERGY SPECTRA COMPUTED BY FFT METHOD 

 

Section A 

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded from September 

2008 to November 2010. The scaling exponent is calculated for two different scaling regimes. 

 

 

Figure III.1. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R01 
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Figure III.2. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R02 

 

 

Figure III.3. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R03 
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Figure III.4. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R04 

 

 

Figure III.5. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R05 
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Figure III.6. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R07 

 

 

Figure III.7. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R08 
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Figure III.8. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R09 

 

 

Figure III.9. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, for 

rain gauge R10 
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Figure III.10. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R11 

 

 

Figure III.11. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R12 
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Figure III.12. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R13 

 

 

Figure III.13. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R14 
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Figure III.14. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R16 

 

 

Figure III.15. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R17 
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Figure III.16. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R18 

 

 

Figure III.17. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R19 
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Figure III.18. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R20 

 

 

Figure III.19. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R21 
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Figure III.20. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R22 

 

 

Figure III.21. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R23 
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Figure III.22. Energy spectrum for 1-minute rainfall time-series from Warsaw, from September 2008 to November 2010, 

for rain gauge R24 
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Section B 

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded in 2009. The 

spectra are computed for data divided into summer (b) and winter (c) season. The intersection of 

trend lines of two scaling regimes gives the break point. 

 

 

 

Figure III.23. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R01 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.24. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R02 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.25. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R03 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.26. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R04 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.27. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R05 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.28. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R07 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.29. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R08 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.30. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R09 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.31. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R10 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.32. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R11 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.33. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R12 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.34. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R13 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.35. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R14 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.36. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R16 in 2009. Summer season 

(upper graph) and winter season (lower graph) 

 



 

[72] 

 

 

 

Figure III.37. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R17 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.38. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R18 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.39. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R19 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.40. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R20 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.41. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R21 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.42. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R22 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.43. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R23 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Figure III.44. Energy spectra for 1-minute rainfall time-series from Warsaw, for rain gauge R24 in 2009. Summer season 

(upper graph) and winter season (lower graph) 
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Section C 

Energy spectra obtained for 1-minute rainfall time-series from Warsaw, recorded from September 

2008 to November 2010. The scaling exponent is calculated for all the recorded period. 

 

 

Figure III.45. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R01 with the overall slope 

 

 

Figure III.46. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R02 with the overall slope 
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Figure III.47. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R03 with the overall slope 

 

 

 

Figure III.48. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R04 with the overall slope 
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Figure III.49. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R05 with the overall slope 

 

 

 

Figure III.50. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R07 with the overall slope 
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Figure III.51. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R08 with the overall slope 

 

 

 

Figure III.52. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R09 with the overall slope 
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Figure III.53. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R10 with the overall slope 

 

 

 

Figure III.54. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R11 with the overall slope 
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Figure III.55. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R12 with the overall slope 

 

 

 

Figure III.56. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R13 with the overall slope 
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Figure III.57. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R14 with the overall slope 

 

 

 

Figure III.58. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R16 with the overall slope 
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Figure III.59. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R17 with the overall slope 

 

 

 

Figure III.60. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R18 with the overall slope 
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Figure III.61. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R19 with the overall slope 

 

 

 

Figure III.62. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R20 with the overall slope 
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Figure III.63. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R21 with the overall slope 

 

 

 

Figure III.64. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R22 with the overall slope 
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Figure III.65. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R23 with the overall slope 

 

 

 

Figure III.66. Energy spectrum for 1-minute rainfall time-series from Warsaw, for rain gauge R24 with the overall slope 
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TRACE MOMENT METHOD PLOTS 

 

Section A 

Log-log plots of the relation between the average qth order moments of the rainfall intensity ελ and the 

scale parameter λ obtained by the trace moment method for 1-minute rainfall from Warsaw, from 2008 

to 2010. The analysis is performed for time scales from 1 minute up to 16384 minutes (11.4 days) for 

order moments q smaller than 1 (on the left) and greater than 1 (on the right side). 

 

 

Figure IV.1. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R01, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.2. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R02, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.3. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R03, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.4. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R04, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.5. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R05, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.6. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R07, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.7. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R08, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.8. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R09, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.9. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R10, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.10. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R11, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.11. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R12, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.12. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R13, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.13. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R14, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.14. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R16, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.15. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R17, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.16. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R18, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.17. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R19, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.18. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R20, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.19. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R21, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.20. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R22, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.21. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R23, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.22. Log-log plot of the mean q moments of the rainfall intensity ελ against the scale coefficient λ for 1-minute 

precipitation data series from Warsaw rain gauge R24, for q<1 (on left) and for q>1 (on right). The time scales range 

from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Section B 

Empirical moments scaling function plots obtained by the trace moment method for 1-minute rainfall 

from Warsaw, from 2008 to 2010, for time scales from 1 minute up to 16384 minutes (11.4 days). 

 

Figure IV.23. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R01 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.24. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R02 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.25. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R03 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.26. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R04 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.27. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R05 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

 

Figure IV.28. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R07 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.29. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R08 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.30. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R09 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.31. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R10 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.32. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R11 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.33. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R12 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.34. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R13 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.35. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R14 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

 

Figure IV.36. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R16 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.37. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R17 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.38. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R18 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.39. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R19 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.40. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R20 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.41. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R21 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.42. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R22 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure IV.43. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R23 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure IV.44. The empirical scaling moment function log-log plot obtained for 1-minute precipitation data series from 

Warsaw rain gauge R24 for time scales from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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PROBABILITY DISTRIBUTION/MULTIPLE SCALING METHOD PLOTS 

 

Section A 

Log-log plots of the probability of exceeding rainfall-intensity levels for different values of singularity 

γ relation with scale parameter λ, obtained for the 1-minute precipitation intensity time-series from 

Warsaw, from 2008 to 2010.  

The graphs refer only to sample singularity orders γ (to be read in the legend). The dotted line in the 

plots underlines the almost exact linear fitting for the specific case of γ = 0.4. 

 

Figure V.1. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R01. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.2. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R02. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.3. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R03. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.4. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R04. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.5. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R05. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 



 

[117] 

 

 

Figure V.6. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R07. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.7. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R08. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.8. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R09. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.9. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R10. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.10. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R11. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.11. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R12. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.12. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R13. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.13. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R14. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.14. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R16. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.15. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R17. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.16. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R18. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.17. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R19. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.18. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R20. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.19. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R21. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.20. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R22. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 

 

 

Figure V.21. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R23. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Figure V.22. Log-log plot of the probability of exceeding rainfall-intensity levels for sample values of singularity γ relation 

against scale parameter λ, obtained for 1-minute precipitation data series from Warsaw rain gauge R24. The time 

scales range from λ = 16384 (1 minute) to λ = 1 (11.4 days) 
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Section B 

Empirical codimension function plots obtained for the 1-minute rainfall intensity time-series from Warsaw, from 2008 to 2010, for time scales 

from λ = 16384 (1 min.) up to λ = 1 (16384 min. = 11.4 days). For singularity orders, γ>γD, the fitting lines (blue lines in figures) and their 

equations are visible on the graphs. 

 

Figure V.23. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R01 and R02, for time scales from  

1 minute 11.4 days 
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Figure V.24. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R03, R04 and R05, for time scales from  

1 minute 11.4 days 
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Figure V.25. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R07, R08 and R09, for time scales from  

1 minute 11.4 days 
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Figure V.26. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R10, R11 and R12, for time scales from  

1 minute 11.4 days 
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Figure V.27. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R13, R14 and R16, for time scales from  

1 minute 11.4 days 
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Figure V.28. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R17, R18 and R19, for time scales from  

1 minute 11.4 days 



 

[132] 

 

 

Figure V.29. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R20, R21 and R22, for time scales from  

1 minute 11.4 days 
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Figure V.30. Empirical codimension function (dotted line) obtained for 1-minute precipitation data series from Warsaw rain gauge R23 and R24, for time scales from  

1 minute 11.4 days 
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DOUBLE TRACE MOMENT METHOD RESULTS 

 

Section A 

Plots of the relation between log(|K(q,η|) and log(η) for selected moments order q, obtained for the 1-

minute rainfall intensity time-series from Warsaw, from 2008 to 2010, for time scales from λ = 16384 

(1 min.) up to λ = 1 (16384 min. = 11,4 days). 

 

 

Figure VI.1. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R01 
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Figure VI.2. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R02 

 

 

 

Figure VI.3. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R03 
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Figure VI.4. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R04 

 

 

Figure VI.5. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R05 
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Figure VI.6. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R07 

 

 

 

Figure VI.7. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R08 
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Figure VI.8. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R09 

 

 

 

Figure VI.9. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation data 

series from Warsaw rain gauge R10 
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Figure VI.10. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R11 

 

 

 

Figure VI.11. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R12 
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Figure VI.12. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R13 

 

 

 

Figure VI.13. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R14 
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Figure VI.14. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R16 

 

 

Figure VI.15. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R17 
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Figure VI.16. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R18 

 

 

Figure VI.17. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R19 
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Figure VI.18. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R20 

 

 

Figure VI.19. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R21 
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Figure VI.20. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R22 

 

 

Figure VI.21. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R23 
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Figure VI.22. DTM plots of log|K(q,η)| against log(η) for selected order moments q obtained for 1-minute precipitation 

data series from Warsaw rain gauge R24 
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Section B 

Critical moments qmin and qmax estimated for plots breaks from the graphs presented in Section A, and 

below, the Lévy index α and the mean values of the codimension C1 for selected moments order q. 

 

Table VI.1a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R01 

R1 

Curve for q 
Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.1 1.26 1.13 0.5 3.16 2.85 
1.10 0.0 1.00 1.10 0.4 2.51 2.76 
1.20 0.0 1.00 1.20 0.4 2.51 3.01 
1.30 0.0 1.00 1.30 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 

1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.1 0.79 1.27 0.3 2.00 3.19 
1.70 -0.1 0.79 1.35 0.3 2.00 3.39 
1.80 -0.1 0.79 1.43 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.2 0.63 1.33 0.2 1.58 3.33 

Average 1.24 Average 3.00 
Standard deviation 0.10 Standard deviation 0.24 

 

 

Table VI.1b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R01 

R1 

Curve for q K(q,1) α C1 

1.10 -1.387 0.834 0.394 
1.20 -1.074 0.816 0.392 
1.30 -0.885 0.792 0.392 
1.40 -0.748 0.825 0.390 
1.50 -0.639 0.820 0.392 
1.60 -0.548 0.811 0.394 
1.70 -0.469 0.799 0.397 
1.80 -0.401 0.840 0.394 
1.90 -0.339 0.761 0.405 
2.00 -0.284 0.760 0.407 
2.10 -0.234 0.757 0.409 

Average 0.801 0.397 
Standard deviation 0.030 0.007 
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Table VI.2a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R02 

R2 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.4 2.51 3.27 
1.40 -0.2 0.63 0.88 0.4 2.51 3.52 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.01 Average 3.17 

Standard deviation 0.10 Standard deviation 0.26 

 

 

Table VI.2b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R02 

R2 

Curve for q K(q,1) α C1 

1.10 -1.390 0.828 0.391 
1.20 -1.076 0.821 0.390 
1.30 -0.886 0.809 0.391 
1.40 -0.747 0.748 0.397 
1.50 -0.636 0.797 0.396 
1.60 -0.543 0.796 0.399 
1.70 -0.464 0.791 0.403 
1.80 -0.394 0.784 0.407 
1.90 -0.331 0.818 0.405 
2.00 -0.275 0.724 0.420 
2.10 -0.225 0.726 0.423 

Average 0.785 0.402 
Standard deviation 0.037 0.011 
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Table VI.3a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R03 

R3 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.4 2.51 3.27 
1.40 -0.2 0.63 0.88 0.4 2.51 3.52 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.3 2.00 3.79 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.01 Average 3.24 

Standard deviation 0.10 Standard deviation 0.31 

 

 

Table VI.3b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R03 

R3 

Curve for q K(q,1) α C1 

1.10 -1.405 0.856 0.378 
1.20 -1.090 0.853 0.376 
1.30 -0.900 0.844 0.377 
1.40 -0.761 0.778 0.382 
1.50 -0.651 0.819 0.381 
1.60 -0.558 0.820 0.384 
1.70 -0.478 0.818 0.387 
1.80 -0.408 0.812 0.390 
1.90 -0.345 0.805 0.394 
2.00 -0.289 0.742 0.405 
2.10 -0.238 0.745 0.407 

Average 0.808 0.387 
Standard deviation 0.039 0.011 
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Table VI.4a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R04 

R4 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.4 2.51 3.27 
1.40 -0.1 0.79 1.11 0.4 2.51 3.52 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.3 0.50 0.95 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.00 Average 3.17 

Standard deviation 0.08 Standard deviation 0.26 

 

 

Table VI.4b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R04. 

R4 

Curve for q K(q,1) α C1 

1.10 -1.412 0.689 0.375 
1.20 -1.101 0.692 0.372 
1.30 -0.915 0.690 0.372 
1.40 -0.779 0.683 0.372 
1.50 -0.672 0.652 0.375 
1.60 -0.583 0.657 0.376 
1.70 -0.507 0.658 0.377 
1.80 -0.440 0.657 0.379 
1.90 -0.380 0.579 0.390 
2.00 -0.326 0.586 0.392 
2.10 -0.277 0.591 0.393 

Average 0.648 0.379 
Standard deviation 0.043 0.008 
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Table VI.5a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R05 

R5 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 -0.1 0.79 0.71 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.2 0.63 0.76 0.4 2.51 3.01 
1.30 -0.2 0.63 0.82 0.4 2.51 3.27 
1.40 -0.2 0.63 0.88 0.4 2.51 3.52 
1.50 -0.2 0.63 0.95 0.4 2.51 3.77 
1.60 -0.2 0.63 1.01 0.4 2.51 4.02 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.3 0.50 0.90 0.3 2.00 3.59 
1.90 -0.3 0.50 0.95 0.3 2.00 3.79 
2.00 -0.3 0.50 1.00 0.3 2.00 3.99 
2.10 -0.3 0.50 1.05 0.3 2.00 4.19 

Average 0.92 Average 3.51 

Standard deviation 0.11 Standard deviation 0.47 

 

 

Table VI. 5b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R05 

R5 

Curve for q K(q,1) α C1 

1.10 -1.370 0.833 0.410 
1.20 -1.057 0.754 0.410 
1.30 -0.869 0.762 0.409 
1.40 -0.731 0.766 0.410 
1.50 -0.622 0.766 0.412 
1.60 -0.530 0.764 0.414 
1.70 -0.452 0.796 0.413 
1.80 -0.382 0.713 0.426 
1.90 -0.321 0.717 0.429 
2.00 -0.265 0.719 0.431 
2.10 -0.214 0.719 0.434 

Average 0.755 0.418 
Standard deviation 0.037 0.010 

 

 

 

  



 

[151] 

 

Table VI.7a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R07 

R7 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.02 Average 2.77 

Standard deviation 0.10 Standard deviation 0.22 

 

 

Table VI.7b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R07 

R7 

Curve for q K(q,1) α C1 

1.10 -1.396 0.740 0.388 
1.20 -1.081 0.809 0.386 
1.30 -0.891 0.804 0.387 
1.40 -0.752 0.792 0.389 
1.50 -0.642 0.725 0.396 
1.60 -0.551 0.755 0.396 
1.70 -0.472 0.756 0.399 
1.80 -0.403 0.753 0.401 
1.90 -0.342 0.747 0.404 
2.00 -0.288 0.669 0.416 
2.10 -0.238 0.658 0.420 

Average 0.746 0.398 
Standard deviation 0.049 0.011 

 

 

 

 

 

 

 

 

  



 

[152] 

 

Table VI.8a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R08 

R8 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.3 2.00 3.79 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.02 Average 3.12 

Standard deviation 0.10 Standard deviation 0.36 

 

 

Table VI.8b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R08 

R8 

Curve for q K(q,1) α C1 

1.10 -1.399 0.726 0.386 
1.20 -1.086 0.723 0.385 
1.30 -0.898 0.715 0.385 
1.40 -0.761 0.766 0.383 
1.50 -0.653 0.697 0.389 
1.60 -0.562 0.698 0.391 
1.70 -0.485 0.696 0.393 
1.80 -0.417 0.691 0.396 
1.90 -0.357 0.685 0.398 
2.00 -0.303 0.636 0.407 
2.10 -0.253 0.639 0.408 

Average 0.697 0.393 
Standard deviation 0.037 0.009 

 

 

 

  



 

[153] 

 

Table VI.9a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R09 

R9 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.1 1.26 2.52 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.02 Average 2.72 

Standard deviation 0.10 Standard deviation 0.19 

 

 

Table VI.9b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R09 

R9 

Curve for q K(q,1) α C1 

1.10 -1.397 0.745 0.387 
1.20 -1.084 0.789 0.384 
1.30 -0.895 0.792 0.384 
1.40 -0.757 0.788 0.385 
1.50 -0.648 0.719 0.391 
1.60 -0.557 0.728 0.393 
1.70 -0.479 0.734 0.394 
1.80 -0.411 0.736 0.396 
1.90 -0.350 0.735 0.398 
2.00 -0.296 0.623 0.415 
2.10 -0.247 0.633 0.416 

Average 0.729 0.395 
Standard deviation 0.057 0.011 

 

 

 

  



 

[154] 

 

Table VI.10a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R10 

R10 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.02 Average 3.06 

Standard deviation 0.10 Standard deviation 0.29 

 

 

Table VI.10b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R10 

R10 

Curve for q K(q,1) α C1 

1.10 -1.396 0.737 0.388 
1.20 -1.082 0.732 0.387 
1.30 -0.894 0.785 0.385 
1.40 -0.757 0.781 0.386 
1.50 -0.648 0.710 0.392 
1.60 -0.557 0.709 0.395 
1.70 -0.479 0.706 0.397 
1.80 -0.411 0.700 0.400 
1.90 -0.350 0.726 0.399 
2.00 -0.296 0.647 0.412 
2.10 -0.246 0.649 0.413 

Average 0.717 0.396 
Standard deviation 0.044 0.010 

 

 

 

 

 

 

 

  



 

[155] 

 

Table VI.11a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R11 

R11 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.04 Average 2.96 

Standard deviation 0.10 Standard deviation 0.41 

 

 

Table VI.11b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R11 

R11 

Curve for q K(q,1) α C1 

1.10 -1.396 0.737 0.388 
1.20 -1.082 0.732 0.387 
1.30 -0.894 0.785 0.385 
1.40 -0.757 0.781 0.386 
1.50 -0.648 0.773 0.387 
1.60 -0.557 0.709 0.395 
1.70 -0.479 0.706 0.397 
1.80 -0.411 0.700 0.400 
1.90 -0.350 0.726 0.399 
2.00 -0.296 0.647 0.412 
2.10 -0.246 0.649 0.413 

Average 0.722 0.395 
Standard deviation 0.047 0.010 

 

 

 

  



 

[156] 

 

Table VI.12a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R12 

R12 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.3 2.00 3.59 
1.90 -0.2 0.63 1.20 0.3 2.00 3.79 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.2 0.63 1.33 0.2 1.58 3.33 

Average 1.09 Average 3.02 

Standard deviation 0.14 Standard deviation 0.47 

 

 

Table VI.12b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R12 

R12 

Curve for q K(q,1) α C1 

1.10 -1.414 0.824 0.371 
1.20 -1.099 0.876 0.368 
1.30 -0.909 0.880 0.367 
1.40 -0.770 0.876 0.368 
1.50 -0.660 0.866 0.370 
1.60 -0.568 0.792 0.378 
1.70 -0.488 0.788 0.381 
1.80 -0.418 0.781 0.384 
1.90 -0.356 0.772 0.388 
2.00 -0.301 0.809 0.385 
2.10 -0.250 0.802 0.388 

Average 0.824 0.377 
Standard deviation 0.042 0.009 

 

 

 

  



 

[157] 

 

Table VI.13a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R13 

R13 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 -0.1 0.79 0.71 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.2 0.63 0.76 0.3 2.00 2.39 
1.30 -0.2 0.63 0.82 0.3 2.00 2.59 
1.40 -0.2 0.63 0.88 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.2 1.58 2.38 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.3 0.50 0.95 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 0.94 Average 2.78 

Standard deviation 0.13 Standard deviation 0.29 

 

 

Table VI.13b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R13 

R13 

Curve for q K(q,1) α C1 

1.10 -1.365 0.718 0.418 
1.20 -1.049 0.709 0.419 
1.30 -0.859 0.714 0.421 
1.40 -0.720 0.714 0.424 
1.50 -0.610 0.741 0.425 
1.60 -0.519 0.743 0.427 
1.70 -0.441 0.741 0.429 
1.80 -0.373 0.736 0.432 
1.90 -0.313 0.666 0.443 
2.00 -0.259 0.665 0.445 
2.10 -0.211 0.663 0.447 

Average 0.710 0.430 
Standard deviation 0.032 0.010 

 

 

 

 

 

 

 

 

  



 

[158] 

 

Table VI.14a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R14 

R14 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.3 2.00 2.19 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.2 1.58 2.38 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.1 1.26 2.39 
2.00 -0.2 0.63 1.26 0.1 1.26 2.52 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.07 Average 2.52 

Standard deviation 0.12 Standard deviation 0.21 

 

 

Table VI.14b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R14 

R14 

Curve for q K(q,1) α C1 

1.10 -1.413 0.859 0.371 
1.20 -1.097 0.864 0.370 
1.30 -0.906 0.859 0.371 
1.40 -0.766 0.847 0.373 
1.50 -0.655 0.903 0.371 
1.60 -0.563 0.807 0.381 
1.70 -0.483 0.808 0.383 
1.80 -0.414 0.806 0.386 
1.90 -0.352 0.806 0.387 
2.00 -0.297 0.807 0.389 
2.10 -0.247 0.705 0.404 

Average 0.825 0.380 
Standard deviation 0.051 0.011 

 

 

 

  



 

[159] 

 

Table VI.16a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R16 

R16 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.02 Average 2.83 

Standard deviation 0.10 Standard deviation 0.27 

 

 

Table VI.16b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R16 

R16 

Curve for q K(q,1) α C1 

1.10 -1.418 0.748 0.369 
1.20 -1.105 0.803 0.366 
1.30 -0.916 0.805 0.365 
1.40 -0.778 0.799 0.366 
1.50 -0.669 0.723 0.373 
1.60 -0.577 0.736 0.374 
1.70 -0.499 0.742 0.376 
1.80 -0.430 0.743 0.378 
1.90 -0.369 0.741 0.380 
2.00 -0.315 0.658 0.393 
2.10 -0.265 0.659 0.395 

Average 0.742 0.376 
Standard deviation 0.050 0.010 

 

  



 

[160] 

 

Table VI.17a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R17 

R17 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.3 2.00 2.19 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.2 1.58 2.38 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.05 Average 2.68 

Standard deviation 0.12 Standard deviation 0.36 

 

 

Table VI.17b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R17 

R17 

Curve for q K(q,1) α C1 

1.10 -1.399 0.760 0.385 
1.20 -1.085 0.759 0.384 
1.30 -0.896 0.749 0.385 
1.40 -0.758 0.733 0.388 
1.50 -0.648 0.708 0.392 
1.60 -0.557 0.712 0.394 
1.70 -0.479 0.710 0.397 
1.80 -0.411 0.704 0.400 
1.90 -0.350 0.695 0.403 
2.00 -0.296 0.684 0.406 
2.10 -0.248 0.620 0.416 

Average 0.712 0.395 
Standard deviation 0.040 0.010 

 

 

 

 

 

 

  



 

[161] 

 

Table VI.18a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R18 

R18 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 0.0 1.00 1.10 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.4 2.51 3.01 
1.30 -0.1 0.79 1.03 0.4 2.51 3.27 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.1 0.79 1.27 0.3 2.00 3.19 
1.70 -0.2 0.63 1.07 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.2 1.58 3.33 

Average 1.11 Average 3.05 

Standard deviation 0.11 Standard deviation 0.22 

 

 

Table VI.18b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R18 

R18 

Curve for q K(q,1) α C1 

1.10 -1.386 0.891 0.394 
1.20 -1.072 0.826 0.393 
1.30 -0.883 0.816 0.393 
1.40 -0.745 0.887 0.390 
1.50 -0.634 0.879 0.391 
1.60 -0.542 0.866 0.394 
1.70 -0.462 0.789 0.404 
1.80 -0.392 0.810 0.405 
1.90 -0.330 0.811 0.408 
2.00 -0.273 0.809 0.410 
2.10 -0.222 0.713 0.427 

Average 0.827 0.401 
Standard deviation 0.052 0.011 

 

 

 

  



 

[162] 

 

Table VI.19a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R19 

R19 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.5 3.16 2.85 
1.10 0.0 1.00 1.10 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.1 0.79 1.27 0.3 2.00 3.19 
1.70 -0.1 0.79 1.35 0.3 2.00 3.39 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.2 0.63 1.33 0.2 1.58 3.33 

Average 1.15 Average 2.94 

Standard deviation 0.14 Standard deviation 0.30 

 

 

Table VI.19b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R19 

R19 

Curve for q K(q,1) α C1 

1.10 -1.389 0.927 0.391 
1.20 -1.077 0.880 0.387 
1.30 -0.888 0.896 0.384 
1.40 -0.751 0.901 0.383 
1.50 -0.641 0.899 0.383 
1.60 -0.549 0.892 0.385 
1.70 -0.470 0.879 0.388 
1.80 -0.400 0.810 0.398 
1.90 -0.338 0.815 0.400 
2.00 -0.281 0.817 0.402 
2.10 -0.230 0.815 0.405 

Average 0.867 0.391 
Standard deviation 0.043 0.008 
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Table VI.20a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R20 

R20 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 -0.1 0.79 0.71 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.1 0.79 1.19 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.05 Average 2.73 

Standard deviation 0.15 Standard deviation 0.26 

 

 

Table VI.20b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R20 

R20 

Curve for q K(q,1) α C1 

1.10 -1.391 0.862 0.390 
1.20 -1.076 0.924 0.387 
1.30 -0.885 0.926 0.386 
1.40 -0.745 0.919 0.387 
1.50 -0.633 0.906 0.390 
1.60 -0.540 0.850 0.398 
1.70 -0.459 0.857 0.400 
1.80 -0.389 0.858 0.403 
1.90 -0.326 0.856 0.405 
2.00 -0.270 0.851 0.408 
2.10 -0.219 0.736 0.427 

Average 0.868 0.398 
Standard deviation 0.054 0.012 
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Table VI.21a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R21 

R21 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.3 2.00 2.19 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.2 1.58 2.38 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.05 Average 2.63 

Standard deviation 0.12 Standard deviation 0.30 

 

 

Table VI.21b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R21 

R21 

Curve for q K(q,1) α C1 

1.10 -1.399 0.978 0.381 
1.20 -1.082 0.988 0.379 
1.30 -0.890 0.987 0.379 
1.40 -0.748 0.976 0.381 
1.50 -0.635 0.901 0.389 
1.60 -0.540 0.912 0.391 
1.70 -0.459 0.917 0.394 
1.80 -0.387 0.917 0.397 
1.90 -0.323 0.912 0.401 
2.00 -0.266 0.905 0.404 
2.10 -0.215 0.789 0.423 

Average 0.926 0.393 
Standard deviation 0.058 0.013 
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Table VI.22a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R22 

R22 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.0 1.00 0.90 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.4 2.51 2.76 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.2 0.63 0.88 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.2 1.58 2.38 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.3 0.50 1.00 0.2 1.58 3.17 
2.10 -0.3 0.50 1.05 0.1 1.26 2.64 

Average 1.01 Average 2.67 

Standard deviation 0.10 Standard deviation 0.27 

 

 

Table VI.22b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R22 

R22 

Curve for q K(q,1) α C1 

1.10 -1.389 0.784 0.394 
1.20 -1.074 0.844 0.391 
1.30 -0.883 0.841 0.392 
1.40 -0.744 0.763 0.398 
1.50 -0.634 0.778 0.400 
1.60 -0.542 0.786 0.402 
1.70 -0.463 0.789 0.404 
1.80 -0.393 0.788 0.406 
1.90 -0.332 0.784 0.409 
2.00 -0.277 0.704 0.422 
2.10 -0.227 0.687 0.426 

Average 0.777 0.404 
Standard deviation 0.048 0.011 
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Table VI.23a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R23 

R23 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 -0.1 0.79 0.71 0.4 2.51 2.26 
1.10 -0.1 0.79 0.87 0.3 2.00 2.19 
1.20 -0.1 0.79 0.95 0.3 2.00 2.39 
1.30 -0.1 0.79 1.03 0.3 2.00 2.59 
1.40 -0.1 0.79 1.11 0.3 2.00 2.79 
1.50 -0.2 0.63 0.95 0.3 2.00 2.99 
1.60 -0.2 0.63 1.01 0.2 1.58 2.54 
1.70 -0.2 0.63 1.07 0.2 1.58 2.69 
1.80 -0.2 0.63 1.14 0.2 1.58 2.85 
1.90 -0.2 0.63 1.20 0.2 1.58 3.01 
2.00 -0.2 0.63 1.26 0.2 1.58 3.17 
2.10 -0.2 0.63 1.33 0.1 1.26 2.64 

Average 1.05 Average 2.68 

Standard deviation 0.17 Standard deviation 0.30 

 

 

Table VI.23b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R23 

R23 

Curve for q K(q,1) α C1 

1.10 -1.390 0.770 0.393 
1.20 -1.077 0.784 0.391 
1.30 -0.888 0.789 0.390 
1.40 -0.751 0.786 0.390 
1.50 -0.642 0.711 0.397 
1.60 -0.552 0.717 0.399 
1.70 -0.474 0.724 0.400 
1.80 -0.405 0.727 0.402 
1.90 -0.345 0.727 0.404 
2.00 -0.290 0.724 0.406 
2.10 -0.241 0.717 0.409 

Average 0.743 0.398 
Standard deviation 0.032 0.007 
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Table VI.24a. Critical moments qmin and qmax estimated for selected values of order moment q, obtained for 1-minute 

precipitation data series from Warsaw rain gauges R24 

R24 

Curve for q Minimal critical moment qmin Maximal critical moment qmax 

log(η) η qmin = qη log(η) η qmax = qη 

0.90 0.00 1.00 0.90 0.4 2.51 2.26 
1.10 -0.10 0.79 0.87 0.3 2.00 2.19 
1.20 -0.10 0.79 0.95 0.3 2.00 2.39 
1.30 -0.10 0.79 1.03 0.3 2.00 2.59 
1.40 -0.10 0.79 1.11 0.3 2.00 2.79 
1.50 -0.20 0.63 0.95 0.3 2.00 2.99 
1.60 -0.20 0.63 1.01 0.3 2.00 3.19 
1.70 -0.20 0.63 1.07 0.2 1.58 2.69 
1.80 -0.20 0.63 1.14 0.2 1.58 2.85 
1.90 -0.20 0.63 1.20 0.2 1.58 3.01 
2.00 -0.20 0.63 1.26 0.2 1.58 3.17 
2.10 -0.20 0.63 1.33 0.2 1.58 3.33 

Average 1.07 Average 2.79 

Standard deviation 0.14 Standard deviation 0.37 

 

 

Table VI.24b. Lévy indexes α and the mean values of process codimension C1 calculations for 1-minute precipitation data 

series from Warsaw rain gauges R24 

R24 

Curve for q K(q,1) α C1 

1.10 -1.390 0.770 0.393 
1.20 -1.077 0.784 0.391 
1.30 -0.888 0.789 0.390 
1.40 -0.751 0.786 0.390 
1.50 -0.642 0.711 0.397 
1.60 -0.552 0.711 0.399 
1.70 -0.474 0.724 0.400 
1.80 -0.405 0.727 0.402 
1.90 -0.345 0.727 0.404 
2.00 -0.290 0.724 0.406 
2.10 -0.241 0.719 0.409 

Average 0.743 0.398 
Standard deviation 0.032 0.007 
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