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Streszczenie

Niniejsza rozprawa przedstawia i ocenia nieempiryczne modele oddziaływań dla biocząste-
czek, wykorzystując hybrydową metodę wariacyjno-perturbacyjną do analizy energii stabiliza-
cji kompleksów. Człon elektrostatyczny tej energii jest najbardziej anizotropowym i najmniej
kosztownym obliczeniowo, w związku z czym służy jako pierwsze przybliżenie. Badania kon-
centrują się na problemach dotychczas nie rozwiązanych w literaturze. Należy do nich opis
oddziaływań typu 𝜋-𝜋 pomiędzy aromatycznymi cząsteczkami, zwłaszcza obliczenia dla warst-
wowych dimerów zasad kwasów nukleinowych. Chociaż oddziaływania tego typu są głównym
tematem rozprawy, wykonano także analizy dla układów modelowych innych rodzajów.

Pierwszy rozdział opisuje podstawy metod perturbacyjnych i wariacyjnych używanych do
podziału energii oddziaływania, porównując wyniki dla wybranych małych dimerów. Przegląd
obejmuje też wielocentrowe rozwinięcia multipolowe, używane do szacowania oddziaływań
elektrostatycznych. Omówione są tutaj kwestie zbieżności i problemy związane z zastosowaniem
momentów multipolowych w symulacjach dynamiki molekularnej oraz w badaniach reakty-
wności chemicznej.

Następna część rozprawy wprowadza rangowe miary statystyczne, używane do ilościowej
oceny efektów elektrostatycznych, jako predyktora całkowitej energii stabilizacji. Testy dla
odległości mniejszych i większych od równowagowych pokazują, że wszędzie oddziaływania
elektrostatyczne odtwarzają hierarchię całkowitych energii oddziaływania dla równowagowych
geometrii. Takie wyniki mogą mieć praktyczne znaczenie między innymi w ocenie względnej
stabilizacji leków zadokowanych przybliżonymi metodami do receptorów. Z kolei w przypadku
dimerów zasad nukleinowych w ułożeniu warstwowym, składowa elektrostatyczna jest również
w stanie w pewnym stopniu odtworzyć względną stabilność dimerów. Dalsza analiza ujawnia
niespodziewaną korelację, pomiędzy wielkościami składowej dyspersyjnej i wymiennej. Jednak
jakość tych wniosków statystycznych silnie zależy od jednorodności geometrii dimerów.

Ostatni rozdział poświęcony jest strukturze zawierającej cząsteczkę etydyny interkalującą
kwas nukleinowy. Zarówno dokładne obliczenia, jak i multipolowe przybliżenie elektrostat-
yczne oddziaływań ligandu odtwarzają jego położenie krystalograficzne w płaszczyźnie in-
terkalacji. Szczegółowa analiza weryfikuje podział układu na części i użycie przybliżenia dwu-
ciałowego. Dodatkowo, oceniono wpływ poszczególnych fragmentów kwasu nukleinowego i
ładunku na grupach fosforanowych oraz przeciwjonów i cząsteczek rozpuszczalnika.





Abstract

This dissertation explores and evaluates nonempirical interaction models for biomolecules, us-
ing an established hybrid variation-perturbation scheme as the underlying method for analyz-
ing stabilization energies. Electrostatic effects are the most anisotropic and easily computable
term in a hierarchy of quantum chemical interaction energies, and the first choice for an ap-
proximate interaction model. The practical essays here concentrate on molecules that have
raised open questions in the literature, for it is in these cases that the physicochemical insight
gained from ab initio results is most desired. Aromatic 𝜋-𝜋 interactions particularly attract
attention, and special consideration is often given to nucleic acid bases. Although nucleobases
are a major topic in this work, the methodologies are also applied to other model systems.

An introductory account summarizes perturbation and variational approaches to inter-
action energy decomposition including the hybrid method used throughout, and compares
results for several small dimers. Atomic multipole expansions are then discussed with regard
to estimating electrostatic effects. The disquisition focuses on convergence properties and on
the applicability of Cartesian moments in molecular dynamics simulations as well as in studies
of chemical reactivity.

The second chapter introduces rank-based statistical measures, used to quantify the pre-
dictive power of electrostatic effects. Benchmark calculations at shorter-than-equilibrium dis-
tances and in the long range substantiate the idea that electrostatic effects emulate relative
equilibrium interaction energies at all distances. A similar analysis shows that the electro-
static component is able to reproduce to a certain degree the relative stability of stacked
nucleobase dimers. Additionally, a surprisingly significant statistical relationship is revealed
between the dispersion and exchange energies in this case. The quality of this association,
however, depends strongly on the homogeneity of the studied structures.

In the last chapter, intercalators bound to nucleic acids are studied in detail. Interac-
tion energy profiles are produced on the intercalation plane for various drug-RNA complexes,
reproducing their original crystal binding positions. Further calculations are performed for
a single ethidium-RNA complex in order to validate the reconstruction of interactions from
pair-wise energies, and to evaluate the influence of nucleic acid backbone fragments. When
phosphate groups are included, their charge state becomes an issue, therefore extreme neutral
and charged cases are considered, as well as models with a counterion or solvent molecule.
Estimates are given for the lower and upper bounds of the interaction energy in the case of
ethidium intercalated between UA/AU base pairs.





Preface

Every attempt to employ mathematical methods in the study of chemical questions must be
considered profoundly irrational and contrary to the spirit of chemistry. If mathematical anal-
ysis should ever hold a prominent place in chemistry – an aberration which is happily almost
impossible – it would occasion a rapid and widespread degeneration of that science.

Auguste Comte
Philosophie Positive 1830

It is hard to imagine a prediction for the course of chemistry that could have been far-
ther from the truth. Mathematics is prominent in chemistry. Statistical thermodynamics and
quantum mechanics are routinely used to explain atomic and molecular processes. Comte’s
warning from almost a century before the quantum revolution has a deeper but simpler inter-
pretation – chemistry is more than the mathematical apparatus used to describe phenomena.
Today we might add: more than the numerical methods and algorithms used to execute the
mathematics. From his positivistic viewpoint, Comte is saying that chemical observations
cannot be wholly expressed by concepts from physics and mathematics.

Fast forward one hundred years and Dirac states no less than the opposite. Chemistry has
been reduced to physics and all that remains is to “clean up the details”. There is no doubt
what he had in mind – the mathematical laws that describe single atoms and their aggregates,
molecules, implicitly govern all chemical phenomena and in principle can be used to model
them to any accuracy. In hindsight, we see nearly another century in which physical theories
and their computational implementations have been fruitful, although certainly more than a
few details remain to be cleaned up.

These two stances define the conflict between reductionism and approaches that recognize
chemical complexity. It is fitting to ask, is what we call chemistry an outdated label or does
it offer anything unique? Something that sets it apart conceptually from the other natural
sciences? Comte called it spirit.

The challenge recurs in recent years, as large parts of physics, chemistry and recently
biology morph into a single body of research. Borderline journals and disciplines with names
containing “physical chemistry” and “chemical biology” are typical manifestations. Befitting
the trend, the chemistry Nobel committee now acknowledges work on green fluorescent protein,
eukaryotic transcription and ribosomes, a turn duly noted and discussed by journal editors.1

Boundaries are increasingly blurred, but it remains to be seen if that is a green light for
reductionism and for trimming chemistry to merely a collection of experimental techniques.
Perhaps its practical bent has caused chemistry to be overlooked as an independent discipline

1Martens, E. ACS Chem. Biol. 2009, 4, 885; Mahapatra, A. ACS Chem. Biol. 2009, 4, 969–970.

http://dx.doi.org/10.1021/cb900281p
http://dx.doi.org/10.1021/cb9003095
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in the philosophy of science,2 which focuses on ontological questions in mathematics and on
the interpretation of physical theories.

Meanwhile, chemistry remains a separate, strong field in institutionalized science, in culture
and certainly in the popular perception of reality. Transformations of substances and bonding
patterns, traditionally at the heart of the discipline, are usually first revealed by linking
fundamental physical ideas with biology or materials science. This is especially true now, as
pure research tackles life systems and is met halfway by biologists who identify the molecular
processes. Does the middle ground lie in chemistry? The question if chemistry can be named
“The Central Science” has been discussed at length, for example in a provoking essay by
Balaban and Klein who also present relevant scientometric data.3

To be sure, these questions have been excogitated in all possible ways. A wary scientist
will approach them with caution in fear of venturing onto the wrong, philosophical side of
Popper’s demarcation line. In fact, inspecting the frontiers of various disciplines and their
evolution quickly turns into an exercise in science history, or worse in semantics if one is
especially careless. And categorizing abstract ideas according to the theories or fields they are
applied in digresses to a task as unfeasible as counting Plato’s forms.

Such musings may seem nothing more than byproducts of reductionist or holistic efforts
and generalizations in science. One should not be surprised, however, to hear them from an
introspective computational chemist, who works by applying methods rooted in mechanics and
quantum theory. Is it possible, by computations, to ask chemical questions? Do genuinely
chemical ideas exist at all in the realm of molecules or can they, following Dirac, be fully
reduced to physics? If the computational chemistry we practice is not conceptually redundant,
is it a purely speculative science, or is it based on somehow unique observations?

Without further discourse, a point can be made by cherry-picking from computational
chemistry’s unique methodological memes – these may build upon input stolen from physics,
but have little or no legitimate use outside the classical chemistry arena. The transition state is
archetypal, because it does not represent one directly observable state and can be studied only
at sub-picosecond timescales,4 being at the same time seminal for the molecular description
of reactions.

Less straightforward examples are atomic or molecular orbitals, mathematical constructs so
utile and general-purpose that arguments persist about whether they are as real and tangible
as the electron density.5 Aromaticity and 𝜋-𝜋 interactions, and the various facets of molecular
structure6, these are additional cases that can be called upon to support the cause. Such ideas
comprise the spirit of computational chemistry. The author humbly hopes to reinforce these
uniquely chemical notions, by relating to them and assessing simplified interaction models
based on electrostatic effects.

2Connections between chemistry and philosophy are discussed in Scerri, E. R. J. Chem. Ed. 2000, 77,
522.

3Balaban, A., Klein, D. Scientometrics 2006, 69, 615–637.
4Polanyi, J. C., Zewail, A. H. Acc. Chem. Res. 1995, 28, 119–132.
5For a summary of recent arguments, see Scerri, E. R. J. Chem. Ed. 2002, 79, 310.
6Current approaches to molecular structure are reviewed in Sukumar, N. Found. Chem. 2009, 11, 7–20.

http://dx.doi.org/10.1021/ed077p522
http://dx.doi.org/10.1021/ed077p522
http://dx.doi.org/10.1007/s11192-006-0173-2
http://dx.doi.org/10.1021/ar00051a005
http://dx.doi.org/10.1021/ed079p310.1
http://dx.doi.org/10.1007/s10698-008-9060-7
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1 Introduction

As I look at a living organism, I see reminders of many questions that need to be answered. Not
all these questions are obviously important, nor would their answers be useful — but we want
them answered.

Linus Pauling
Nature of Forces between Large Molecules

of Biological Interest7

1.1 Context

When considering small molecules that are close to each other but not covalently bound, it
is rudimentary to recognize the long tradition of experimental, theoretical and computational
research already conducted. Much of the past work in the field of supermolecular complexes
has been documented in books that deal with the underlying theoretical notions,8 as well as
the experimental applications.9 Excellent review articles gather the newest facets of research,10

and no such attempt will be made in this dissertation.
Instead, it is worthwhile to concentrate on one aspect of this tradition. In the course of sci-

entific progress, separate driving forces had been identified that stabilize and repel molecules
without forming permanent bonds. Among these, the most notable were named: hydrogen
bonding, charge transfer, van der Waals or London dispersion forces. The distinct molecules
and bond strengths involved were the first differentiation factors. With time, underlying com-
mon quantum mechanical aspects shared by these forces were revealed and used to understand
and engineer new non-covalent complexes. Four fundamental contributions – electrostatic,
induction, dispersion and exchange – can be derived using perturbation theory from the
polarization approximation, with exchange effects included by enforcing symmetry.11 These
in turn can be combined in various proportions to compose all known types of intermolecular
interactions.

Therefore it is logical, and chemically meaningful, to analyze intermolecular interaction
energies as well as interaction-induced properties into terms related to these underlying con-

7Pauling, L. Nature 1948, 161, 707–709.
8Chapter 13 in Piela, L. Ideas of Quantum Chemistry ; Elsevier, 2007.
9Ariga, K., Kunitake, T. Supramolecular Chemistry ; Springer, 2006.
10Chałasiński, G., Szczęśniak, M. M. Chem. Rev. 1994, 94, 1723–1765; Chałasiński, G., Szczęśniak, M. M.

Chem. Rev. 2000, 100, 4227 – 4252; Hobza, P., Zahradnik, R., Muller-Dethlefs, K. Coll. Czech. Chem. Comm.
2006, 71, 443–531; Schneider, H.-J. Angew. Chem. Int. Ed. 2009, 48, 3924–3977.
11Jeziorski, B., Moszyński, R., Szalewicz, K. Chem. Rev. 1994, 94, 1887–1930.

http://dx.doi.org/10.1038/161707a0
http://dx.doi.org/10.1021/cr00031a001
http://dx.doi.org/10.1021/cr990048z
http://dx.doi.org/10.1021/cr990048z
http://dx.doi.org/10.1135/cccc20060443
http://dx.doi.org/10.1135/cccc20060443
http://dx.doi.org/10.1002/anie.200802947
http://dx.doi.org/10.1021/cr00031a008


2 1.1 Introduction: Context

tributions, instead of relying on imprecise traditional notions. That is not to say that terms
such as ’hydrogen bond’, ’van der Waals’, ’hydrophobic’, ’stacking’ or ’charge transfer’ should
be abandoned altogether. To the contrary, they are valuable in chemistry for classification
and quickly referencing typical complexes or interaction scenarios.

There have been substantial efforts to decompose interaction energies using perturbation
theory with adapted symmetry (SAPT),11 or variants of the variational method popularized
by Kitaura and Morokuma.12 Complementary studies on the technical aspects of these proce-
dures have aimed to remove molecular orbital artifacts such as basis set superposition error
or at least demonstrate and mitigate them in practice.13 In particular, a hybrid variation-
perturbation scheme has been formulated by Sokalski and coworkers that captures benefits
from both approaches, striking a balance between computational cost and the practical utility
of extracted terms.14 All these decomposition schemes applied to small benchmark systems as
well as some larger complexes with more complicated features. For examples, the reader is
referred to Sections 2.2 and 2.3 and the works referenced there.

Alongside the maturing theoretical field of intermolecular interactions, the last decade has
witnessed an unprecedented growth in available numerical methods and computational re-
sources. Large basis sets, increasingly efficient MP215 and CCSD(T)16 algorithms for molecules
with more than a few atoms, all these have become commonplace. Accordingly, accurate in-
teraction energies have been achieved for a number of non-covalent complexes, published as
reference data sets by Hobza and coworkers17 and others. Precise data are used as benchmarks
to evaluate and eventually improve density functionals18 or force fields potentials.19

Even so, quantum chemical treatment remains problematic for systems with more than
about thirty atoms.19 Since this is essentially below the threshold of any functional biomolecule,
a feasible analysis of interactions in larger molecular systems remains both enticing and chal-
lenging. In the context of nucleic acids, the last two decades have seen an outburst of reports on
the interactions between nucleobases,20 concentrated more recently on stacking complexes.21

A class closely related to stacking are intercalation complexes, where an aromatic ligand
enters the space between adjacent Watson-Crick base pairs, causing significant structural mod-
ifications to the polymer helix according to Lerman’s original deduction.22 The intercalation
of nucleic acids is a still important topic, because it has been characterized thoroughly as a
chemical process and has immediate practical significance in medicine.23 From the computa-

12Kitaura, K., Morokuma, K. Int. J. Quant. Chem. 1976, 10, 325–340.
13Duijneveldt, F., Duijneveldt-van de Rijdt, J., Lenthe, J. Chem. Rev. 1994, 94, 1873–1885.
14Sokalski, W. A., Roszak, S., Pecul, K. Chem. Phys. Lett. 1988, 153, 153–159.
15Aikens, C. M., Webb, S. P., Bell, R. L., Fletcher, G. D., Schmidt, M. W., Gordon, M. S. Theor. Chem.

Acc. 2003, 110, 233–253; Ishimura, K., Pulay, P., Nagase, S. J. Comp. Chem. 2006, 27, 407–413.
16Bartlett, R. J., Musiał, M. Rev. Mod. Phys. 2007, 79, 291–352.
17Jurečka, P., Šponer, J., Černý, J., Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.
18Sherrill, C. D., Takatani, T., Hohenstein, E. G. J. Phys. Chem. A 2009, 113, 10146–10159.
19Stone, A. J., Misquitta, A. J. Int. Rev. Phys. Chem. 2007, 26, 193–222.
20Hobza, P., Šponer, J. Chem. Rev. 1999, 99, 3247–3276.
21Šponer, J., Riley, K. E., Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595.
22Lerman, L. S. J. Mol. Biol. 1961, 3, 18–&.
23Graves, D. E., Velea, L. M. Curr. Org. Chem. 2000, 4, 915–929.

http://dx.doi.org/10.1002/qua.560100211
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1016/0009-2614(88)85203-5
http://dx.doi.org/10.1007/s00214-003-0453-3
http://dx.doi.org/10.1007/s00214-003-0453-3
http://dx.doi.org/10.1002/jcc.20348
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1039/b600027d
http://dx.doi.org/10.1021/jp9034375
http://dx.doi.org/10.1080/01442350601081931
http://dx.doi.org/10.1021/cr9800255
http://dx.doi.org/10.1039/b719370j
http://dx.doi.org/10.1016/S0022-2836(61)80004-1
http://dx.doi.org/10.2174/1385272003375978
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tional point of view, well-defined non-covalent interactions are involved, and minimal models
for intercalation complexes only recently have come within reach of first-principles methods
that adequately include electron correlation.24

For hydrogen bonds and systems of charged molecules, the electrostatic component is
known to be dominant and structure determining – electrostatics understood as the interaction
of fragment charge densities unchanged by mutual influence. Many studies concerned with
these and other types of interactions also highlight the role of electrostatic interactions; if not
as a stabilizing factor then as a key element of molecular recognition at larger distances and
as a predictor of relative stability.

Electrostatic interactions between molecules can be approximated asymptotically by ex-
pansion into a Taylor series, leading to a description of the electron density in terms of static
multipole moments anchored on an expansion center. Such moments provide a compact and
mobile representation of molecular electrostatic properties, and should be distributed among
atomic centers near van der Waals equilibrium distances. This was first demonstrated in
1983 by Buckingham et al., with relatively precise predictions for angular orientations in non-
covalent complexes.25 It should be kept in mind that direct comparison to experimental electric
moments beyond dipoles is limited to very small molecules,26 and to molecular crystals based
on densities obtained from diffraction measurements.27

Care should be taken when relating experimental findings to theoretical results, especially
those of ab initio origin. In many cases, the Coulomb interaction of frozen electron densities
does not constitute what is understood by the experimenter as electrostatic effects. Often,
electronic induction and even dispersion forces are included, as opposed to hydrophobic and
other collective effects.

In order to perform computational observations for large systems with finite resources, ap-
proximations in the description of interactions seem inevitable. As these resources grow, the
smallest complex size for which approximations need to be made grows with them. Nonethe-
less, it is unimaginable that some day any molecular complex of interest, especially to biology,
will be tractable using accurate methods derived from first principles.

Following Dirac’s recommendation28, the situation warrants increased interest in ”frozen
Fragment” electrostatic interactions as a means to modeling biomolecules. To this end, a
series of questions are posed here, related to the role and predictive value of electrostatic
interactions.

24Řeha, D., Kabeláč, M., Ryjáček, F., Šponer, J., Šponer, J. E., Elstner, M., Suhai, S., Hobza, P. J. Am.
Chem. Soc. 2002, 124, 3366–3376.
25Buckingham, A. D., Fowler, P. W. J. Chem. Phys. 1983, 79, 6426–6428; Buckingham, A. D., Fowler,

P. W., Stone, A. J. Int. Rev. Phys. Chem. 1986, 5, 107–114.
26Buckingham, A. D. J. Chem. Phys. 1959, 30, 1580–1585.
27Guillot, B., Muzet, N., Artacho, E., Lecomte, C., Helsch, C. J. Phys. Chem. B 2003, 107, 9109–9121.
28Besides his often cited quantum mechanical reductionist manifesto in Quantum Mechanics of Many-

Electron Systems (Proc. Roy. Soc. London A 1929, 123, 714-733), Dirac deemed it “desirable that approxi-
mate practical methods of applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation”.

http://dx.doi.org/10.1021/ja011490d
http://dx.doi.org/10.1021/ja011490d
http://dx.doi.org/10.1063/1.445721
http://dx.doi.org/10.1080/01442358609353370
http://dx.doi.org/10.1063/1.1730242
http://dx.doi.org/10.1021/jp034478b
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1.2 Purpose & overview

The variety of approximations adopted for molecular models can be divided into three broad
categories. Parametrizations are employed in force fields and density functionals to describe
interactions in a class of systems correctly on average, using accurate results as reference.
The most attractive feature in this case is that a method, once parametrized, can be used
repeatedly on a range of systems at reduced cost.

Consistent approximations can also be made with nonempirical methods, by dividing sys-
tems into fragments and considering inter-fragment interactions separately. This is the basic
idea behind methods such as the fragment molecular orbital (FMO) approach,29 which has
been used to handle otherwise unfeasibly large molecules.30 Lastly, incomplete interaction
models that capture decisive energetic parts can be used to reproduce some chosen essential
feature. This last possibility is always context-driven, since for various systems the features
of interest depend on different effects. Generalization could be achieved by selectively using
simplified interaction models based on overlap or distance criteria as proposed recently by
Szalewicz and coworkers for the electrostatic component.31

The work presented here is concerned with the last two kinds of approximations, and
mostly with the second type. With this in mind, it is the purpose of this dissertation to ex-
plore the simplest models of intermolecular interactions at the ab initio level and to attempt
to quantify their practical limits. Electrostatic interactions derived from monomer charge dis-
tributions are central to this goal, since they comprise the computationally least demanding
component and can be estimated from reusable multipole moments. Furthermore, since elec-
trostatic interactions are dominant at large distances and more so for polar molecules, they
are conspicuous in biological complexes.

The word limits used in the previous paragraph refers to the extent to which a model
reproduces (predicts) interaction energies, relative stability or any other differentiating feature.
Estimating such limits is crucial for drug and catalysis design, where it is common to screen a
large array of candidate molecules for quantitative relationships.32 A typical, practical question
would be: with what confidence can one molecular complex be said to be more stable than
another based on electrostatic interactions? If a number of complexes are analyzed and the
energies of each pair compared, the sought confidence can be expressed in statistical terms,
for example in the form of a prediction interval.

If an interaction energy is partitioned into physically meaningful terms, the significance of
electrostatic effects or other components can be examined and various apposite approximate
models can be suggested for the studied system. Here, special focus is given to 𝜋-𝜋 aromatic
stacks, nonetheless complexes involving other types of interactions are also considered. Rel-
evant aspects of the interaction profile not linked directly to electrostatics are also looked
at – for example the spatial extent of a model in nucleic acid intercalation, the influence of

29Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M. Chem. Phys. Lett. 1999, 313, 701–706.
30Fedorov, D. G., Kitaura, K. J. Phys. Chem. A 2007, 111, 6904 – 6914.
31Rob, F., Podeszwa, R., Szalewicz, K. Chem. Phys. Lett. 2007, 445, 315–320.
32Karelson, M., Lobanov, V. S., Katritzky, A. R. Chem. Rev. 1996, 96, 1027–1043.

http://dx.doi.org/10.1016/S0009-2614(99)00874-X
http://dx.doi.org/10.1021/jp0716740
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solvent and counterions, nonadditive contributions, and statistical relationships between any
two interaction energy components.

Logically, this dissertation is organized in three chapters. The first, Section 2, gives an
account of the available interaction energy partitioning schemes based on variational and
perturbation methods. This is complemented by a comparison of the most widely used
methods for several small dimers in a series of correlation consistent basis sets in
Section 2.3, lending basic observations and a reference point for subsequent discussions.

This chapter also goes into the utility of atomic multipole moment (AMM) expansions for
estimating electrostatic interactions between molecules. The discussion concentrates around
the Cartesian expansion used, and covers generating and transforming atomic moments, as
well as how evaluating interactions. Sections 2.5 and 2.6 present a few examples of the
convergence properties of atomic moments and of the molecular electrostatic po-
tentials and interactions they entail. Conformational changes are considered, especially in
the context of improving the representation of electrostatic interactions in molecular dynamics
simulations and studying electron density changes during chemical reactions.

Section 3 starts with an explanation of statistical correlation measures based on ranks,
along with several related original concepts. These are adapted to the subject at hand, that
is comparing interaction energies between dimers. In recognition of the variable nature of
different interaction components, the adopted approach is favored over the traditional Pearson
correlation coefficient, which assumes linear relationships.

These statistical concepts are applied in Section 3 to two sets of complexes – one containing
a number of small dimers that exhibit interactions typically found in biological systems, the
second representing very specific classes of stacked nucleic acid bases. Both cases focus on
the ability of electrostatic effects to reproduce the order of dimers with respect to their total
interaction energies. The first, discussed in Section 3.2, is the S22 training set published
by Hobza and coworkers17 and extended by Fusti Molnar et al. by varying the separations
between molecules.33 The analysis presented here is based on the same geometries and uses
the extrapolated CCSD(T) interaction energies from both studies as references.

Unbalanced interactions in dimers with short artifact contacts are addressed
statistically, since these are frequently encountered in force field optimized geometries
or structures uncorrected for basis set superposition error (BSSE). Concern for this problem
has been expressed recently by Paton and Goodman in a critical review of force field perfor-
mance for the same S22 training set.34 A typical example of such error has been explicitly
pointed out by Grzywa et al.,35 who confirm that the geometry generated by a force field can
be systematically misguided compared to the optimal MP2 geometry. For inhibitors docked in
the urokinase active site with the Tripos force field, they find that the total MP2 interaction
fails to correlate with experimental activity. On the other hand, electrostatic interactions
manage to recover a large part of that correlation, although the statistical significance and

33Fusti Molnar, L., He, X., Wang, B., Merz, K. M. J. J. Chem. Phys. 2009, 131, 065102.
34Paton, R. S., Goodman, J. M. J. Chem. Inf. Model. 2009, 49, 944–955.
35Grzywa, R., Dyguda-Kazimierowicz, E., Sieńczyk, M., Feliks, M., Sokalski, W. A., Oleksyszyn, J. J. Mol.

Model. 2007, 13, 677–683.

http://dx.doi.org/10.1063/1.3173809
http://dx.doi.org/10.1021/ci900009f
http://dx.doi.org/10.1007/s00894-007-0193-8
http://dx.doi.org/10.1007/s00894-007-0193-8
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origin of this correlation are uncertain. A confirmation or explanation for this observation was
the direct incentive to feature the study in Section 3.2.

At the other side of the scale, namely large distances, interactions are dominated by electro-
static effects, which may or may not have a bearing on the equilibrium stability. A postulated
affirmative answer is the basis of hypotheses and methods that describe specific long-range
events such as receptor-ligand recognition.36 The same section pursues these topics fur-
ther within the S22 set, comparing interaction energies and their components at
various intermolecular separations with the total interaction at equilibrium.

Other cases exist where the aberrations described in the two previous paragraphs are
legitimate problems. For instance, it is common procedure to optimize the geometry of a
molecule or complex at a relatively inexpensive or semi-empirical level of theory (using a
popular density functional, for instance) and subsequently employ a more accurate method
to obtain just the energy. There has been very little discussion, however, how well the final
energy relates to its counterpart at the “true” equilibrium of the accurate method, and for
some systems these deviations may be significant. A more recognized issue is that of basis
set superposition error, which has repeatedly proved its influence on the potential energy
surface of intermolecular complexes. BSSE artificially strengthens interactions, which results
in shortened intermolecular distances, especially for small or moderate basis sets.37

Section 3.3 introduces the computational literature on aromatic 𝜋-𝜋 stacking and applies
the same rank-based statistical approach to stacked nucleobase dimers. For all combinations
of B-DNA nucleobase pairs, interactions are analyzed into components and their statistical
relationships assessed. The objective of this study is to quantify the ability of elec-
trostatic interactions to reproduce the total interaction energy, extending earlier
observations made in 2003 by Hill et al.38

Another, surprising correlation is obtained for the same B-DNA test set, between the
attractive dispersion and repulsive exchange terms, which supports the first result by a partial
cancellation of terms. A comparison for different sets of geometries (for example A-DNA
versus B-DNA) and their unions reveals, however, that this relationship is highly sensitive to
the geometrical homogeneity of the analyzed structures.39

The last part of this dissertation employs the methods introduced beforehand in order
to answer specific questions related to nucleic acid intercalation motifs. One issue that is
addressed is the consequence, in terms of the interaction energy, of breaking down a large
molecular model into smaller dimers, with focus on one crystal structure of ethidium bound
to RNA, Eth(+1)-UA/AU, published by Jain and Sobell.40 Calculations on extended systems

36Kier, L. B. Pure Appl. Chem. 1973, 35, 509–520; Kier, L. B., Höltje, H.-D. J. Theor. Biol. 1975, 49,
401–416; Hall, L. H., Kier, L. B. J. Theor. Biol. 1976, 58, 177–195; Kenny, P. W. J. Chem. Inf. Model. 2009,
49, 1234–1244.
37Simon, S., Duran, M., Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024–11031; Simon, S., Duran, M.,

Dannenberg, J. J. J. Phys. Chem. A 1999, 103, 1640–1643; Garden, A. L., Lane, J. R., Kjaergaard, H. G. J.
Chem. Phys. 2006, 125, 144317–7; Shields, A. E., Mourik, T. J. Phys. Chem. A 2007, 111, 13272–13277.
38Hill, G., Forde, G., Hill, N., Lester, W. A., Sokalski, W. A., Leszczyński, J. Chem. Phys. Lett. 2003, 381,

729–732.
39Langner, K. M., Sokalski, W. A., Leszczyński, J. J. Chem. Phys. 2007, 127, 111102.
40Nucleic Acid Databse ID: DRB018, Jain, S. C., Sobell, H. M. J. Biomol. Struct. Dyn. 1984, 1, 1161–1177.

http://dx.doi.org/10.1351/pac197335040509
http://dx.doi.org/10.1016/0022-5193(75)90181-2
http://dx.doi.org/10.1016/0022-5193(75)90181-2
http://dx.doi.org/10.1016/0022-5193(76)90146-6
http://dx.doi.org/10.1021/ci9000234
http://dx.doi.org/10.1021/ci9000234
http://dx.doi.org/10.1063/1.472902
http://dx.doi.org/10.1021/jp9842188
http://dx.doi.org/10.1063/1.2357932
http://dx.doi.org/10.1063/1.2357932
http://dx.doi.org/10.1021/jp076496p
http://dx.doi.org/10.1016/j.cplett.2003.09.076
http://dx.doi.org/10.1016/j.cplett.2003.09.076
http://dx.doi.org/10.1063/1.2786983
http://ndbserver.rutgers.edu/atlas/xray/structures/D/drb018/drb018.html
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probe the influence of the nucleic acid backbone and chemical surroundings on the
interaction of the intercalator with its host, and specifically consider solvent molecules
and counterions. Also, interaction energy profiles along an insertion path towards the major
groove and on a grid in the intercalation plane show that electrostatic effects can be used to
reproduce the crystal structure position.41

Two appendices describe selected technical aspects of the presented research. The first
(Appendix A) is a description of the algorithms and code used to handle atomic multipole
moments and their transformations. Appendix B is a selective overview of open source tools
for automating computational chemistry tasks, concentrating on the parsing library cclib.42

Problems engaged in this work and its thematic scope were defined by relevant topics
from the literature that are currently investigated or unresolved. The main questions can be
summarized in five points:

1. Can a systematic study for small, model complexes reinforce the observation that, at
artifactually shortened intermolecular separations, electrostatic effects correlate better
with experimental results than the total interaction energy?

2. How well do long range interactions reproduce the total interaction strength at equilib-
rium, and how can this be measured statistically?

3. Do electrostatic interactions have a bearing on the stability of stacked nucleobases – if
so, to what accuracy and in what circumstances can electrostatic interactions be used
to reproduce or predict total interaction energies?

4. In what way can electrostatic interactions be used to understand the stability and posi-
tion of an intercalator between the Watson-Crick base pairs of a nucleic acid strand?

5. An intercalator bound between nucleobases interacts strongly with the side chain phos-
phate groups as well as with surrounding counterions and solvent; how large is the
influence of these groups and their various charge states?

In addition, two complementary methodological issues have been addressed:

∙ The basis set dependence of several interaction energy partitioning schemes, by compar-
ing their particular components for small dimers,

∙ Convergence of interactions obtained from atomic multipole expansions, and the role of
high ranks (above 4) in modeling charge redistribution during chemical reactions.

-

41Langner, K. M., Kędzierski, P., Sokalski, W. A., Leszczyński, J. J. Phys. Chem. B 2006, 110, 9720–9727.
42O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comp. Chem. 2008, 29, 839–845.

http://dx.doi.org/10.1021/jp056836b
http://dx.doi.org/{10.1002/jcc.20823}




2 First principles analyses of
noncovalent interactions

With courageous simplification, one might assert that the chemistry of the last century was
largely the chemistry of covalent bonding, whereas that of the present century is more likely to
be the chemistry of noncovalent binding.

Hans-Jörg Schneider
Binding Mechanisms in Supramolecular Complexes43

2.1 Introduction

Motivation for the above quote undoubtedly comes from the unprecedented amount of exper-
imental and theoretical findings on noncovalent bonding in the last decades. In his review,
Schneider points out that the utilization of intermolecular interactions is increasingly merg-
ing with historically dominant synthesis and structure characterization. He also stresses the
importance of chelation and similar molecular constructs, where the sum of interactions for a
number of centers in reversibly formed complexes leads to strengths comparable to those of
single covalent bonds.

Reviewing the subject from a different angle, Hobza et al.44 remark that covalent bonding is
one of the most successful concepts of modern science, but in many respects can be considered
a closed chapter after almost a hundred years of intense studies. In contrast, the grasp on
noncovalent binding is not as firm and disagreements often exist between experimental and
theoretical results. For example, although the ubiquitous hydrogen bond was suggested already
by 1930, its properties and role in certain contexts are still unclear. The reason for this is
arguably that, unlike for covalent bonds, the molecular environment has a strong influence
and is not always accounted for.

It is undisputed that intermolecular interactions are an important factor for the proper-
ties of many molecular systems and substances. Although their current understanding and
description is immature, especially for organic condensed phases,43 the principle theoretical
foundations have long been known.45 Considerable progress is being made in understanding
the nature of these interactions at the fundamental level, and ab initio theory has played a
central role in this progress.46

43Schneider, H.-J. Angew. Chem. Int. Ed. 2009, 48, 3924–3977.
44Hobza, P., Zahradnik, R., Muller-Dethlefs, K. Coll. Czech. Chem. Comm. 2006, 71, 443–531.
45Chałasiński, G., Gutowski, M. Chem. Rev. 1988, 88, 943–962.
46Chałasiński, G., Szczęśniak, M. M. Chem. Rev. 2000, 100, 4227 – 4252.

http://dx.doi.org/10.1002/anie.200802947
http://dx.doi.org/10.1135/cccc20060443
http://dx.doi.org/10.1021/cr00088a007
http://dx.doi.org/10.1021/cr990048z
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Similar to other quantum chemical ideas, the accepted perception of intermolecular inter-
actions relies on the Born-Oppenheimer separation of electronic and nuclear motions.47 The
assumption that the electronic part of the wave function relaxes instantaneously for any set
of fixed atom positions leads directly to a potential energy surface (PES) as a multidimen-
sional function of nuclear coordinates. Therefore, the quantum chemical interaction between
molecules reflects the mutual relaxation of only their electronic degrees of freedom. The in-
teraction energy 𝐸int for a system of 𝑁 components is in fact typically defined as a function
of fixed nuclear coordinates R𝑖 with 𝑖 spanning all fragments,48

𝐸int = 𝐸(R1, ..,R𝑁)−
𝑁∑︁
𝑖=1

𝐸𝑖(R𝑖). (2.1)

The Hamiltonian for the entire system yields the eigenvalue 𝐸, and 𝐸𝑖 are eigenvalues for the
Hamiltonians of isolated components, �̂�𝑖. The latter correspond to eigenstates of the time
independent Schrödinger equations �̂�𝑖𝜓𝑖 = 𝐸𝑖𝜓𝑖.

This definition can be extended with nuclear degrees of freedom by including the energies
needed to deform components from a chosen dissociation channel R0

𝑖 to their geometries in
the interacting complex. These are the deformation energies, 𝐸def(R

0
𝑖 → R𝑖), and together

with the interaction energy they comprise the binding energy 𝐸bind,

𝐸bind = 𝐸int +
𝑁∑︁
𝑖=1

𝐸def(R
0
𝑖 → R𝑖) = 𝐸(R1, ..,R𝑁)−

𝑁∑︁
𝑖=1

𝐸𝑖(R
0
𝑖 ). (2.2)

The binding energy understood in this way depends on two different sets of coordinates, R𝑖

and R0
𝑖 , which are not functionally related. For fixed dissociation channels, the binding energy

is equivalent to the total energy, differing by a constant, and for that reason it is often given as
a single number relative to a chosen energetic minimum or equilibrium geometry. Furthermore,
in order to compare directly with experiment, the binding energy needs to be complemented by
the difference in zero vibration energies between the complex and dissociated components. The
final sum is often termed the dissociation energy, because it corresponds to the experimental
energy needed to dissociate the complex.

From a phenomenological viewpoint, the interaction energy defined by (2.1) may seem
unreasonable in excluding fragment relaxation. It is physically impossible to keep an iso-
lated fragment in the geometry it assumes in the complex (R𝑖) without exerting extra force.
Conversely, it is even less probable for the electron wave function of a fragment to be in its
isolated state (𝜓0

𝑖 ) when embedded in the complex. In reality, the Born-Oppenheimer approx-
imation dictates that the electronic wave function assumes an eigenstate of the Hamiltonian
immediately after the position of any nuclei changes. When the nuclei of a molecule move by
infinitesimal distances, the electronic part of its wave function adiabatically goes through a
corresponding sequence of eigenstates, much like in a quasistatic thermodynamic process.

47Born, M., Oppenheimer, R. Annalen der Physik 1927, 84, 457–484.
48See p.684 in Piela, L. Ideas of Quantum Chemistry ; Elsevier, 2007.

http://dx.doi.org/10.1002/andp.19273892002
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Figure 2.1: Conceptual drawing of binding and interaction
energies as defined in (2.1) and (2.2). The solid line represents
the total energy during dissociation; the intermediate thin line
is the electrostatic component, or how fragments would inter-
act if their electronic wave functions remained unchanged by
mutual influence and the polarization approximation

∏︀
𝑖 𝜓

0
𝑖

were in force. Although the plot does not correspond to any
specific system, it is typical for hydrogen bonded dimers.

This idea is depicted in Fig. 2.1 by a generic
distance dependence of energy. The thick, solid
curve represents the total energy if the en-
tire system is relaxed at various stages of as-
sociation. The hashed line in turn represents
the procedure of deforming fragments at infi-
nite separation to their final geometries, moving
them closer and turning on the interaction only
at the equilibrium separation. Strictly speak-
ing, the two are equivalent with respect to a
constant, since all the energies discussed are po-
tential energy functions associated with a con-
servative force.

Another approximation is recognized when
more than one molecule is being considered, the
adiabatic separation of intramolecular and in-
termolecular degrees of freedom. If energies de-
termining the internal structure of molecules are significantly larger than noncovalent interac-
tions, then intermolecular and intramolecular vibrations can be legitimately separated.

Although the interaction energy is defined for fixed nuclear coordinates, monomer deforma-
tion effects depend on intermolecular separation and in general influence the PES. Calculated
potentials normally assume rigid monomers for simplicity, however it is not obvious which in-
tramolecular conformations to use49 and approaches to obtaining flexible monomer potentials
have been discussed in the literature.50

The most straightforward way to express the interaction energy is in a supermolecular
fashion, by simply following the definition of (2.1). In the case of two molecules A and B, this
is the difference between the energy of their dimer and in isolation,

∆𝐸AB = 𝐸AB − 𝐸A − 𝐸B. (2.3)

When adopting the supermolecular approach, it is important to employ the same size-
consistent method in calculating all energies; in practice, this means that at infinite separation
𝐸AB should reduce to 𝐸A + 𝐸B. In other words, the interaction energy tends to zero. For
a larger number of constituents, the total interaction energy can be partitioned into dimer
interaction energies and many-body interactions involving three or more monomers,46

𝐸int = ∆𝐸(2− body) + ∆𝐸(3− body) + ...+ ∆𝐸(N− body). (2.4)

49Jeziorska et al. have demonstrated that vibrationally averaged monomer geometries are superior to equilib-
rium ones for Ar· · ·HF, and and that the relaxation energy or change in potential due to monomer deformation
is below the accuracy of electronic structure methods; for details, see Jeziorska, M., Jankowski, P., Szalewicz,
K., Jeziorski, B. J. Chem. Phys. 2000, 113, 2957–2968.
50Murdachaew, G., Szalewicz, K. Faraday Discuss. 2001, 118, 121–142; Murdachaew, G., Szalewicz, K.,

Bukowski, R. Phys. Rev. Lett. 2002, 88, 123202; Jankowski, P. J. Chem. Phys. 2004, 121, 1655–1662.

http://dx.doi.org/10.1063/1.1287058
http://dx.doi.org/10.1039/b009748i
http://dx.doi.org/10.1103/PhysRevLett.88.123202
http://dx.doi.org/10.1063/1.1766293
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2.1.1 Basis set superposition error

All of the interaction energies and other results presented in this dissertation are based on
standard modern quantum chemistry methods – among others the LCAO molecular orbital
framework, Hartree-Fock and other self-consistent field procedures,51 second order Möller-
Plesset theory (MP2)52, coupled cluster approaches53 and other methods for approximating
the wave function of molecules. Without repeating textbook knowledge from applied quantum
chemistry,54 it is perhaps fitting to highlight just one recurring problem for calculations of van
der Waals complexes, namely basis set superposition error (BSSE).

BSSE manifests itself in “uncorrected” calculations of the supermolecular interaction en-
ergy, for example when different basis sets are used for calculating the dimer energy 𝐸AB and
monomer energies 𝐸A and 𝐸B in (2.3). These basis sets are typically different in the sense
that the dimer calculation contains the functions used in both monomer calculations, but the
monomer calculations only use subsets of functions centered on one monomer’s nuclei. Since
in the dimer, monomers can use the one electron basis set of their partners, the total energy
will be artificially lowered compared to that of the monomers. This unmatched extension of
the monomer basis set in dimer calculations lowers the energy by virtue of the variational
principle and in itself is an improvement as pointed out by Duijneveldt et al.55 The problem is
in the mismatching of basis sets use to generate energies that are subtracted. In many cases
this effect has been shown to be around a few kcal/mol, which is comparable to or even larger
than the interaction energies of some van der Waals complexes.

The BSSE becomes smaller when larger basis sets are used, as the imbalance between
fragments and their complexes diminishes. Obviously, the best solution is to use basis sets
as large as possible, in practice available only for the smallest of complexes. Extrapolation
to the basis set limit also helps to alleviate the problem somewhat, demonstrated recently for
the helium dimer by Varandas.56

The error due to unbalanced basis sets can be avoided entirely in calculations of the
supermolecule interaction energy by using the function counterpoise version advocated by
Boys and Bernardi,57

∆𝐸CP
AB = 𝐸𝛼∪𝛽

AB − 𝐸
𝛼∪𝛽
A − 𝐸𝛼∪𝛽

B . (2.5)

where 𝛼 and 𝛽 denote the basis sets of the respective monomers A and B, and 𝛼 ∪ 𝛽 is their
union. This definition is free of BSSE in the sense explained in the previous paragraphs,
because it treats monomers as if they were a sub-case of the entire complex and matches their
basis sets to that of the dimer.

Most calculations do not use the interaction energy to optimize the geometries of noncova-

51Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69–89.
52Møller, C., Plesset, M. S. Phys. Rev. 1934, 46, 618–622.
53Č́ıžek, J. J. Chem. Phys. 1966, 45, 4256–4266.
54Cramer, C. J. Essentials of Computational Chemistry, 2nd ed.; Wiley, 2004; Lowe, J. P., Peterson, K. A.

Quantum Chemistry, 3rd ed.; Elsevier, 2006.
55Duijneveldt, F., Duijneveldt-van de Rijdt, J., Lenthe, J. Chem. Rev. 1994, 94, 1873–1885.
56Varandas, A. J. C. Theor. Chem. Acc. 2008, 119, 511–521.
57Boys, S. F., Bernardi, F. Mol. Phys. 1970, 19, 553–&.

http://dx.doi.org/10.1103/RevModPhys.23.69
http://dx.doi.org/10.1103/PhysRev.46.618
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1021/cr00031a007
http://dx.doi.org/10.1007/s00214-008-0419-6
http://dx.doi.org/10.1080/00268977000101561
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lent complexes, but simply follow the total energy to its minimum. In this case a counterpoise
(CP) correction equivalent to (2.5) can be added to the system’s energy, which is also called
the matching error and is the popular definition of basis set superposition error:55

𝛿CP =
(︁
𝐸𝛼

A − 𝐸
𝛼∪𝛽
A

)︁
+
(︁
𝐸𝛽

B − 𝐸
𝛼∪𝛽
B

)︁
. (2.6)

It is important to stress that in their seminal article, reprinted thirty years later58, Boys
and Bernardi applied the CP correction to two interacting atoms. They expressed concern
that “it will still be a moderately difficult matter to put this method into operation for
interesting [large] molecules”. The extension of their principle to interactions between many-
atom molecules, although widely used, has raised controversy in the literature as to how to
obtain intermolecular interaction energies that are free of BSSE. Most of these controversies
stem from using (2.6) to correct for BSSE instead of the function counterpoise approach of
(2.5), and have persisted throughout the last three decades with a steady output of occasionally
inconsistent reports.

The first of the controversies concerns whether or not and when the CP correction should be
used at all, and what part of the dimer basis set 𝛼∪𝛽 to use. For example, after performing an
extensive study of the HF dimer, with the medium-sized basis sets available in 1985, Schwenke
and Truhlar concluded that the CP-corrected interaction energy is not more reliable than its
uncorrected counterpart in terms of statistical spread and trends.59 They also considered
using only the virtual or polarization functions of 𝛼 ∪ 𝛽 in calculating 𝛿CP, an approach that
Szczęśniak and Scheiner argue against in the case of the water dimer.60 This particular issue
was later resolved by Gutowski and others61 and reviewed in 1994 by Duijneveldt et al.,55

who dispel the question whether BSSE overcorrects the interaction energy. They point out
that the CP correction in principle does not lead to a better result that is closer to the exact
interaction energy – BSSE is caused by 𝛼∪ 𝛽 being more complete than 𝛼 or 𝛽 alone, and by
removing BSSE one cannot remove the incompleteness of 𝛼 ∪ 𝛽 or the approximate nature of
the computational method chosen.

Additional problems arise when systems beyond dimers are considered. As pointed out by
Mierzwicki and Latajka,62 there is no general consensus on how to apply posterior corrections
or the function counterpoise recipe to many-body interactions. Also, it is worth noting that the
relative imbalance of basis sets that causes BSSE influences not only the energy. Salvador et
al. have investigated the BSSE footprint on the electron density of (HF)2 and other systems
van der Waals complexes,63 and Skwara et al. propose and calculate BSSE effects in terms of
interaction-induced properties.64

58Boys, S. F., Bernardi, F. Mol. Phys. 2002, 100, 65 – 73.
59Schwenke, D. W., Truhlar, D. G. J. Chem. Phys. 1985, 82, 2418–2426.
60Szczęśniak, M. M., Scheiner, S. J. Chem. Phys. 1986, 84, 6328 – 6335.
61Gutowski, M., Duijneveldt-van de Rijdt, J., Lenthe, J. J. Chem. Phys. 1993, 98, 4728–4727.
62Mierzwicki, K., Latajka, Z. Chem. Phys. Lett. 2000, 325, 465–472; Mierzwicki, K., Latajka, Z. Chem.

Phys. Lett. 2003, 380, 654–664.
63Salvador, P., Fradera, X., Duran, M. J. Chem. Phys. 2000, 112, 10106–10115; Salvador, P., Fradera, X.,

Duran, M. Int. J. Quant. Chem. 2009, 109, 2572–2580.
64Skwara, B., Bartkowiak, W., Da Silva, D. L. Theor. Chem. Acc. 2009, 122, 127–136.
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Many accounts have been given of how BSSE affects the potential energy surface of nonco-
valently bound complexes. Dannenberg and coworkers investigated this influence for various
hydrogen bonded dimers65 and for the water dimer at various levels of theory66, as well as
for transition states.67 More recently, Thar et al. report the magnitude of BSSE in the water
dimer along molecular dynamics (MD) trajectories that describe the dissociation of one water
molecule, in particular that the error increases for shorter O· · ·H distances.68

BSSE has also been investigated for a number of hydrated complexes by Garden et al.69,
and Suhai with coworkers have surveyed various basis sets in hydrogen bonded complexes,
with the general conclusion that intermolecular distances should be corrected for BSSE when
extrapolated to the complete basis set (CBS) limit.70

Large, folded molecules have also been considered, for example a tripeptide by Valdés et
al..71 It is not always clear, however, if BSSE actually changes the shape of the PES quali-
tatively, as in the case of the dipeptide Tyr-Gly studied by Shields and van Mourik.72 BSSE
corrections have been shown to be important for some anion-𝜋 complexes73 and for the ener-
getics of water addition to charged metal ions that exhibit strong dipole-dipole interactions.74

The example of benzenium and ethene provides an intriguing, recent history – where the
nonexistence of the ionic complex had first been attributed to BSSE75 and later explained by
the overestimation of correlation in the MP2 method.76 Nonplanarity in benzene and other
aromatic molecules has also recently been attributed to BSSE.77 The sensitivity of these errors
and how they are tied with the method and basis set used has also been the topic of recent
controversy concerning new density functionals for nucleic acid bases.78 Such questions are
particularly important for studies relying on exact equilibrium geometries or vibrational data.

It is legitimate therefore to ask whether the total energy of a complex ∆𝐸AB should be
corrected for the intermolecular BSSE, and the short answer is yes since the interaction energy
constitutes a part of it. For example, Simon et al. advance a CP-corrected total energy ob-
tained by adding 𝐸𝛼

A+𝐸𝛽
B to both sides of (2.6),65 a formulation that is currently implemented

in an automatic CP-corrected geometry optimization option in Gaussian 03.

It is important to point out another controversy concerning BSSE, originating from the

65Simon, S., Duran, M., Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024–11031.
66Simon, S., Duran, M., Dannenberg, J. J. J. Phys. Chem. A 1999, 103, 1640–1643.
67Kobko, N., Dannenberg, J. J. J. Phys. Chem. A 2001, 105, 1944–1950.
68Thar, J., Hovorka, R., Kirchner, B. J. Chem. Theor. Comp. 2007, 3, 1510–1517.
69Garden, A. L., Lane, J. R., Kjaergaard, H. G. J. Chem. Phys. 2006, 125, 144317–7.
70Paizs, B., Salvador, P., Császár, A. G., Duran, M., Suhai, S. J. Comp. Chem. 2001, 22, 196–207; Salvador,

P., Paizs, B., Duran, M., Suhai, S. J. Comp. Chem. 2001, 22, 765–786.
71Valdés, H., Klusák, V., Pitoňák, M., Exner, O., Starý, I., Hobza, P., Rulǐsék, L. J. Comp. Chem. 2008,

29, 861–870.
72Shields, A. E., Mourik, T. J. Phys. Chem. A 2007, 111, 13272–13277.
73Escudero, D., Frontera, A., Quiñonero, D., Deya, P. M. Chem. Phys. Lett. 2008, 455, 325–330.
74Kvamme, B., Wander, M. C. F., Clark, A. E. Int. J. Quant. Chem. 2009, 109, 2474–2481.
75Mourik, T. J. Phys. Chem. A 2008, 112, 11017–11020.
76Schwabe, T., Grimme, S. J. Phys. Chem. A 2009, 113, 3005–3008.
77Asturiol, D., Duran, M., Salvador, P. J. Chem. Phys. 2008, 128, 10.1063/1.2902974; Asturiol, D.,

Duran, M., Salvador, P. J. Chem. Theor. Comp. 2009, 5, 2574–2581.
78Mourik, T. Chem. Phys. Lett. 2009, 473, 206–208; Gu, J. D., Wang, J., Leszczyński, J., Xie, Y., Schaefer

III, H. F. Chem. Phys. Lett. 2009, 473, 209–210.
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attempt by Xantheas to relate BSSE to “large fragment relaxation” (𝐸def ≫ 1 kcal/mol) and
to adopt a unique form of the CP correction that aims to include monomer deformation.79

This was pointed out to be an unnecessary complication by Szalewicz and Jeziorski two years
later,80 where they also make a number of excellent theoretical and practical arguments for
the use of only (2.1) to study interactions energies between molecules.

As discussed a few paragraphs above, adding fragment deformation energies to the inter-
action energy is equivalent to adding the relaxed monomer energies 𝐸𝑖(R0) to the total dimer
energy, assuming the same basis set is used throughout. Since the relaxed monomer energies
do not depend on intermolecular coordinates, this is strictly a trivial addition of a constant
to the total energy. Moreover, as pointed out before, the interaction energy is a potential
function and the conceptual route taken from the dissociated monomers to the final complex
will not influence the total energy change. This means that the interaction and deformation
energies can be attained in entirely separate calculations.

Nonetheless, the viewpoint advanced by Xantheas79 and the acceptance of (2.2) over (2.1)
in practice, as well as complications caused by applying BSSE removal schemes to the binding
energy have taken root in the literature.81 In most cases this is not an important practical
issue since the deformation energy of a monomer is by definition small due to the weak nature
of intermolecular interactions.49

An interesting notion of “intramolecular BSSE” was pointed out by Jensen,82 where he
showed that there is a superposition error associated with the change in the positions of
individual basis functions between different geometries of the same molecule. In the context
of the above discussion, this effect will also influence the deformation energy. More recently,
Galano and Alvarez-Idaboy considered the intramolecular imbalances of basis set functions
between individual atoms and their contribution to the conventional counterpoise correction.83

As a final note on this topic, the adequacy of the function counterpoise approach has been
confirmed by independent Hartree-Fock and correlated interaction energies. In particular, the
chemical Hamiltonian approach (CHA) devised by Mayer attempts to prevent basis set mixing
in dimer calculations from the onset, by removing terms from the Hamiltonian that contain
projections between orbitals of two different monomers.84 Although the implementation of the
CHA method is not publicly available, it has been reported to agree with results obtained
using the functional counterpoise approach, with differences between them decaying faster
than the superposition error itself.85

79Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821–8824.
80Szalewicz, K., Jeziorski, B. J. Chem. Phys. 1998, 109, 1198–1200.
81Lendvay, G., Mayer, I. Chem. Phys. Lett. 1998, 297, 365–373; Rayon, V. M., Sordo, J. A. Theor. Chem.

Acc. 1998, 99, 68–70; Sordo, J. A. J. Mol. Struct.: THEOCHEM 2001, 537, 245–251.
82Jensen, F. Chem. Phys. Lett. 1996, 261, 633–636.
83Galano, A., Alvarez-Idaboy, J. R. J. Comp. Chem. 2006, 27, 1203 – 1210.
84Reviewed at various levels of theory in Mayer, I. Int. J. Quant. Chem. 1998, 70, 41–63.
85Mayer, I., Valiron, P. J. Chem. Phys. 1998, 109, 3360–3373.
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2.2 Methods for analyzing weak interaction energies

Alongside the total intermolecular interaction energy it is helpful to obtain information about
its physical origin, especially as a first step in the parametrization of force fields and other
empirical methods, which employ different functional forms to model various interaction terms.
An overview follows of methods commonly used to analyze intermolecular interactions, with
special focus on symmetry-adapted perturbation theory (SAPT) and the hybrid variation-
perturbation approach, which is used throughout this work.

In relation to the previous discussion, it should be mentioned that perturbation theories
consider the interaction between two monomers as a series of corrections monomer wave func-
tion derivable in analytical form, and therefore do not suffer from basis set superposition error
in meaning conveyed by (2.6). They are still susceptible, however, to various kinds of basis set
extension and truncation effects, and can be performed for both monomer (monomer centered,
MCBS) or dimer basis sets (dimer centered, DCBS).

2.2.1 Symmetry-adapted perturbation theory

The formulation of symmetry-adapted perturbation theory for closed-shell monomers typically
starts by presenting the supermolecular Hamiltonian �̂� as a sum of a Hamiltonian for non-
interacting monomers �̂�0 and an interaction operator 𝑉 86. The former is divided further
into Fock and fluctuation operators for the isolated monomer as introduced by Möller and
Plesset52:

�̂� = �̂�0 + 𝑉 = 𝐹𝐴 + 𝐹𝐵 + �̂�𝐴 + �̂�𝐵 + 𝑉 , (2.7)

where 𝐹𝐴 and 𝐹𝐵 are the Fock operators for monomer A and B, respectively, and �̂�𝐴 and
�̂�𝐵 are the corresponding intramonomer correlation operators. When not interacting, the
monomers are described by two independent Hamiltonians, which means that 𝐻0 = 𝐻𝐴

0 +

𝐻𝐵
0 . Solving the Schrödinger equation 𝐻0𝜑0 = 𝐸0𝜑0 therefore yields additive eigenvalues

(𝐸0 = 𝐸𝐴
0 + 𝐸𝐵

0 ) and corresponding separate eigenfunctions in the zeroth-order polarization
approximation,

𝜑0 = 𝜑𝐴0 𝜑
𝐵
0 . (2.8)

The interaction energy derived from double perturbation theory is a series of polarization
energies and exchange terms originating from symmetry adaptation:87

𝐸𝑖𝑛𝑡 =
∞∑︁
𝑛=1

∞∑︁
𝑗=0

(︁
𝐸

(𝑛𝑗)
𝑝𝑜𝑙 + 𝐸

(𝑛𝑗)
𝑒𝑥𝑐ℎ

)︁
, (2.9)

where 𝑛 and 𝑗 indicate the orders of intermolecular interaction and intramolecular electron
correlation, connected respectively to the operators 𝑉 and �̂�𝐴 +�̂�𝐵 in (2.7).

86Jeziorski, B., Moszyński, R., Szalewicz, K. Chem. Rev. 1994, 94, 1887–1930.
87The double expansion is discussed on pages 53-56 in Moszyński, R. “Theory of Iintermolecular Forces: an

Introductory Account ” in: Sokalski, W. A., Leszczynski, J., eds.; Challanges and Advances in Computational
Chemistry and Physics, Vol. 4; Springer, 2007; Chapter 1, 1–152.
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The first order polarization energy is equivalent to the classical electrostatic interaction,88

in other words the interaction between unperturbed electron densities of isolated monomers:

𝐸
(10)
pol = ⟨𝜑𝐴0 𝜑𝐵0 |𝑉 |𝜑𝐴0 𝜑𝐵0 ⟩. (2.10)

The following definition of the first order energy in SAPT (left side) is equivalent to the
Heitler-London energy (right side):

𝐸(1) =
⟨𝜑0|𝑉 |𝒜𝜑0⟩
⟨𝜑0|𝒜𝜑0⟩

≃ ∆𝐸
(1)
HL =

⟨𝒜𝜑0|�̂� − 𝐸0|𝒜𝜑0⟩
⟨𝒜𝜑0|𝒜𝜑0⟩

, (2.11)

where 𝒜 is the antisymmetrizer or antisymmetrizing operator.89 If 𝜑0 is an exact eigenfunction
of 𝐻0, then this becomes an equivalence, but in general a small correction needs to be added
to the right hand side, which is called the Murrell delta 𝛿(0)𝑀 .90

By breaking down the antisymmetrizer and counting permutations that exchange at least
one pair of electrons between monomers as described by Duijneveldt,91 the first order energy
can be written as the sum of the first order electrostatic and exchange contributions:

𝐸
(10)
exch =

⟨𝜑0|(𝑉 − 𝐸(10)
pol )𝒫𝜑0⟩

1 + ⟨𝜑0|𝒫𝜑0⟩
= 𝐸(1) − 𝐸(10)

pol , (2.12)

where the cumulative transposition operator 𝒫 collects all the mentioned permutations with
appropriate sign. It is very costly to calculate 𝐸(10)

exch directly with no approximations, because
the exchange operators included in 𝒫 cannot be expressed in terms of monomer properties. For
this reason, the approximate equality in (2.11) is sometimes used (as in the hybrid method de-
scribed in Section 2.2.3) and the first exchange contribution is then computed as the difference
between ∆𝐸

(1)
HL and 𝐸

(10)
pol .

Second order polarization contributions are expressed using the reduced resolvent operator
�̂�0, which is defined by a spectral expansion over the excited eigenstates of �̂�0. These second
order effects are divided into induction and dispersion components:

𝐸
(2𝑗)
pol = −⟨𝜑0|𝑉 �̄�0𝑉 |𝜑0⟩ = 𝐸

(2𝑗)
ind + 𝐸

(2𝑗)
disp. (2.13)

The induction term 𝐸
(20)
ind consists of separate contributions arising from both dimers:

𝐸
(20)
ind = 𝐸

(20)
ind (𝐴) + 𝐸

(20)
ind (𝐵) = −(⟨Φ𝐴|Ω𝐵�̂�

𝐴
0 Ω𝐵|Φ𝐴⟩+ ⟨Φ𝐵|Ω𝐴�̂�

𝐵
0 Ω𝐴|Φ𝐵⟩), (2.14)

where Ω𝐴 is the electrostatic potential operator for the unperturbed monomer A and the
resolvent �̂�𝐵

0 contains only those terms in the spectral expansion involving the ground state
of A and an exited state of B. Therefore 𝐸(20)

ind (𝐵) is the energy correction due to monomer

88The interaction terms introduced here and their interpretation are detailed on pages 27-36, ibid.
89See p.248 in Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed.; Clarendon, 1958.
90Jeziorski, B., Bulski, M., Piela, L. Int. J. Quant. Chem. 1976, 10, 281–297.
91Duijneveldt-van de Rijdt, J., Duijneveldt, F. Chem. Phys. Lett. 1972, 17, 425–427.
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B being polarized by the static electron density around monomer A, induced nominally by a
corresponding modification in the wave function of monomer B.

Second order dispersion is defined as the difference between 𝐸
(20)
pol and 𝐸

(20)
ind , but can be

calculated directly:
𝐸

(20)
disp = −⟨𝜑0|𝑉 �̂�𝐴𝐵

0 𝑉 |𝜑0⟩ ≡ 𝐸
(20)
pol − 𝐸

(20)
ind . (2.15)

In the definition on the left, �̂�𝐴𝐵
0 contains only excited states from both monomers, which

means that the dispersion component is by definition a purely intermolecular effect and rep-
resents the interaction between instantaneous electron density fluctuations.

Second order exchange interactions couple polarization and exchange effects. Building
on (2.13), they are naturally categorized into contributions pertaining to the induction and
dispersion corrections, thus yielding exchange-induction and exchange-dispersion terms:

𝐸
(2𝑗)
exch = 𝐸

(2𝑗)
ex−ind + 𝐸

(2𝑗)
exch−disp, (2.16)

which can be understood as resulting from the antisymmetrization of locally excited wave
functions.

The third order polarization energy can be analogically written as a sum of appropriate
induction, dispersion and a mixed induction-dispersion terms. Involving the polarization of
both monomers or quadratic effects, these contributions are harder to interpret and are not
easily expressible in terms of monomer properties.

In order to relate perturbation results to supermolecular calculations, it is necessary to
determine which SAPT terms compose the interaction energy calculated based on Hartree-
Fock, MP2 and other methods. Another issue is whether the supermolecular interaction
energy that is compared with should be corrected for basis set superposition error. The latter
problem has largely been settled by a consensus to consistently use the functional counterpoise
method.87

In the case of Hartree-Fock (HF) calculations, the supermolecular interaction energy can
be recovered by collecting low order contributions from the the SAPT approach:

𝐸𝐻𝐹
𝑖𝑛𝑡 = 𝐸

(10)
pol + 𝐸

(10)
exch + 𝐸

(20)
ind,resp + 𝐸

(20)
ex−ind,r + 𝛿𝐸𝐻𝐹

𝑖𝑛𝑡,𝑟𝑒𝑠𝑝. (2.17)

where the subscript resp means that orbital relaxation effects were considered. The term
𝛿𝐸𝐻𝐹

𝑖𝑛𝑡,𝑟𝑒𝑠𝑝 includes all third and higher order induction and exchange-induction effects entering
the Hartree-Fock interaction energy, and can be interpreted using an exchange-deformation
concept formulated by Moszyński et al.92

At the MP2 level of theory, the following ansatz was proposed and shown to be reasonable
in the case of the helium dimer,93

∆𝐸MP2 u 𝐸𝐻𝐹
𝑖𝑛𝑡 + 𝐸

(12)
pol,resp + 𝐸

(22)
ind,resp + 𝐸

(20)
disp + 𝐸

(11)
exch + 𝐸

(12)
exch + 𝐸

(20)
exch−disp. (2.18)

92Moszyński, R., Heijmen, T. G. A., Jeziorski, B. Mol. Phys. 1996, 88, 741–758.
93Bukowski, R., Jeziorski, B., Szalewicz, K. J. Chem. Phys. 1996, 104, 3306–3319.
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Therefore, the supermolecular MP2 interaction energy contains the leading second order elec-
trostatic and intramonomer induction corrections as well as the major part of the dispersion
energy 𝐸(20)

disp .

While the procedures employed within SAPT provide very accurate values for the disper-
sion energy 𝐸

(20)
disp as well as other components, it scales steeply with the number of atoms,

roughly as 𝑁7. Recently, a SAPT variant based on density functional theory has been devel-
oped that reduces somewhat this severe limitation, although motivated rather by the reported
failures of supermolecular density functional theory (DFT) calculations to predict van der
Waals interactions where dispersion is of importance. The polarization terms (electrostatic,
induction and dispersion) are calculated based on electron densities obtained from DFT com-
putations and time-dependent DFT results. Williams and Chabalowski introduced the first
combination of these methods94, followed by another formulation by Jansen and Heßelmann95

and a related method for calculating the dispersion energy from TD-DFT monomer response
functions.96

2.2.2 Analyses based on variational methods

Besides the explicit derivation of contributions to the interaction energy by perturbation meth-
ods, there have also been efforts to analyze interactions by modifying the Fock matrix or vectors
representing the dimer wave function. One of the first of such attempts can be traced back to
Kollman and coworkers,97 nonetheless the most widely adopted energy decomposition analy-
sis of this type (abbreviated by EDA throughout) was proposed by Kitaura and Morokuma.
The scheme, described initially by Morokuma alone in 1971,98 removes atomic orbital inte-
grals from the Fock matrix and energy expressions if they are not involved in a particular
type of interaction. The Hartree-Fock interaction energy is divided into four contributions by
following total energy changes after removing the appropriate elements,

∆𝐸RHF = ∆𝐸el + ∆𝐸ex + ∆𝐸pol + ∆𝐸CT. (2.19)

The first of these contributions is obtained from the expectation value of the Hamiltonian
using monomer wave functions while neglecting integrals that combine orbitals from different
monomers. This is in principle the sum of monomer HF energies and the electrostatic inter-
action between them. After subtracting the monomer energies, the electrostatic component
is obtained, marked by ∆𝐸el. The second contribution arises after including intermolecular
overlap effects in the energy computation, thus including the Pauli repulsive exchange effects
with ∆𝐸ex. This can be shown to be equal to the Heitler-London interaction energy defined

94Williams, H. L., Chabalowski, C. F. J. Phys. Chem. A 2001, 105, 646–659.
95Jansen, G., Heßelmann, A. J. Phys. Chem. A 2001, 105, 11156–11157; Heßelmann, A., Jansen, G. Chem.

Phys. Lett. 2002, 362, 319–325.
96Misquitta, A. J., Jeziorski, B., Szalewicz, K. Phys. Rev. Lett. 2003, 91, 033201; Misquitta, A. J.,

Podeszwa, R., Jeziorski, B., Szalewicz, K. J. Chem. Phys. 2005, 123, 214103.
97Kollman, P. A., Allen, L. C. Theor. Chim. Acta 1970, 18, 399–403.
98Morokuma, K. J. Chem. Phys. 1971, 55, 1236–1244.
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in (2.11) accurately to the order of the Landshoff and Murrell delta terms.99

In the third step suggested by Morokuma, the Hartree-Fock equations are iterated until
consistency is reached while rejecting the same Fock matrix elements as in the first step. This
leads to orbitals for each monomer that are distorted self-consistently by the electrostatic field
of the other, which means that the extra contribution introduced in this step contains purely
intermolecular induction effects (of the second and all higher orders). Morokuma called this
contribution the polarization term, ∆𝐸pol.

Finally, in the last step the complete orbitals for the dimer are treated with the Hartree-
Fock procedure, which produces the total Hartree-Fock energy. In the original paper by
Morokuma,98 the additional energy introduced after this step is attributed to charge transfer
effects (∆𝐸CT). The charge transfer term defined in this way is often surprisingly large, due to
basis set superposition error, and in 1976, with Kitaura, Morokuma introduced modifications
to the original scheme.100 The charge transfer term was redefined, and the remaining portion
of the Hartree-Fock interaction energy gathered in a mixing term, ∆𝐸KM

mix . In all, within the
second formulation the total self-consistent Hartree-Fock interaction energy is expressed as
the sum,

∆𝐸RHF = ∆𝐸KM
el + ∆𝐸KM

ex + ∆𝐸KM
pol + ∆𝐸KM

CT + ∆𝐸KM
mix . (2.20)

The superscript KM will be used throughout this dissertation to mark terms from the
second, Kitaura-Morokuma scheme, as implemented in GAMESS. The method has also been
extended in GAMESS to many-body systems by Chen and Gordon.101

The four components in the 1976 scheme are usually discussed in a similar way to the orig-
inally proposed procedure, namely within the framework of electron exchange and promotion
between the occupied and unoccupied molecular orbitals of interacting monomers. To shorty
recapitulate, the first contribution ∆𝐸KM

el is the classical electrostatic interaction between the
occupied molecular orbitals of two monomers in their monomer basis sets. Exchange effects
between occupied orbitals described by ∆𝐸KM

ex cause electron exchange and delocalization be-
tween molecules. The polarization contribution ∆𝐸KM

pol accounts for the promotion of electrons
into vacant orbitals of the same molecule, and the charge transfer term ∆𝐸KM

CT results from
intermonomer mixing of occupied and unoccupied orbitals. The last term, ∆𝐸KM

mix , gathers the
remaining part of the Hartree-Fock interaction energy.

It should be mentioned that in the original Kitaura-Morokuma formulation and implemen-
tation the monomer energies are calculated in their isolated basis set, so that ∆𝐸RHF as well as
all of the components obtained in the scheme will be polluted by basis set superposition error.
The issues has been addressed by applying the function counterpoise correction (see (2.5) and
the related discussion) to the Kitaura-Morokuma analysis, as proposed by Sokalski et al.102

and later by Cammi et al.103 The counterpoise-corrected exchange and charge-transfer terms
as defined by Cammi will be denoted everywhere by ∆𝐸EX,CP

ex and ∆𝐸KM,CP
CT , respectively,

99See page 65 in Moszyński, 2007, in Ref. 87 on page 16.
100Kitaura, K., Morokuma, K. Int. J. Quant. Chem. 1976, 10, 325–340.
101Chen, W., Gordon, M. S. J. Phys. Chem. 1996, 100, 14316–14328.
102Sokalski, W. A., Roszak, S., Hariharan, P. C., Kaufman, J. J. Int. J. Quant. Chem. 1983, 23, 847–854.
103Cammi, R., Bonaccorsi, R., Tomasi, J. Theor. Chim. Acta 1985, 68, 271–283.
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following Gordon and coworkers.101

Another criticism of the KM scheme was that the polarization and charge-transfer terms
it produces do not obey the Pauli exclusion principle. This problem arises more subtly and is
connected to the way charge transfer is constructed from exchanges between unoccupied and
occupied orbitals of different monomers. In practice, the result is that ∆𝐸KM

pol and ∆𝐸KM
CT do

not converge to an asymptotic limit as the basis set becomes more complete. Two early
variants of the basic EDA scheme address this issue – the constrained space orbital variation
(CSOV) method proposed by Bagus et al.104 and reduced variational space (RVS) of Stevens
and Fink105 – both employ a group function approach to ensure that all wave functions used
in the procedure do satisfy the Pauli exclusion principle. Functional counterpoise Kitaura-
Morokuma as defined by Cammi and RVS methods were implemented in GAMESS and both
were extended by Chen and Gordon with a treatment of many-body contributions; they ob-
served that the Kitaura-Morokuma charge transfer term is strongly disrupted by BSSE as well
as strong orbital interactions.101

In a recent work, Stone and Misquitta have isolated the charge-transfer component of
the interaction energy within the framework of symmetry-adapted perturbation theory. Two
sources of charge-transfer contributions, the second order induction and exchange-induction
energies (see (2.14) and (2.16) below), largely cancel each other. This leaves a true charge-
transfer term of a few kJ/mol at equilibrium distances of hydrogen bonds, which is approxi-
mately proportional to the exchange component and is even smaller for other charge transfer
complexes.

Further modifications to the Kitaura-Morokuma decomposition scheme have been intro-
duced by other researchers. Glendening and Streitwieser combine the supermolecule and
fragment wave functions with the natural bond orbital (NBO) method in their natural energy
decomposition analysis (NEDA).106 Mo and coworkers implemented the Kitaura-Morokuma
EDA scheme using the block-localized wave function (BLW) method, which inherently corrects
for basis set superposition error and exhibits improved basis set stability.107 Head-Gordon and
coworkers on the other hand have recently proposed an EDA scheme based on absolutely
localized molecular orbitals.108

An more stable EDA scheme has been very recently implemented in GAMESS by Su and
Li109 with the additional advantage of being applicable to open shell wave functions, lending
it possible to analyzes covalent bonds. In the restricted Hartree-Fock case at large distances
their approach is equivalent to the Kitaura-Morokuma procedure, with the difference that the
exchange component ∆𝐸KM

ex is separated into attractive and repulsive exchange contributions
∆𝐸SL

ex and ∆𝐸SL
rep. The higher order Morokuma charge transfer and polarization terms on the

104Bagus, P. S., Hermann, K., Bauschlicher, J. J. Chem. Phys. 1984, 80, 4378–4386.
105Stevens, W. J., Fink, W. H. Chem. Phys. Lett. 1987, 139, 15–22.
106Glendening, E. D., Streitwieser, A. J. Chem. Phys. 1994, 100, 2900–2909.
107Mo, Y., Gao, J., Peyerimhoff, S. D. J. Chem. Phys. 2000, 112, 5530–5538.
108Khaliullin, R. Z., Cobar, E. A., Lochan, R. C., Bell, A. T., Head-Gordon, M. J. Phys. Chem. A 2007,

111, 8753–8765.
109Su, P., Li, H. J. Chem. Phys. 2009, 131, 014102–15.

http://dx.doi.org/10.1063/1.447215
http://dx.doi.org/10.1016/0009-2614(87)80143-4
http://dx.doi.org/10.1063/1.466432
http://dx.doi.org/10.1063/1.481185
http://dx.doi.org/10.1021/jp073685z
http://dx.doi.org/10.1021/jp073685z
http://dx.doi.org/10.1063/1.3159673
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other hand are gathered into a single polarization term,

∆𝐸𝑆𝐿
RHF = ∆𝐸KM

el + ∆𝐸SL
ex + ∆𝐸SL

rep + ∆𝐸SL
pol. (2.21)

In their introduction of the method, Su an Li also show how this decomposition scheme
can be applied to the Kohn-Sham density functional energy, in which case a dispersion
also emerges. Other EDA-type decomposition schemes have also been reported for density
functional methods. For example, the extended transition state (ETS) scheme proposed by
Ziegler110 and implemented using Slater orbitals in ADF111 provides similar contributions
attributed to electrostatic, Pauli and orbital interactions.

With the growing computational resources in recent years, many of these energy decom-
position methods are routinely complemented by electron correlation terms. This correction
to the interaction energy is usually obtained by subtracting the interaction energy at the
Hartree-Fock level from the energy attained by Möller-Plesset or coupled cluster methods.
Such a correction will be the same for all decomposition schemes based on Hartree-Fock wave
function, and will not be discussed in detail here.

2.2.3 Hybrid variation-perturbation theory

Both of the non-empirical methods described above are confined to small or medium-sized
systems with in practice up to about 30 atoms112, although this limit is constantly being raised.
The major technical bottleneck in the case of the Morokuma scheme are the disk requirements
for storing and sifting through integrals, and in the case of SAPT the main limiting factor
are the atomic integral transformations for computing certain perturbation terms. In this
dissertation, most interaction energy calculations are performed using an alternate, hybrid
variation-perturbation theory (HVPT) approach that avoids both of these bottlenecks, but still
provides a reasonable amount of information on physically meaningful interaction components.

The HVPT approach is rooted in the functional counterpoise notion put forward by Boys
and Bernardi57 as discussed in Section 2.1.1, avoiding basis set superposition error by per-
forming calculations consistently in the basis set of the entire complex;113 the direct SCF
procedure114 is also central to reducing the amount of required disk space, thus increasing the
possible number of atomic orbitals that can be considered. The latest implementation of the
method was programmed in a customized version of GAMESS and augmented by correlation
corrections at the MP2 or coupled cluster levels.

This hybrid decomposition scheme of the total interaction energy can be expressed by an
equation, for example at the MP2 level, but it can also be expressed as a sequence of gradually

110Ziegler, T., Rauk, A. Theor. Chem. Acc. 1977, 46, 1–10; Mitoraj, M. P., Michalak, A., Ziegler, T. J.
Chem. Theor. Comp. 2009, 5, 962–975.
111Velde, G., Bickelhaupt, F. M., Baerends, E. J., Guerra, C. F., Gisbergen, S., Snijders, J. G., Ziegler, T.

J. Comp. Chem. 2001, 22, 931–967.
112Stone, A. J., Misquitta, A. J. Int. Rev. Phys. Chem. 2007, 26, 193–222.
113Sokalski, W. A., Roszak, S., Pecul, K. Chem. Phys. Lett. 1988, 153, 153–159.
114Almlöf, J., Faegri, K., Korsell, K. J. Comp. Chem. 1982, 3, 385–599; Haser, M., Ahlrichs, R. J. Comp.

Chem. 1989, 10, 104–111.

http://dx.doi.org/10.1007/BF00551648
http://dx.doi.org/10.1021/ct800503d
http://dx.doi.org/10.1021/ct800503d
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http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/10.1080/01442350601081931
http://dx.doi.org/10.1016/0009-2614(88)85203-5
http://dx.doi.org/10.1002/jcc.540030314
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more accurate components and levels of theory, bound below by advancing braces,

∆𝐸MP2 = ∆𝐸el,mtp + ∆𝐸el,pen + ∆𝐸(1)
ex + ∆𝐸

(R)
del⏟  ⏞  + ∆𝐸

(2)
disp + ∆𝐸corr,intra⏟  ⏞  . (2.22)

∆𝐸RHF⏟  ⏞  ∆𝐸corr

∆𝐸
(1)
HL⏟  ⏞  

∆𝐸
(1)
el

The second order Möller-Plesset interaction energy ∆𝐸MP2 is partitioned into a Hartree-Fock
energy ∆𝐸RHF and second-order electronic correlation correction ∆𝐸corr. The latter can be
further divided into contributions from inter-molecular dispersion ∆𝐸

(2)
disp and intramolecular

correlation ∆𝐸corr,intra. At the Hartree-Fock level, ∆𝐸RHF is decomposed into corresponding
electrostatic interactions ∆𝐸

(1)
el , Pauli exchange ∆𝐸

(1)
ex , and delocalization effects ∆𝐸

(R)
del .

The electrostatic component is calculated directly from the perturbation expression (2.10),

∆𝐸
(1)
el ≡ 𝐸

(10)
pol , (2.23)

and can be divided into multipole ∆𝐸el,mtp and penetration ∆𝐸el,pen contributions by esti-
mating the multipole term with distributed multipole moments,115 for example on atoms as
discussed later in Section 2.5.

The Heitler-London interaction energy ∆𝐸
(1)
HL is computed from the orbitals of isolated

monomers obtained after Gram-Schmidt orthogonalization, using the variational expression
in (2.11). The result is similar to what Kollman et al. originally called the electrostatic energy97

and it is close to the first order SAPT interaction energy as mentioned earlier, with the small
correction of the Murrell delta:

∆𝐸
(1)
HL = 𝐸(1) + 𝛿

(0)
𝑀 . (2.24)

Having obtained ∆𝐸
(1)
HL, the exchange component is calculated as the difference between it

and the first-order electrostatic interaction term,

∆𝐸(1)
ex = ∆𝐸

(1)
HL −∆𝐸

(1)
el . (2.25)

It is fitting here to note that other partitioning methods follow this line of thought until this
point, a notable example being the open-shell scheme used propsed and used by Cybulski et
al. which complements ∆𝐸

(1)
HL with higher order SAPT terms116. In HVPT, the problem that

there are a multitude of remaining interaction effects at the HF level, which cannot all be
interpreted in terms of SAPT components, is dealt with by simply accumulating them in a
term coined delocalization:

∆𝐸
(R)
del = ∆𝐸RHF −∆𝐸

(1)
HL. (2.26)

115See Section 2.4.1 for details about the Cartesian multipole expansion and Section 2.5 for a discussion of
distributed moments, including the CAMM and DMA methods.
116Cybulski, S. M., Burcl, R., Chałasiński, G., Szczęśniak, M. M. J. Chem. Phys. 1995, 103, 10116.

http://dx.doi.org/10.1063/1.469913
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SAPT HVPT physical interpretation

Δ𝐸RHF 𝐸
(10)
pol Δ𝐸

(1)
el electrostatic interaction between Hartree-Fock electron densities

𝐸
(10)
exch Δ𝐸

(1)
ex exchange repulsion between Hartree-Fock monomers

𝐸
(20)
ind

Δ𝐸
(R)
del

other effects complementing the Hartree-Fock energy; 𝐸
(20)
ind and

𝐸
(20)
ex−ind are induction and exchange induction components, re-

spectively, while 𝛿𝐸𝐻𝐹
𝑖𝑛𝑡,𝑟𝑒𝑠𝑝 combines the remaining effects

𝐸
(20)
ex−ind

𝛿𝐸𝐻𝐹
𝑖𝑛𝑡,𝑟𝑒𝑠𝑝

Δ𝐸MP2 𝐸
(20)
disp

Δ𝐸corr

intermolecular dispersion component

𝐸
(12)
pol

intramolecular second order Möller-Plesset correlation effects;
𝐸

(12)
pol is the electrostatic correction originating from MP2 den-

sities, and 𝐸
(11)
exch and 𝐸

(12)
exch is the excess exchange they cause

𝐸
(11)
exch

𝐸
(12)
exch

(others)

Table 2.1: Comparison of selected interaction energy components obtained using the SAPT and HVPT decomposition schemes,
along with their nomenclature and accepted physical interpretations. The terms in the SAPT column are defined in (2.10-2.18),
while the ones labeled by HVPT are described in (2.23).

Besides analyzing the interaction energy into physically meaningful parts, an important
idea conveyed by the HVPT scheme is the building of a hierarchy of theoretical models with
increasing completeness and computational cost. Conversely, knowing the interaction energy
profile allows an approximate level to be selected based on the most important interaction
effects, system size and available resources.

If a coupled cluster calculation is performed for the total interaction energy instead of
MP2, then (2.23) can be augmented by an additional correlation term 𝛿

CCSD(T)
corr that gathers

all correlation effects disjunct from the MP2 interaction energy:

∆𝐸CCSD(T) = ∆𝐸MP2 + 𝛿CCSD(T)
corr , (2.27)

where ∆𝐸CCSD(T) is the interaction energy at the appropriate coupled cluster level of the-
ory. Obviously, 𝛿CCSD(T)

corr or a variant without triple excitations can be calculated directly as
the difference between ∆𝐸CCSD(T) and ∆𝐸MP2. The progressive hierarchy of levels of theory
implicitly defined by (2.23) and a possible coupled cluster term is then

𝑉 (r𝑖)𝑞𝑖 ≺ ∆𝐸el,mtp ≺ ∆𝐸
(1)
el ≺ ∆𝐸

(1)
HL ≺ ∆𝐸RHF ≺ ∆𝐸MP2 ≺ ∆𝐸CCSD(T)

𝒪(𝑁at) 𝒪(𝑁2
at) 𝒪(𝑁4

AO) 𝒪(𝑁4
AO) 𝒪(𝑁4

AO) 𝒪(𝑁5
AO) 𝒪(𝑁7

AO)
(2.28)

where “≺” is used to indicate a “less than” binary relationship with respect to computational
cost and theoretical completeness (𝑁at is the number of atoms and 𝑁AO is the atomic orbital
count). The most left-hand side term 𝑉 (r𝑖)𝑞𝑖 is the sum of charge-potential products over all
atoms, the simplest atomic electrostatic model with practical value.

To date, the HVPT method has been used to investigate a number of noncovalently bound
systems, with one of the central goals being to describe the interaction of inhibitors with
enzyme active sites. Sokalski and coworkers have repeatedly analyzed such interactions, for
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example in the case of leucine analogs in the active site of leucine aminopeptidase (LAP),117

correlating the interaction energy at various levels of theory with inhibition constants obtained
experimentally. A similar study was performed for phenylalanine analogs118, again highlighting
the good correlation with experimental activities achieved by electrostatic interactions and
even potential-based estimates. More recent reports by Dyguda et al. also describe the action
in the case of phenylalanine ammonia-lyase (PAL)119 and urokinase.120

The nature of catalytic activity has also been addressed, for enzymes in the case of ri-
bonuclease by Kędzierski et al.,121 in which the interactions of various parts of the active site
with the substrates and transition state is analyzed. Combining the HVPT approach with
a quantum mechanics/molecular mechanics (QM/MM) treatment, Szefczyk et al. describe
the catalytic activity of the chorismate mutase active site,122 whereas Szarek et al. examine
protein phosphotransferase.123 Catalytic activity has also been examined by Dziekoński et
al. using the HVPT approach for the solvated double proton transfer between formamidine
and formamide,124 as well as in prototypical zeolite systems.125

All these HVPT studies, through comparison with with experiment, have indicated the
dominant role of electrostatic effects in inhibition. More broadly, HVPT has also been ap-
plied to study cohesion energies in molecular crystals of urea126 and various small molecule
dimers.127 A new direction has been taken up lately with increasingly comprehensive reports
on nucleobase stacking complexes128 as well as their complexes with intercalators.129

117Grembecka, J., Kędzierski, P., Sokalski, W. A. Chem. Phys. Lett. 1999, 313, 385–392.
118Sokalski, W. A., Kędzierski, P., Grembecka, J. Phys. Chem. Chem. Phys. 2001, 3, 657–663.
119Dyguda, E., Grembecka, J., Sokalski, W. A., Leszczyński, J. J. Am. Chem. Soc. 2005, 127, 1658–1659.
120Grzywa, R., Dyguda-Kazimierowicz, E., Sieńczyk, M., Feliks, M., Sokalski, W. A., Oleksyszyn, J. J. Mol.

Model. 2007, 13, 677–683.
121Kędzierski, P., Sokalski, W. A., Krauss, M. J. Comp. Chem. 2000, 21, 432–445.
122Szefczyk, B., Mulholland, A. J., Ranaghan, K. E., Sokalski, W. A. J. Am. Chem. Soc. 2004, 126,

16148–16159.
123Szarek, P., Dyguda-Kazimierowicz, E., Tachibana, A., Sokalski, W. A. J. Phys. Chem. B 2008, 112,

11819–11826.
124Dziekoński, P., Sokalski, W. A., Podolyan, Y., Leszczyński, J. Chem. Phys. Lett. 2003, 367, 367–375.
125Dziekoński, P., Sokalski, W. A., Kassab, E., Allavena, M. Chem. Phys. Lett. 1998, 288, 538–544;

Dziekoński, P., Sokalski, W. A., Szyja, B., Leszczyński, J. Chem. Phys. Lett. 2002, 364, 133–138.
126Góra, R. W., Bartkowiak, W., Roszak, S., Leszczyński, J. J. Chem. Phys. 2002, 117, 1031–1039; Góra,

R. W., Sokalski, W. A., Leszczyński, J., Pett, V. B. J. Phys. Chem. B 2005, 109, 2027–2033.
127Góra, R. W., Grabowski, S. J., Leszczyński, J. J. Phys. Chem. A 2005, 109, 6397–6405.
128Hill, G., Forde, G., Hill, N., Lester, W. A., Sokalski, W. A., Leszczyński, J. Chem. Phys. Lett. 2003, 381,

729–732; Langner, K. M., Sokalski, W. A., Leszczyński, J. J. Chem. Phys. 2007, 127, 111102; Czyżnikowska,
Żaneta J. Mol. Struct.: THEOCHEM 2009, 895, 161–167; Czyżnikowska, Żaneta J. Mol. Model. 2009, 15,
615–622; Czyżnikowska, Żaneta, Zaleśny, R. Biophys. Chem. 2009, 139, 137–143.
129Langner, K. M., Kędzierski, P., Sokalski, W. A., Leszczyński, J. J. Phys. Chem. B 2006, 110, 9720–9727.
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2.3 Comparison of interaction energy decomposition

schemes

The various perturbation and variational decomposition schemes discussed above have been
investigated quite thoroughly in the literature and applied for a number of usually small test
cases as well as for some more complicated chemical problems. Not many attempts, however,
have been made to systematically compare them for series of increasing basis sets. That is the
intent of the present section, and Tables 2.3-2.4 present such a comparison of SAPT, HVPT
and several EDA variants available in the current version of GAMESS. Five small dimers are
examined at the geometries given in Fig. 2.2, namely He2,130 (H2)2,131 (HF)2,132 (LiH)2113

and (H2O)2.133 Correlation consistent basis sets augmented with extra diffuse functions –
aug-cc-pVXZ, where X=D,T,Q,5,6 – were retrieved for all the complexes from the Basis Set
Exchange. Due to the fact that the current implementation of GAMESS does not support ℎ
and 𝑖 orbitals, the quintuple and sextuple-zeta basis sets were not complete in many cases, as
indicated in the table captions.

Since the HVPT and EDA approaches are concerned mainly with effects contained in the
Hartree-Fock interaction energy, the comparison is limited to that level. In the case of SAPT,
the terms comprising (2.17) and calculated in the dimer basis set (DCBS) are presented. In
all cases, the Hartree-Fock energies could be supplemented by adding a correction at any
correlated level of theory, and here the MP2 interaction energy was obtained in order to have
a full overview of the HVPT scheme as expressed by the hierarchy in (2.23). Table 2.2 shows
the interaction energy at the Heitler-London, Hartree-Fock and MP2 levels for each dimer n
the aug-cc-pVQZ basis, which was chosen as the largest truly correlation-consistent basis set
that GAMESS can use and at the same time the largest available one for the lithium atom).

Obviously, all the terms compared here are additive and complete in the sense that they can
be summed up to the total Hartree-Fock interaction energy, and that this energy is necessarily
the same for all methods. It is important to point out that this is not true at the Heitler-London
level. In the case of HVPT, the Heitler-London interaction energy ∆𝐸

(1)
HL is given exactly by

the sum of ∆𝐸
(1)
el and ∆𝐸

(1)
ex , and the corresponding SAPT value of 𝐸(10)

pol +𝐸(10)
exch according to

(2.11) differs by the relatively small value of Murrell delta. The sum of the EDA components
∆𝐸KM

el and ∆𝐸KM
ex on the other hand can, in general, deviate from ∆𝐸

(1)
HL, although it should

approach it when the basis set is saturated. The same is true for the counterpoise-corrected,
RVS and Su-Li variants of the EDA approach.

Both the helium and molecular hydrogen dimers are dominated by dispersion, hence their
Hartree-Fock energies ∆𝐸RHF are destabilizing. It is also interesting to note the sizably
stronger reference interaction energy of Korona et al.130 compared to ∆𝐸MP2, achieved by
using explicitly correlated basis set functions and SAPT terms not covered by second-order

130Korona, T., Williams, H. L., Bukowski, R., Jeziorski, B., Szalewicz, K. J. Chem. Phys. 1997, 106, 5109
– 5122.
131Carmichael, M., Chenoweth, K., Dykstra, C. E. J. Phys. Chem. A 2004, 108, 3143–3152.
132Howard, B. J., Dyke, T. R., Klemperer, W. J. Chem. Phys. 1984, 81, 5417–5425.
133Klopper, W., Duijneveldt-van de Rijdt, J., Duijneveldt, F. Phys. Chem. Chem. Phys. 2000, 2, 2227–2234.
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—aug-cc-pVQZ—

dimer best in ref. geometry Δ𝐸
(1)
HL Δ𝐸RHF Δ𝐸MP2

He2 -35.02 𝜇H130 𝑑COM = 5.6 a.u. 30.69𝜇H 29.20𝜇H -17.53𝜇H

(H2)2 -135.8 mH131 RH−H=0.743
∘
A, 𝑑COM =3.450

∘
A, 𝜃=90.0o 80.55 𝜇H 60.87 𝜇H -134.8 𝜇H

(HF)2 -7.39 mH132 RH−F=0.917
∘
A, 𝑑COM =2.673

∘
A, 𝜃=117o -2.517 mH -5.934 mH -6.727 m H

(LiH)2 -14.64 mH113 RLi−H=1.633
∘
A, 𝑑COM =5.133

∘
A, 𝜃=180o -13.11 mH -14.45 mH -14.33 m H

(H2O)2 -7.987 mH133 Rdon1
O−H=0.9639

∘
A, Rdon2

O−H=0.9569
∘
A -2.167 mH -5.801 mH -7.782 mH

Racc
O−H=0.9583, 𝑑COM =2.916

∘
A

𝛼don
H−O−H=104.83o, 𝛼acc

H−O−H=104.87o

𝜃=58.48o

130combined SAPT and FCI calculations, with correlated geminals and orbital basis sets
131 CCD/aug-cc-pVTZ energy
132 experimental geometry and energy
113 RHF energy in an uncontracted 20s3p/16s2p basis set
133 CCSD(T) extrapolated to the basis set limit

Table 2.2: Geometrical parameters for the small dimers used to compare interactions energy decomposition schemes. Results
for these dimers are presented in Tables 2.3 and 2.4, while the Heitler-London, Hartree-Fock and MP2 interaction energies are
provided here for the aug-cc-pVQZ basis set. The citations listed are the sources for these particular geometries, and the best
interaction energy value available for each reference geometry is also given (see text for details). In all cases, 𝑑COM denotes the
distance between the centers of mass and 𝜃 is the angle or dihedral between the monomers, which are all linear or planar. For
the water dimer, the superscripts “don” and “acc” respectively mark the proton donor and acceptor, while “don1” denotes the
elongated donating bond and “don2” stands for the other O-H bond of the donating molecule.

Möller-Plesset theory. The literature since then has further improved this value with larger
calculations,133 relativistic effects134 and radiative corrections.135

The sum of 𝐸(10)
pol and 𝐸

(10)
exch in Korona et al. amounts to 33.46𝜇H, which is just a little

lower than the best estimate of 33.60𝜇H obtained with similar methods a decade earlier.136 In
any case, the first order effects compare more favorably with the value of ∆𝐸

(1)
HL in Table 2.3.

Of course, the agreement is excellent with values that were obtained from uncorrelated orbital
calculations, in particular the Hartree-Fock limit of 29.2𝜇H published by Gutowski et al.137

and similar values reported by Sokalski et al.113

One more observation needs to be made for the helium dimer, since the multipole expan-
sion of the electrostatic interaction energy should be zero and unexpected residual repulsion is
nonetheless observed in the case of the second rank DMA (distributed multipole analysis)138

term ∆𝐸2
DMA. The DMA results presented here were obtained along with the HVPT decom-

position calculations and therefore the interacting monomer densities spanned the basis set of
the entire dimer. For limited basis sets this causes nonphysical charge transfer from one atom
onto the other, breaking the symmetry of the helium atom, an effect that vanishes quickly as
the basis set is increased.

The T-shaped dihydrogen dimer essentially has the same interaction energy profile as He2,

133Cencek, W., Jeziorska, M., Bukowski, R., Jaszuński, M., Jeziorski, B., Szalewicz, K. J. Phys. Chem. A
2004, 108, 3211 – 3224.
134Cencek, W., Komasa, J., Pachucki, K., Szalewicz, K. Phys. Rev. Lett. 2005, 95, 10.1103/PhysRevLett.
95.233004.
135Pachucki, K., Komasa, J. J. Chem. Phys. 2006, 124, 10.1063/1.2166017.
136Rybak, S., Szalewicz, K., Jeziorski, B. J. Chem. Phys. 1989, 91, 4779 – 4784.
137Gutowski, M., Duijneveldt, F., Chałasiński, G., Piela, L. Mol. Phys. 1987, 61, 233.
138See Section 2.5.1 for an explanation of DMA, and (2.42) and (2.43) for a definition of expansion rank.
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although the saturation of intramonomer correlation with basis set size is relatively not as
important in this equilibrium conformation. Increasing the basis set to aug-cc-pV6Z improves
the MP2 interaction by only about 3𝜇H. The best value reported along with the reference
geometry by Carmichael et al.,131 which was obtained from coupled cluster calculations and
triple-zeta basis sets, differs by less than 1%.

Moving on to the hydrogen bonded dimers, the experimental geometry used here for the
hydrogen fluoride dimer has been refined extensively in the past with computations. Being
one of the smallest possible hydrogen-bonded dimers, it is an excellent prototype system for
tests and comparisons (in an early study, for example, Latajka and Scheiner incrementally
exchange HF molecules with HCl).139. The equilibrium structure and energetics of (HF)2 can
be described adequately with density functionals,140 and the potential energy surface has been
mapped in detail.141

In one of their studies of this surface Klopper et al.142 give a counterpoise-corrected MP2
estimate of the dissociation energy, -6.79 mH, which is within 1% of the ∆𝐸MP2/aug-cc-pVQZ
presented in Table 2.2. This value, obtained by Klopper et al. with an extended quadrupole-
zeta basis set, agrees even better with the value obtained here using the aug-cc-pV6Z basis,
namely -6.78 mH.

The lithium hydride dimer was arranged linearly, and 5.133
∘
A between the molecular

centers of mass (COM) corresponds to the 3.5
∘
A intermolecular Li· · ·H distance chosen by

Sokalski et al. to demonstrate the performance of the HVPT method at large intermolecular
distances.113 Their conclusion, that the electrostatic term exhibits the strongest dependence
on basis set size, however, does not carry over to the present case where basis set functions of
higher angular momentum are added in the series of correlation-consistent basis sets. In fact,
the electrostatic component ∆𝐸

(1)
el for the LiH dimer in Table 2.3 does not change more than

1% and the delocalization term ∆𝐸
(R)
del varies only a bit more.

On the other hand, the exchange component for (LiH)2 changes by over 20% when moving
from aug-cc-pVDZ to aug-cc-pVTZ. This apparently takes place only after the addition of
𝑓 functions to the lithium atoms and 𝑑 function to hydrogen, since the exchange term does
not change any more when moving to aug-cc-pVQZ . Other studies on this linear dimer have
usually focused on closer separations, around 1.7

∘
A for the Li· · ·H contact, and report stronger

interaction, however the relative importance of correlation remains comparable.143 Fig. 2.2
shows the changes in ∆𝐸

(1)
el , ∆𝐸

(1)
ex and ∆𝐸

(R)
del when moving to larger basis sets, and compares

them to corresponding terms obtained in the other decomposition schemes tested.
Finally, for the water dimer geometry a best estimate published in 2000 was used,133 and

the MP2 interaction obtained here is about 3% weaker than the best coupled cluster value
calculated therein. The ∆𝐸MP2 value in Table 2.2, as well as the -7.83 mH obtained for aug-

139Latajka, Z., Scheiner, S. Chem. Phys. 1988, 122, 413–430.
140Latajka, Z., Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793–9799.
141Klopper, W., Quack, M., Suhm, M. A. Chem. Phys. Lett. 1996, 261, 35–44; Hodges, M. P., Stone, A. J.,

Lago, E. C. J. Phys. Chem. A 1998, 102, 2455–2465.
142Klopper, W., Quack, M., Suhm, M. A. J. Chem. Phys. 1998, 108, 10096–10115.
143McDowell, S. A. C. J. Comp. Chem. 2003, 24, 1201–1207; Chen, Y.-L., Huang, C.-H., Hu, W.-P. J.

Phys. Chem. A 2005, 109, 9627–9636.

http://dx.doi.org/10.1016/0301-0104(88)80023-5
http://dx.doi.org/10.1063/1.467944
http://dx.doi.org/10.1016/0009-2614(96)00901-3
http://dx.doi.org/10.1021/jp972148j
http://dx.doi.org/10.1063/1.476470
http://dx.doi.org/10.1002/jcc.10281
http://dx.doi.org/10.1021/jp051978r
http://dx.doi.org/10.1021/jp051978r
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cc-pV6Z, are between the frozen-core MP2 interaction energies calculated by Klopper et al. for
basis sets denoted therein by QQZ (-7.698 mH) and IO249 (-7.846 mH).

Figure 2.2: Comparison of interaction energy terms for the
lithium hydride dimer in three consecutive correlation consistent
basis sets (aug-cc-pVXZ, where X=D,T,Q on the axis). Compo-
nents are compared for the SAPT, HVPT, Kitaura-Morokuma
and Su-Li methods, whose numerical values are given in Tables
2.3 and 2.4. All energy values are in millihartree.

A few general remarks can be made for
Table 2.3, which compares the first order
electrostatic and exchange terms. First of
all, the HVPT electrostatic interaction en-
ergy ∆𝐸

(1)
el is almost always identical to the

𝐸
(10)
pol SAPT term as expected from (2.23).

Occasional last-digit deviations most prob-
ably arise from differences in the numerical
implementation. The exchange terms from
SAPT and HVPT are very close to each
other, illustrating that the Murrell delta as
defined by (2.24) is small – with a largest
value in the present comparison of nearly 1%
for the hydrogen fluoride and water dimers.

The corresponding components from the
Kitaura-Morokuma analysis, ∆𝐸KM

pol and
∆𝐸KM

ex , also tend to the SAPT/HVPT values,
although this convergence is markedly slower.
It becomes worse in the case of the Su-Li
exchange (attractive) and repulsive compo-
nents (∆𝐸SL

ex and ∆𝐸SL
rep, respectively), which

otherwise are rather stable with the basis set
and added together reproduce ∆𝐸KM

ex . Sep-
arately, however, they can be a few times
larger than their sum. This difference is al-
ways largest for the smallest basis set.

Significantly larger basis set depen-
dence is observed for interactions based on
atomic multipole moments up to rank two
(∆𝐸𝜅′≤2

DMA and ∆𝐸𝜅′≤2
CAMM), the situation always

improves however when moments up to rank 8 are considered (∆𝐸𝜅′≤2
CAMM). Furthermore, the

multipole electrostatic interaction based on MP2 orbitals (∆𝐸MP2,𝜅′≤2
CAMM ) is consistently about

10% weaker than its Hartree-Fock counterpart due to intramolecular correlation.

The stability of the remaining two Kitaura-Morokuma terms ∆𝐸KM
pol and ∆𝐸KM

CT is much
worse, as seen in the appropriate columns of Table 2.4. Aside from the charge transfer term
oscillating with growing basis set size, which is well-known from the literature, the polarization
term ∆𝐸KM

pol as well as it complement ∆𝐸KM
mix clearly diverge beyond aug-cc-pVQZ for the close

contacts in the hydrogen bonded HF and water dimers. This divergence possibly originates
from linear dependent basis functions within the Cartesian representation used in the EDA
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methods, as the spherical coordinate representation currently implemented in GAMESS cannot
be used with the decomposition code.

On the other hand, the three terms that comprise ∆𝐸RHF-∆𝐸(1)
HL in the SAPT scheme,

namely 𝐸(20)
ind,resp, 𝐸(20)

ex−ind,r and 𝛿𝐸𝐻𝐹
𝑖𝑛𝑡,𝑟𝑒𝑠𝑝, converge systematically as expected with the expand-

ing basis set. It is interesting to notice that while the induction and exchange-induction terms
are significant, particularly in the case of hydrogen bonded dimers, the remaining higher order
effects gathered in 𝛿𝐸𝐻𝐹

𝑖𝑛𝑡,𝑟𝑒𝑠𝑝 are also not negligible. Therefore, while providing two additional
terms with physical meaning, the SAPT interpretation of the Hartree-Fock interaction energy
still does not cover a large portion of it. The remainder is possibly distributed among a number
of moderately important polarization terms (since it is always attractive).

As described in Section 2.2.3, The HVPT approach goes further in this direction and col-
lects all of the Hartree-Fock contributions that are not of the first order into the delocalization
term ∆𝐸

(R)
del . The magnitude of the delocalization component is of the same order as the largest

term obtained in the SAPT approach, therefore aside from greatly diminishing the cost of cal-
culations it also gives an idea of the largest contribution that enters the interaction energy
at this level. Meanwhile, the relative balance of 𝐸(20)

ind,resp, 𝐸(20)
ex−ind,r and 𝛿𝐸𝐻𝐹

𝑖𝑛𝑡,𝑟𝑒𝑠𝑝 is typical for
different types of interactions, for example the induction part dominates for hydrogen-bonded
dimers.

Similar results are obtained, by design, in the Su-Li EDA scheme, where ∆𝐸SL
pol or what

is called the polarization contribution contains energetic contributions beyond the first order
electrostatic and exchange or repulsive terms. For large basis sets its value approaches that of
∆𝐸

(R)
del , however for smaller basis sets it again can differ significantly depending on the exchange

energy it complements. The stability of this term is commendable, although differences when
moving to larger basis sets in most cases are is still an order of magnitude larger than those of
∆𝐸

(R)
del in the HVPT scheme. In this respect, it is important to remember that even the smallest

basis set considered here, aug-cc-pVDZ, can be too costly to consider for large complexes in
research, in which case this effect will be even more pronounced.

2.4 Electrostatics – a bidirectional force

Ab initio chemical models consist of atomic nuclei and the electron clouds that surround them.
They can be constructed to describe a single atom, functional group, or molecule, and the
charge distributions associated with them are superpositions of nuclear charges and electronic
densities. Furthermore, one point is usually distinguished in each system and denoted by a
vector – for example R𝐴 and R𝐵 are the centers of systems A and B.

The electrostatic interaction energy for two systems of static charges is understood as
the potential energy derived from the Coulomb forces acting between them. For groups of
point charges, this is the sum over all products of pairs of charges divided by the distances
between them. In the case of non-discrete charge densities 𝜌𝐴 and 𝜌𝐵 for systems A and B,
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the electrostatic interaction between them can be expressed by a double integral,

∆𝐸
(1)
el =

∫︁∫︁
𝜌𝐴(r′𝐴)𝜌𝐵(r′𝐵)

|r′𝐴 − r′𝐵|
𝑑r′𝐴𝑑r

′
𝐵, (2.29)

where the primes in r′𝐴 and r′𝐵 mean these vectors have the same (arbitrary) origin. Although
this definition is unambiguous, the accuracy of the interaction energy depends strongly on the
quality of the charge densities. Low quality interaction energies are obtained if inadequate ab
initio methods or very small basis sets are used to describe the charge distribution.

There are electrostatic contributions at each level of intramolecular correlation within the
double perturbation expansion used in SAPT, indexed in (2.9) by 𝑛. For example, the first
order (𝑛 = 1) electrostatic contribution 𝐸

(10)
pol , equivalent to ∆𝐸

(1)
el within HVPT, is typically

attributed to the Hartree-Fock wave function, whereas the second level electrostatic effect 𝐸(20)
pol

is interpreted as the effect of second order correlation on the densities of isolated monomers.
Therefore, using monomer densities from calculations that retrieve electron correlation (MP2,
coupled cluster, etc.) allows this part of the electrostatic effect to be retrieved.144

Perhaps the most distinguishing feature of electrostatic interactions, understood as in
(2.10), is the fact that they are bidirectional. All other terms of the double perturbation
expansion (in (2.9) are either attractive (such as induction or dispersive contributions) or
repulsive (exchange and its various combined terms). This means that it is not always possible
to change the overall balance of forces using just one of those terms. Electrostatic effects, on
the other hand, can be favorable or not depending on the distributions and orientation of the
participating charge densities. This simple difference makes electrostatic interactions more
likely to be the deciding term in the overall interaction energy.

Electrostatic interaction energies are straightforward to calculate using the formula in
(2.29). The double integration, however, requires the charge distributions at each point in
space to be known or a means to reproduce it, although methods have been proposed to
reduce the computational effort required.145

In many situations it is necessary to retain the information contained in the charge density
in a compact way. High throughput screening, multiple docking trials, building molecules
from fragments – these are all scenarios that repeatedly rely on the same charge distributions,
and it is impractical to recompute them. Multipole moments, calculated once and stored for
later use, can be employed in such cases to approximate the density and its anisotropy; they
are discussed in more detail in the following sections.

Numerous case studies have shown that electrostatic effects can in many cases be used
to, at least qualitatively, explain stabilization, specific structural features and various other
molecular phenomena, especially in biological systems. The role of electrostatic effects and
their practical significance differ from system to system, which means that evaluation and
testing what can be reproduced needs to be as much a part of research as the final applications.

Sokalski and coworkers have summarized this methodological mindset and many of the

144Sokalski, W. A., Sawaryn, A. J. Chem. Phys. 1987, 87, 526–534.
145Cioslowski, J., Liu, G. H. Chem. Phys. Lett. 1997, 277, 299–305.

http://dx.doi.org/10.1063/1.453600
http://dx.doi.org/10.1016/S0009-2614(97)00883-X
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early efforts in a book chapter in 1999.146 Grembecka et al. demonstrate that the electrostatic
interactions of phosphonic leucine analogues with the aminopeptidase active site exhibit ex-
cellent correlation with experimental activity,117 and later expand this study to include phos-
phoanalogues of phenylalanine.118

It is prudent to mention that there is always a certain amount of nonphysical charge
redistribution onto the orbitals of ghost atoms when interacting molecules are calculated using
a dimer basis set, as in the HVPT method.147 The effect also exists in other methods, such
as SAPT, in general whenever a dimer basis set is employed. Utilization of ghost orbitals
provides a larger orbital space and more complete wave function, and alleviates basis set
superposition error. The resulting charge redistribution, however, can change and in some
cases even destabilize electrostatic interactions, which are calculated using (2.10). Polar or
charged molecules are particularly prone to this artefact at short separations, and the influence
on the multipole expansion is especially strong since charge density contributions from ghost
orbitals need to be moved back to the physically present nuclei. Table 2.3 provides a clear
illustration for this artefact in the case of the helium dimer, which should exhibit a zero
multipole electrostatic interaction.

The following section follows the Cartesian multipole expansion of the electrostatic interac-
tion energy, and continues with a discussion about improving its resolution by distributing the
expansion onto atomic nuclei. Issues of convergence with multipole rank for various distances
and basis sets are covered, followed by considerations of conformational changes and charge
redistribution effects during chemical reactions.

2.4.1 Multipole expansion in Cartesian coordinates

A multipole expansion of the electrostatic interaction energy in (2.29) is usually described as
the sum of all terms in a power series of 1

|R𝐴𝐵 | , with R𝐴𝐵 = R𝐴 − R𝐵 being the distance
between the centers of charge distributions. The final form, however, always involves products
between spatial moments with appropriate factors, which can be abbreviated using contrac-
tions between tensors of these moments and an interaction tensor. The connection can be
illustrated clearly in Cartesian coordinates by substituting r𝐴 = r′𝐴 −R𝐴 and r𝐵 = r′𝐵 −R𝐵

and expanding 1
|R𝐴𝐵−(r𝐴−r𝐵)| into a Taylor series. In vector notation this amounts to

∆𝐸el,mtp =

∫︁∫︁
𝜚𝐴(r𝐴)𝜚𝐵(r𝐵)

∞∑︁
𝜅=0

(−1)𝜅

𝜅!

[︂
((r𝐴 − r𝐵) · ∇R)𝜅

1

|R|

]︂
R=R𝐴𝐵

𝑑r𝐴𝑑r𝐵, (2.30)

where 𝜚𝐴(r𝐴) = 𝜌𝐴(r𝐴 + R𝐴) is the charge density function in (2.29) centered at R𝐴.

The vector r𝐴 − r𝐵 cannot be directly separated from the neighboring nabla operators,
because they do not commute and the product (r𝐴 − r𝐵) · ∇R is not a vector. It is possible,

146Sokalski, W. A., Kędzierski, P., Grembecka, J., Dziekoński, P., Strasburger, K. “Theoretical tools for anal-
ysis and modelling electrostatic effects in biomolecules ”, In Computational Molecular Biology, 8 ; Leszczynski,
J., ed.; Elsevier, 1999, 369–396.
147Sokalski, W. A. J. Chem. Phys. 1982, 77, 4529–4541.

http://dx.doi.org/10.1063/1.444402
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however, to expand the operator ((r𝐴 − r𝐵) · ∇R)𝜅 into a multinomial series of scalar operators
and subsequently to separate the coordinates in A and B by expanding (𝑥𝐴 − 𝑥𝐵)𝑘 along with
the binomials for the other two axes (𝜅′ = 𝑘′ + 𝑙′ +𝑚′ in analogy to 𝜅),

((r𝐴 − r𝐵) · ∇R)𝜅 =

(︂
(𝑥𝐴 − 𝑥𝐵)

𝜕

𝜕𝑅𝑥

+ (𝑦𝐴 − 𝑦𝐵)
𝜕

𝜕𝑅𝑦

+ (𝑧𝐴 − 𝑧𝐵)
𝜕

𝜕𝑅𝑧

)︂𝜅
=

∑︁
𝑘,𝑙,𝑚

𝑘+𝑙+𝑚=𝜅

𝜅!

𝑘!𝑙!𝑚!
(𝑥𝐴 − 𝑥𝐵)𝑘 (𝑦𝐴 − 𝑦𝐵)𝑙 (𝑧𝐴 − 𝑧𝐵)𝑚

𝜕𝑘

𝜕𝑅𝑘
𝑥

𝜕𝑙

𝜕𝑅𝑙
𝑥

𝜕𝑚

𝜕𝑅𝑚
𝑧

=
∑︁
𝑘,𝑙,𝑚

𝑘+𝑙+𝑚=𝜅

𝜕𝜅

𝜕𝑅𝑘
𝑥𝜕𝑅

𝑙
𝑦𝜕𝑅

𝑚
𝑧

𝑘∑︁
𝑘′=0

𝑙∑︁
𝑙′=0

𝑚∑︁
𝑚′=0

𝜅!(−1)𝜅−𝜅
′ 𝑥𝑘

′

𝐴𝑦
𝑙′

𝐴𝑧
𝑚′

𝐴 𝑥
(𝑘−𝑘′)
𝐵 𝑦

(𝑙−𝑙′)
𝐵 𝑧

(𝑚−𝑚′)
𝐵

𝑘′!(𝑘 − 𝑘′)!𝑙′!(𝑙 − 𝑙′)!𝑚′!(𝑚−𝑚′)!
.

(2.31)

Inserting this polynomial back into (2.30) and regrouping yields

𝑘∑︁
𝑘′=0

𝑙∑︁
𝑙′=0

𝑚∑︁
𝑚′=0

(−1)𝜅
′
𝑀𝐴

𝑘′𝑙′𝑚′𝑀𝐵
𝑘−𝑘′,𝑙−𝑙′,𝑚−𝑚′

∆𝐸el,mtp =
∞∑︁
𝜅=0

∑︁
𝑘,𝑙,𝑚

𝑘+𝑙+𝑚=𝜅

⏞  ⏟  ∫︁∫︁
𝜚𝐴(r𝐴)𝜚𝐵(r𝐵) (𝑥𝐴 − 𝑥𝐵)k (𝑦𝐴 − 𝑦𝐵)l (𝑧𝐴 − 𝑧𝐵)m 𝑑r𝐴𝑑r𝐵 ×

× (−1)𝜅
[︂

𝜕𝜅

𝜕𝑅𝑘
𝑥𝜕𝑅

𝑙
𝑦𝜕𝑅

𝑚
𝑧

1

|R|

]︂
R=R𝐴𝐵⏟  ⏞  ,

𝑇𝑘𝑙𝑚(R𝐴𝐵)

(2.32)
where 𝑀𝑘𝑙𝑚 denotes an unmodified Cartesian multipole moment,

𝑀𝑘𝑙𝑚 =
1

𝑘!𝑙!𝑚!

∫︁
𝜚(r)𝑥𝑘𝑦𝑙𝑧𝑚𝑑r, (2.33)

and the interaction tensor element 𝑇𝑘𝑙𝑚(R𝐴𝐵) contains the partial derivatives of |R𝐴𝐵|−1,

𝑇𝑘𝑙𝑚(R𝐴𝐵) = (−1)𝜅
[︂

𝜕𝜅

𝜕𝑅𝑘
𝑥𝜕𝑅

𝑙
𝑦𝜕𝑅

𝑚
𝑧

1

|R|

]︂
R=R𝐴𝐵

. (2.34)

The Cartesian tensor element in turn can be expressed explicitly in the form of a triple
sum, as derived by Cipriani and Silvi148 and extended by Challacombe et al.149

𝑇𝑘𝑙𝑚(R) =
(−1)𝜅𝑘!𝑙!𝑚!

2𝜅|R|𝜅

[𝑘/2]∑︁
𝑠=0

[𝑙/2]∑︁
𝑡=0

[𝑚/2]∑︁
𝑢=0

[︂
(−1)𝜎(2𝜅− 2𝜎)!

𝑠!𝑡!𝑢!(𝑘 − 2𝑠)!(𝑙 − 2𝑡)!(𝑚− 2𝑢)!(𝜅− 𝜎)!
×

×
(︂

R𝑥

|R|

)︂𝑘−2𝑠(︂
R𝑦

|R|

)︂𝑙−2𝑡(︂
R𝑧

|R|

)︂𝑙−2𝑚
]︃
. (2.35)

148Cipriani, J., Silvi, B. Mol. Phys. 1982, 45, 259–272.
149Challacombe, M., Schwegler, E., Almlöf, J. Chem. Phys. Lett. 1995, 241, 67–72.

http://dx.doi.org/10.1080/00268978200100211
http://dx.doi.org/10.1016/0009-2614(95)00597-W
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Using the symbols 𝑀𝑘𝑙𝑚 and 𝑇𝑘𝑙𝑚(R𝐴𝐵) in the context suggested by the braces, (2.32) can
be rewritten in a simpler form,

∆𝐸el,mtp =
∞∑︁
𝜅=0

∑︁
𝑘,𝑙,𝑚

𝑘+𝑙+𝑚=𝜅

𝑘∑︁
𝑘′=0

𝑙∑︁
𝑙′=0

𝑚∑︁
𝑚′=0

(−1)𝜅
′
𝑀𝐴

𝑘′𝑙′𝑚′𝑇𝑘𝑙𝑚(R𝐴𝐵)𝑀𝐵
𝑘−𝑘′,𝑙−𝑙′,𝑚−𝑚′ . (2.36)

An even more succinct expression can be presented with tensor notation repalcing the multiple
sums, similar to that used by Jansen150,

∆𝐸el,mtp =
∞∑︁
𝜅𝑎

∞∑︁
𝜅𝑏

M
(𝜅𝑎)
𝐴 [𝜅𝑎]T

(𝜅𝑎+𝜅𝑏)[𝜅𝑏]M
(𝜅𝑏)
𝐵 , (2.37)

where 𝜅 is called the rank or order of a multipole (M(𝜅𝑎)
𝐴 is of rank 𝜅𝑎) or interaction (T(𝜅𝑎+𝜅𝑏)

is of rank 𝜅𝑎 + 𝜅𝑏) and the operator [𝜅] means that the product of the tensors on both sides
is contracted 𝜅 times.

The first few terms in this tensor expansion can also be expressed using summations over
pairs of indexes, where 𝑇𝛼1...𝛼𝜅 represents the various elements of T(𝜅), with 𝛼 = 𝑥, 𝑦, 𝑧,

∆𝐸el,mtp = 𝑇𝑞𝐴𝑞𝐵 + 𝑇𝛼
(︀
𝑞𝐴𝜇𝐵𝛼 − 𝜇𝐴𝛼𝑞𝐵

)︀
+ 𝑇𝛼𝛽

(︀
𝑞𝐴Θ𝐵

𝛼𝛽 + Θ𝐵
𝛼𝛽𝑞

𝐵 − 𝜇𝐴𝛼𝜇𝐵𝛼
)︀

+

𝑇𝛼𝛽𝛾
(︀
𝑞𝐴Ω𝐵

𝛼𝛽𝛾 − Ω𝐴
𝛼𝛽𝛾𝑞

𝐵 − 𝜇𝐴𝛼Θ𝐵
𝛽𝛾 + Θ𝐴

𝛽𝛾𝜇
𝐵
𝛼

)︀
+ ...

(2.38)

and the multipole moment symbols used correspond to the multipole moment tensors M(𝜅):

𝑞 = M(0)
∫︀
𝜌(r)𝑑r

𝜇𝛼 = M(1)
∫︀
𝜌(r)𝛼𝑑r (𝛼 = 𝑥, 𝑦, 𝑧)

Θ𝛼𝛽 = M(2)
∫︀
𝜌(r)𝛼𝛽𝑑r (𝛼, 𝛽 = 𝑥, 𝑦, 𝑧) (2.39)

Ω𝛼𝛽𝛾 = M(3)
∫︀
𝜌(r)𝛼𝛽𝛾𝑑r (𝛼, 𝛽, 𝛾 = 𝑥, 𝑦, 𝑧)

etc. ...

In this way, for ranks 𝜅 = 0, 1, 2, 3, ..., the subsequent multipole moment tensors M(𝜅) con-
tain elements 𝑀𝑘𝑙𝑚 such that 𝑘+ 𝑙+𝑚 = 𝜅. These represent the point charge and components
of the dipole vector, quadrupole matrix, three-dimensional octupole with 27 moments and so
forth in higher dimensions:

𝜅 = 0 M(0) 𝑞 = 𝑀000

𝜅 = 1 M(1) 𝜇 = (𝑀100,𝑀010,𝑀001) (2.40)

𝜅 = 2 M(2) Ω =

⎛⎜⎝ 𝑀200 𝑀110 𝑀101

𝑀110 𝑀020 𝑀011

𝑀101 𝑀011 𝑀002

⎞⎟⎠ .

150Jansen, L. Phys. Rev. 1958, 110, 661–669.

http://dx.doi.org/10.1103/PhysRev.110.661
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The interaction expression in (2.36) can also be applied to traceless moments as defined
by Buckingham,151

�̄�𝐴
𝑘𝑙𝑚 = (−1)𝜅

1

(𝜅)!

∫︁
𝑑r𝜌(r)|r|2𝜅+1 𝜕𝜅

𝜕𝑥𝑘𝜕𝑦𝑙𝜕𝑧𝑚
1

|r|
, (2.41)

which should replace the unmodified moment along with the extra factor of 2𝜅𝜅!/(2𝜅)!, and
the interaction tensor elements remain unchanged.

It is expedient at this point to make a note that 1
|R−r| is not an entire function and its Tay-

lor expansion around R converges only for r < R (in the opposite case an expansion around
r is convergent). In the present context this means that (r𝐴 − r𝐵) should be smaller than
R𝐴𝐵. Since integration is to be performed over all space and the charge distributions extend
to infinity, the series in (2.30) will generally not be convergent everywhere. The complete
procedure of using four different Taylor series for the expansion of Coulomb interactions be-
tween two charge distributions is imaginable, but tedious and absent from the literature. The
complicated boundary conditions are usually implicitly avoided by restricting R to relatively
large values, so that at least one charge distribution 𝜚 will be small enough to mitigate the
divergent character of the integrand at large values of (r𝐴 − r𝐵). If the overlap between 𝜚𝐴

and 𝜚𝐵 is minimal in this portion of space, the integral over even a divergent expansion will
behave asymptotically for small values of 𝜅. In practice the expansion is always truncated at
some point, and in the ideal case should behave asymptotically for all of the values of 𝜅 used.

Therefore, the order at which the multipole expansion is truncated is usually determined
by 𝜅, and only interactions between 𝑀𝐴

𝑘𝑙𝑚 and 𝑀𝐵
𝑘′𝑙′𝑚′ are included in the interaction energy

for which 𝑘 + 𝑙 + 𝑚 + 𝑘′ + 𝑙′ + 𝑚′ is less or equal to some limiting value 𝐿. The multipole
interaction energy calculated in this sense at order (or rank) 𝐿 will be denoted by ∆𝐸𝜅6𝐿

el,mtp

and is given in tensor notation by:

∆𝐸𝜅6𝐿
el,mtp =

∑︁
𝜅𝑎

∑︁
𝜅𝑏

𝜅𝑎+𝜅𝑏6𝐿

M
(𝜅𝑎)
𝐴 [𝜅𝑎]T

(𝜅𝑎+𝜅𝑏)[𝜅𝑏]M
(𝜅𝑏)
𝐵 . (2.42)

There is another way of truncating the multipole expansion, namely by including all possi-
ble interaction terms between available moments. For example, if moments up to order 𝜅 = 2

were produced (quadrupoles), this approach would include an incomplete fourth order inter-
action due to the terms involving quadrupole moments from both expansions. Throughout
this work this moment-based truncated energy will be denoted by ∆𝐸𝜅′6𝐿

el,mtp,

∆𝐸𝜅′6𝐿
el,mtp =

𝐿∑︁
𝜅𝑎

𝐿∑︁
𝜅𝑏

M
(𝜅𝑎)
𝐴 [𝜅𝑎]T

(𝜅𝑎+𝜅𝑏)[𝜅𝑏]M
(𝜅𝑏)
𝐵 . (2.43)

Equation 2.23 already introduced the multipole expanded part of the electrostatic inter-
action and its counterpart penetration term ∆𝐸el,pen, which arises from the non-zero overlap

151Pages 2-62 in Buckingham, A. D. Intermolecular Interactions: From Diatomics to Biopolymers, Pullman,
B., ed.; John Wiley and Sons: New York, 1987.
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between charge distributions. Together, at finite distances these constitute the total electro-
static energy:

∆𝐸
(1)
el = ∆𝐸el,mtp + ∆𝐸el,pen. (2.44)

Since for large separations between the interacting charge systems the overlap of charge
densities derived from Gaussian functions decays, the total electrostatic interaction ∆𝐸

(1)
el

always tends to the multipole moment component described above:

lim
R→∞

∆𝐸
(1)
el = ∆𝐸el,mtp. (2.45)

Almost all interaction scenarios that are of practical interest, and hydrogen bonds in par-
ticular, involve contacts for which penetration effects are not entirely negligible. The value of
the penetration term is hard to establish accurately, since a converged multipole expansion
is needed in order to estimate it from (2.44), although it depends largely on the shape of a
molecule and not on the local anisotropy of the electron distribution. Therefore, the assump-
tion that the angular dependence of the electrostatic interaction energy is captured in the
multipole term is reasonable.

An interesting approach to modeling overall electric effects has been proposed by Qian and
Krimm,152 who use a multidimensional parametrization of the charge density and response
functions to reproduce the interaction of a molecule with a point charge. Such a model
includes both the multipole and penetration parts of the electrostatic interaction, as well as
other effects arising from polarization and hyperpolarization. The authors also suggest their
parametrization could be expanded in a distributed fashion, thus making the description as
mobile as the classic multipole approach.

2.5 Enhanced electrostatic resolution with atomic

multipoles moments

It is well established that the charge distribution of an entire molecule does not decay fast
enough in order for its multipole expansion to converge at van der Waals distances. The
charge density is therefore often partitioned spatially and expanded into sets of local multipole
moments. It is typical to center these fragment on atoms, or on the bonds between them.

The advantage of using atomic over molecular moments has been demonstrated repeat-
edly in the literature. Grembecka et al., for example, have modeled the activity of leucine
aminopeptidase (LAP) inhibitors using wave function-based as well as potential-derived atomic
charges.153 Various distributed moments have also been used to enhance the accuracy of reac-
tion field models154 and Coulomb interactions in general.155

While the density can be partitioned between atoms or other centers in various ways,

152Qian, W., Krimm, S. J. Mol. Struct. 2006, 766, 93–104.
153Grembecka, J., Kędzierski, P., Sokalski, W. A., Leszczyński, J. Int. J. Quant. Chem. 2001, 83, 180–192.
154Rinaldi, D., Bouchy, A., Rivail, J.-L., Dillet, V. J. Chem. Phys. 2004, 120, 2343–2350.
155Popelier, P. L. A., Kosov, D. S. J. Chem. Phys. 2001, 114, 6539–6547.

http://dx.doi.org/10.1016/j.theochem.2006.03.044
http://dx.doi.org/10.1002/qua.1209
http://dx.doi.org/10.1063/1.1635355
http://dx.doi.org/10.1063/1.1356013
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some of which are mentioned below, the general use of atomic moments for evaluating the
interaction energy remains the same. The multipole electrostatic interaction between two
systems A and B that are described by 𝑁𝐴 and 𝑁𝐵 multipole expansions, respectively, is the
sum of interactions between each pair of expansions in the two systems. Extending (2.37) in
this way gives

∆𝐸𝜅6𝐿
el,mtp ≃

𝑁𝐴∑︁
𝑖∈𝐴

𝑁𝐵∑︁
𝑗∈𝐵

∆𝐸𝑖𝑗,𝜅6𝐿
el,mtp =

∑︁
𝜅𝑎

∑︁
𝜅𝑏

𝜅𝑎+𝜅𝐵6𝐿

(︃
𝑁𝐴∑︁
𝑖∈𝐴

𝑁𝐵∑︁
𝑗∈𝐵

M
(𝜅𝑎)
𝑖 [𝜅𝑎]T

(𝜅𝑎+𝜅𝑏)
|R𝑖−R𝑗 |[𝜅𝑏]M

(𝜅𝑏)
𝑗

)︃
, (2.46)

where the interaction tensor needs to be evaluated for each pair of centers separately.

2.5.1 Methods for partitioning the electron density

In the course of describing a charge distribution with multiple expansion centers, an inevitable
step is choosing the method for partitioning the charge density between them. This is always
an arbitrary choice and influences the usability of the resulting set of multipole expansions at
intermediate distances. The literature is abundant with different approaches to this problem,
while only a few have been implemented, made public and are currently in use. For example,
the distributed multipole analysis (DMA) proposed by Stone and Alderton156 considers each
product of primitive functions that contribute to the charge density and its corresponding
multipole expansion. Each such product is centered at a unique point in space, and is ascribed
to a final expansion center that is nearest to this point. The closer a product is moved from
its original position the less it destabilizes the interaction energy in (2.46). Thus, the solution
offered by DMA maximizes the region of convergence for any chosen set of expansion centers.

An alternative approach to partitioning the charge density has been provided by Bader,
and is based on topological considerations. His theory of atoms in molecules (AIM) establishes
boundaries for individual atoms, defined by surfaces on which the flux of the gradient charge
density vector field ∇𝜌 vanishes,157

∇𝜌(r) · n(r) = 0, (2.47)

where n(r) is the normal to that surface at point r.

This approach elegantly removes the arbitrariness of partitioning the electron density by
applying a generalized least action principle. Specifically, the electron density is formulated
as the expectation value of a quantum mechanical observable (the density operator). The
idea, nonetheless, has raised controversy in the literature in the past few years,158 not without

156Stone, A. J., Alderton, M. Mol. Phys. 1985, 56, 1047–1064.
157Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; Bader, R. F. W. Monatshefte für Chemie 2005, 136,

819–854; Bader, R. F. W. J. Phys. Chem. A 2007, 111, 7966–7972.
158Frenking, G. Angew. Chem. Int. Ed. 2003, 42, 143–147; Parr, R. G., Ayers, P. W., Nalewajski, R. F.

J. Phys. Chem. A 2005, 109, 3957–3959; Poater, J., Sola, M., Bickelhaupt, F. M. Chem. Eur. J. 2006, 12,
2902–2905.

http://dx.doi.org/10.1080/00268978500102891
http://dx.doi.org/10.1021/cr00005a013
http://dx.doi.org/10.1007/s00706-005-0307-x
http://dx.doi.org/10.1007/s00706-005-0307-x
http://dx.doi.org/10.1021/jp073213k
http://dx.doi.org/10.1002/anie.200390069
http://dx.doi.org/10.1021/jp0404596
http://dx.doi.org/10.1021/jp0404596
http://dx.doi.org/10.1002/chem.200600057
http://dx.doi.org/10.1002/chem.200600057
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response.159 Bader and Matta have also rebutted various criticisms concerning the charges
obtained within AIM, relying invariably on quantum mechanical principles.160

AIM theory naturally and uniquely defines bond critical points along bond paths that
connect atoms161 and atomic volumes,162 which are the basis for integrating atomic charges,
polarizabilities163 or magnetic properties.164 Multipole integrals can be evaluated over the
atomic basins in molecules. For atom 𝑖 and its three-dimensional basin Ω𝑖, the Cartesian
moment of rank 𝑘𝑙𝑚 will be:

𝑀𝐴𝐼𝑀
𝑘𝑙𝑚,𝑖 =

∫︁
Ω𝑖

𝑥𝑘𝑦𝑙𝑧𝑚𝜌(r)𝑑r. (2.48)

While Bader’s original method involves identifying surfaces of zero flux, Popelier generates
similar basins by following gradient paths from each point in space to an attractor (usually a
nucleus).155 Fuzzy solutions are also possible, such as Hirshfeld’s prescription from 1977 that
distributes the charge density to atoms based on their contribution to the promolecule density
at each point.165

Volkov and Coppens have evaluated the performance of AIM and Hirshfeld moments for
amino acids166 and compared them to pixel-by-pixel summation and the electrostatic inter-
action obtained from a Morokuma-Ziegler decomposition.110 Their main conclusion was that
all these methods could be used, with some reservations, to reproduce the relative strength of
bonding.

In the work presented here, atomic moments are generated from densities partitioned the
same way as in the Mulliken population analysis. Following Sokalski and others,167 the starting
point is the expectation value of the 𝑥𝑘𝑦𝑙𝑧𝑚 operator within the LCAO MO approach, written
as a sum of products of any two atomic orbitals 𝐼 and 𝐽 . For such products

⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀
is a multipole integral over the electron density related to one or two atoms which hold the
orbitals 𝐼 and 𝐽 . These atoms become the beneficiaries of this one contribution, effectively
segregating the molecular moments into atomic contributions:

⟨︀
𝑥𝑘𝑦𝑙𝑧𝑚

⟩︀
=
∑︁
𝑖

𝑍𝑖𝑥
𝑘
𝑖 𝑦

𝑙
𝑖𝑧
𝑚
𝑖 −

𝑁𝐴𝑂∑︁
𝐼

𝑁𝐴𝑂∑︁
𝐽

𝑃𝐼𝐽
⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀
≡
∑︁
𝑖

⟨︀
𝑥𝑘𝑦𝑙𝑧𝑚

⟩︀
𝑖

=
∑︁
𝑖

(︃
𝑍𝑖𝑥

𝑘
𝑖 𝑦

𝑙
𝑖𝑧
𝑚
𝑖 −

∑︁
𝐼∈𝑖

𝑁𝐴𝑂∑︁
𝐽

𝑃𝐼𝐽
⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀)︃
,

(2.49)

159Bader, R. F. W. Int. J. Quant. Chem. 2003, 94, 173–177; Bader, R. F. W. Chem. Eur. J. 2006, 12,
2896–2901; Bader, R. F. W., Matta, C. F. J. Phys. Chem. A 2006, 110, 6365–6371.
160Bader, R. F. W., Matta, C. F. J. Phys. Chem. A 2004, 108, 8385–8394.
161Bader, R. F. W. J. Phys. Chem. A 1998, 102, 7314–7323.
162Bader, R. F. W., Carroll, M. T., Cheeseman, J. R., Chang, C. J. Am. Chem. Soc. 1987, 109, 7968–7979.
163Laidig, K. E., Bader, R. F. W. J. Chem. Phys. 1990, 93, 7213–7224; Bader, R. F. W., Matta, C. F. Int.

J. Quant. Chem. 2001, 85, 592–607.
164Bader, R. F. W., Keith, T. A. J. Chem. Phys. 1993, 99, 3683–3693.
165Hirshfeld, F. Theor. Chim. Acta 1977, 44, 129–138.
166Volkov, A., Coppens, P. J. Comp. Chem. 2004, 25, 921–934.
167Sokalski, W. A., Poirier, R. A. Chem. Phys. Lett. 1983, 98, 86–92; Sokalski; Sawaryn, 1987, in Ref. 144

on page 33; Sawaryn, A., Sokalski, W. A. Comput. Phys. Commun. 1989, 52, 397–408.

http://dx.doi.org/10.1002/qua.10627
http://dx.doi.org/10.1002/chem.200501589
http://dx.doi.org/10.1002/chem.200501589
http://dx.doi.org/10.1021/jp060761+
http://dx.doi.org/10.1021/jp0482666
http://dx.doi.org/10.1021/jp981794v
http://dx.doi.org/10.1021/ja00260a006
http://dx.doi.org/10.1063/1.459444
http://dx.doi.org/10.1002/qua.1540
http://dx.doi.org/10.1002/qua.1540
http://dx.doi.org/10.1063/1.466166
http://dx.doi.org/10.1007/BF00549096
http://dx.doi.org/10.1002/jcc.20023
http://dx.doi.org/10.1016/0009-2614(83)80208-5
http://dx.doi.org/10.1016/0010-4655(89)90114-8


2.5 First principles analyses of noncovalent interactions: Convergence properties 41

where 𝑖 spans all atoms and 𝑃𝐼𝐽 is an element of the density matrix in which all off-diagonal
elements are halved. It should be stressed that

⟨︀
𝑥𝑘𝑦𝑙𝑧𝑚

⟩︀
𝑖

is not an expectation value in the
sense its sum for the molecule is It is not obtainable as an average using any eigenfunction
of the Hamiltonian. Nonetheless, from (2.49) it follows that an atomic multipole moment of
rank 𝑘𝑙𝑚 can be defined as

𝑀𝑘𝑙𝑚,𝑖 =
⟨︀
𝑥𝑘𝑦𝑙𝑧𝑚

⟩︀
𝑖

= 𝑍𝑖𝑥
𝑘
𝑖 𝑦

𝑙
𝑖𝑧
𝑚
𝑖 −

∑︁
𝐼∈𝑖

𝑁𝐴𝑂∑︁
𝐽

𝑃𝐼𝐽
⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀
. (2.50)

2.5.2 Cumulative atomic moments

The Cartesian atomic moments defined in (2.50) are all calculated relative to the same origin,
and therefore can be directly summed into molecular moments that are also centered at that
origin. It is usually beneficial to move the moments to their local atomic coordinate systems,
which can be done through coordinate substitution and an iterative recombination of the
moments:

𝑀CAMM
𝑘𝑙𝑚,𝑖 = 𝑀𝑘𝑙𝑚,𝑖 −

𝑘∑︁
𝑘′≥0

𝑙∑︁
𝑙′≥0

𝑚∑︁
𝑚′≥0

𝑘′𝑙′𝑚′ ̸=𝑘𝑙𝑚

(︃
𝑘

𝑘′

)︃(︃
𝑙

𝑙′

)︃(︃
𝑚

𝑚′

)︃
× 𝑥𝑘−𝑘′𝑖 𝑦𝑙−𝑙

′

𝑖 𝑧𝑚−𝑚′

𝑖 𝑀𝐶𝐴𝑀𝑀
𝑘′𝑙′𝑚′,𝑖 . (2.51)

The resulting moments have been called cumulative atomic multipole moments (CAMM)
when derived from the wave function projection population analysis in (2.50),167 although
the name can be applied to moments based on any other density partitioning. Besides being
invariant with respect to translation, these cumulative atomic moments can still be easily
rotated while centered on atoms. A moment rotated from an orientation 𝑂 to a new orientation
�̃� is simply the product of the appropriate power of the rotation matrix 𝑅𝑂→�̃� and the original
moment tensor, which defines the rotation operator �̂�:

�̂� (M𝜅) = (𝑅𝑂→�̃�)𝜅 ×M𝜅. (2.52)

2.5.3 Convergence properties of the atomic multipole expansion

Using molecular multipole moments, for which both 𝑁𝐴 and 𝑁𝐵 in (2.46) equal one, is inad-
equate for studying most noncovalently bound systems. There are two main reasons, which
were summarized by Stone and Alderton 25 years ago156 (in an introduction to the DMA
method that was reprinted in 2002168). Namely, they cannot be used to calculate potentials
or interaction energies at van der Waals distances. They also reveal little or no information
about the topology of the charge distribution inside or in close proximity to the molecule. The
first limitation has been reiterated a number of times, recently by Qian and Krimm in their
search of a general charge density approach for hydrogen bonds.169

168Stone, A. J., Alderton, M. Mol. Phys. 2002, 100, 221–233.
169Qian, W., Krimm, S. J. Phys. Chem. A 2005, 109, 5608–5618.

http://dx.doi.org/10.1080/00268970110089432
http://dx.doi.org/10.1021/jp040683v
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Figure 2.3: Comparison of molecular and atomic multipole expansions of the electrostatic interaction energy
for two water molecules. The dimer was set in the equilibrium geometry reported by Szalewicz et al..a

aSzalewicz, K., Cole, S. J., Kołos, W., Bertlett, R. J. J. Chem. Phys. 1988, 89, 3662 –
3673.

There have been relatively few systematic attempts to evaluate the convergence behavior
of electrostatic multipole interactions, considering the large body of literature that makes
use of the methodology. It is customary to show the moments themselves at various orders
and present the energy for a single value of 𝐿 as defined by (2.42) or (2.43). While it is
true that there is a correspondence between the magnitude of multipole moments and their
interactions, it is not linear. Even if the first ostensibly diverge, that does not imply the
divergence of interactions. Moreover, the potentials and interactions entailed by a multipole
expansion can by definition vary widely with distance and orientation, so it is important to
analyze in detail those configurations that are of interest in a specific system. At the very least
it is practical to know at what order the multipole expansion can be expected to converge.

It is worth noting studies that do report on the convergence of multipole interactions.
With the CAMM approach used in this work, in their first introductory article Sokalski et
al. provide interactions energies obtained from atomic moments of various orders.167 More
recently, in our study on DNA intercalators,129 the change in atomic and molecular multipole
interactions is presented to an order of nine in the supporting information (see Section 4).

Sagui et al., using maximally localized Wannier functions to partition the charge density,
demonstrated how the electrostatic potential around water and carbon dioxide converge with
the exapnsion rank and distance.170 Within the DMA method, Stone follows the difference

170Sagui, C., Pomorski, P., Darden, T. A., Roland, C. J. Chem. Phys. 2004, 120, 4530–4544.

http://dx.doi.org/10.1063/1.454886
http://dx.doi.org/10.1063/1.454886
http://dx.doi.org/10.1063/1.1644800
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Figure 2.4: Comparison of molecular and atomic multipole expansions of the electrostatic interaction energy

for a stacked cytosine-guanine dimer. The geometries at the two presented separations (3.4
∘
A and 6.8

∘
A)

differed only in the distance between centers of mass.

in electrostatic potential at various orders when revising the method for improved basis set
stability.171 Earlier, Hodges and Wheatley also considered truncation at various orders for two
interacting HF molecules.172

Much work has been done in this regard by Popelier and coworkers using topological atoms
based on AIM and similar approaches, from which it is clear that further issues arise when
convergence properties are studied. Using a hard-sphere repulsion potential and multipole
moment interactions, they show how multipole interactions change for various small dimers at
geometries optimized using multipole expansions of consecutive orders.155 In another study,
Popelier and Rafat illustrate the divergence of the potential obtained by a multipole expansion
for orders up to 18, and also consider the use of Bessel function moments to obtain a convergent
expansion where the traditional Taylor expansion fails.173 The same authors have also proposed
a generalization that includes the inverse formulation of the multipole expansion to attain
a convergent series at all points in space.174 In another work,175 they consider displacing
atomic moments from their origin on atoms in order to improve the convergence of interactions
between nearby atoms. Later they focus on characterizing the convergence properties at large
and medium distances.176

Here, the point is first illustrated for the water dimer in Fig. 2.3, which contains original re-
sults for the Cartesian multipole expansion of the electrostatic interaction energy as described

171Stone, A. J. J. Chem. Theor. Comp. 2005, 1, 1128–1132.
172Hodges, M. P., Wheatley, R. J. Phys. Chem. Chem. Phys. 2000, 2, 1631–1638.
173Popelier, P. L. A., Rafat, M. Chem. Phys. Lett. 2003, 376, 148–153.
174Rafat, M., Popelier, P. L. A. J. Chem. Phys. 2005, 123, 10.1063/1.2126591.
175Rafat, M., Popelier, P. L. A. J. Chem. Phys. 2006, 124, 144102–7.
176Rafat, M., Popelier, P. L. A. J. Comp. Chem. 2007, 28, 832–838.

http://dx.doi.org/10.1021/ct050190+
http://dx.doi.org/10.1039/a910293k
http://dx.doi.org/10.1016/S0009-2614(03)00957-6
http://dx.doi.org/10.1063/1.2126591
http://dx.doi.org/10.1063/1.2126591
http://dx.doi.org/10.1063/1.2186993
http://dx.doi.org/10.1002/jcc.20610


44 2.5 First principles analyses of noncovalent interactions: Convergence properties

Figure 2.5: Atomic multipole expansions of the electrostatic interaction energy for a stacked uracil dimer

with a vertical separation of 6.8
∘
A, plotted against the relative twist of one molecule. Zero corresponds to

maximal overlap (ideal stack), and the rotation angle is around the pole connecting centers of mass.

in Section 2.4.1. The molecular expansion, containing one center on each water molecule,
stabilizes when moments up to the fourth order (hexadecapoles) are used, while the atomic
expansion reaches values near -6 kcal/mol already for 𝜅 = 2 or quadrupoles. Also evident –
when comparing the plots for the cc-pVDZ and aug-cc-pVDZ bases – is how little extra diffuse
functions in the basis set affect the convergence and final value of the multipole interaction.
The multipole and total electrostatic interactions in this case are weaker than for the water
dimer in Table 2.3, which is a consequence of using different geometries. The latter included
relaxed monomers, unlike the reference geometry pf Fig. 2.3.

A contrasting example is shown in 2.4, namely a stacked dimer containing cytosine and
guanine in a conformation typical for B-DNA. The convergence behavior of the CAMM expan-
sion with orders up to 𝐿 = 9 is shown for the biologically relevant intermolecular separation
of 3.4

∘
A and an increased distance of 6.8

∘
A. In this case, the molecular expansion is strictly

divergent for orders larger than one. The molecular charges of these molecules are zero, which
means that there are no charge-charge and charge-dipole interactions. It can be noted that
the second rank molecular multipole interaction ∆𝐸𝜅62

CAMM, which in this case contains only
dipole-dipole interactions, is still moderate, nonetheless the molecular expansion is evidently
at best unreliable at biological separations (3.4

∘
A). The atomic expansion on the other hand

reaches a stable value only when moments with orders above five are included. In the second,
more distant configuration, the atomic multipole interaction energy is relatively stable already
for 𝐿 > 1 and its molecular counterpart does not diverge but oscillates around it.

Fig. 2.5 in turn shows the multipole interaction at various orders for a stacked uracil dimer,
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Figure 2.6: Atomic multipole interaction energies in the carbon monoxide dimer evaluated from MP2 and
CCSD densities using aug-cc-pVXZ (X=D,T,Q) basis sets.

in which one molecule was rotated around the axis connecting their centers of mass. The initial,
maximal overlap configuration is the least favorable one due to the repulsion of like-charges
and an optimal rotation is seen for an approximate antiparallel alignment of molecular dipole
moments, which is in line with ab initio results. The point to be made here is, again, that
the atomic multipole expansion converges for orders above L=3. The higher order moments
are particularly influential in the attractive region around 180o, which in turn means that the
strictly repulsive regions can be eliminated using charges only, if one is performing a crude
conformational scan.

The stability of distributed multipole moments with increasing basis set size is also worthy
of attention. When the electron density is partitioned in Hilbert space (basis function space)
large changes are often observed for particular atomic moments when changing the basis set,
while the density around an atom or even the entire molecule does not change substantially.
This was the incentive for Stone to recently introduce an integration step when partitioning
products of diffuse basis function in the DMA method.171

Fig. 2.6 on the other hand illustrates how the multipole interaction converges with in-
creasing expansion order 𝐿 in the case of the carbon monoxide dimer. Clearly, the energies
stabilize only for expansion orders of 𝐿 > 3, and the differences between the interaction of
moments generated from MP2 and coupled cluster densities are roughly constant. Possibly
this difference corresponds to the correction introduced by Hobza.177

177Jurečka, P., Hobza, P. J. Am. Chem. Soc. 2003, 125, 15608–15613.

http://dx.doi.org/10.1021/ja036611j
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2.5.4 Conformational dependence and fragment transferability

A discussion of multipole moments would be incomplete if it did not touch upon the twin issues
of conformational dependence and transferability. The main advantage, in fact, of describing
a charge distribution with distributed multipole moments lies in their mobile character and
the possibility of using the same moments in systems built from identical or similar molecules.
An ideal would be to have a library of reusable fragments, ready to be assembled in any
number of combinations. In case where moments for rigid molecules suffice, the procedure for
this is straightforward and atomic moments can be taken without modification, aside from
translation or rotation into the new environment.

Problems arise when this paradigm is confronted with systems that consist of slightly
different molecules, covalently bound fragments, or when molecules change conformations. In
the most interesting situations, all these problems need to be dealt with simultaneously, so
in general transferability and conformational dependence (or polarizability) are connected.
Practical and largely unanswered questions come to mind on this topic, three of which seem
to be the most basic:

· how can the conformational dependence of atomic multipole moments be described and
how does it influence its interactions with other molecules?

· does the conformational dependence vary with intermolecular distance?

· what is the best way to deal with different residual charges on atoms or fragments when
transferring them into another molecule?

Moreover, it is obvious that the answers to these questions can vary between systems, which
makes it important to have the possibility to evaluate them repeatedly in an automated way.

In an effort to answer some of these questions, Kędzierski and Sokalski generated a library
of uncorrelated and correlated atomic moments for all natural amino acids and tested in detail
how well they reproduce the molecular electrostatic potential (MEP) on the solvent accessible
surface.178 They concluded that the transferability of amino acid fragments between molecules
is the best in cases with high symmetry, because the main source of non-transferability is
the unbalanced residual charge on transferred fragments. An earlier study179 shows that
torsional potential barriers in molecules with elongated bonds can be qualitatively reproduced
using atomic multipole moments. Strasburger with Sokalski180 later extended this treatment
further by neglecting inter-fragment density contributions.

Transferability has also been considered for atomic and bond properties within the AIM
approach. Lopez et al. have demonstrated good transferability of various properties for a
series of linear alkanenitriles,181 in particular the atomic first moment of the charge density or
dipole moment. A study by Rafat et al. on the other hand assesses how transferring moments
178Kędzierski, P., Sokalski, W. A. J. Comp. Chem. 2001, 22, 1082–1097.
179Sokalski, W. A., Lai, J., Luo, N., Sun, S., Shibata, M., Ornstein, R. L., Rein, R. Int. J. Quant. Chem.
1991, 61–71.
180Strasburger, K., Sokalski, W. A. Chem. Phys. Lett. 1994, 221, 129–135.
181Lopez, J. L., Mandado, M., Grana, A. M., Mosquera, R. A. Int. J. Quant. Chem. 2002, 86, 190–198.
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from isolated water molecules into their clusters influences the interaction energy, thus bear-
ing information about the polarization induced by hydrogen bonds.182 Whitehead et al. have
developed a method of reconstructing molecular electrostatic potentials from previously calcu-
lated atomic multipole moments.183 A novel, robust approach to predicting multipole moments
for various molecular conformations based on neural nets has also been proposed by Popelier
and coworkers.184 A section in a recent review article by Bushmarinov et al. summarizes some
of these studies and other related ideas.185

Stone and others have demonstrated that local torsional changes, for example rotations
around bonds directly related to an atom, strongly influence multipole moments and propose
to interpolate this dependence using short Fourier series.186 Hodges and Wheatley on the
other hand, for hydrogen fluoride, attain accurate results by fitting multipole moments with
polynomial functions of the stretching coordinate.172 Plattner and Meuwly on the other hand
have recently evaluate the bond length dependence of multipole moments in carbon monoxide
and included their interactions in molecular dynamics simulations.187

An interesting comparison of methods for partitioning the charge density was published
by Pacios and Gomez,188 in which they study the values they give for atomic and fragment
charges in all the theoretical gaseous conformers of glycine. Heutz et al. in turn point out
large variations in atomic charges after conformational changes in dioctadecylamine,189 and
Söderhjelm and Ryde study the conformational dependence of atomic ESP charges in proteins
during molecular dynamics simulations.190

Overall, these various efforts demonstrate the transferability and reusable character of
distributed moments in various contexts, and a few specific sets of atomic moments have been
published that could be used in practice.178 Nonetheless, there is no general framework for
recycling atomic moments and a lack of guiding principles to tackle practical problems when
conformational changes take place.

A major potential application of atomic multipole moments is enhancing the electrostatic
interactions in molecular dynamics simulations. Although only few studies exist, they already
show that incorporating multipole moments in the force field model leads to interesting results
and improves the quality of simulations. It can be expected that in certain cases improving
electrostatic interactions in this way will increase the accuracy of simulations. This is al-
ready seen in the advantages gained by using polarizable force field over point charge models,
demonstrated for DNA by Sagui and coworkers.191

182Rafat, M., Shaik, M., Popelier, P. L. A. J. Phys. Chem. A 2006, 110, 13578–13583.
183Whitehead, C. E., Breneman, C. M., Sukumar, N., Ryan, M. D. J. Comp. Chem. 2003, 24, 512–529.
184Darley, M. G., Handley, C. M., Popelier, P. L. A. J. Chem. Theor. Comp. 2008, 4, 1435–1448.
185Bushmarinov, I. S., Lyssenko, K. A., Antipin, M. Y. Russian Chem. Rev. 2009, 78, 283–302.
186Koch, U., Popelier, P. L. A., Stone, A. J. Chem. Phys. Lett. 1995, 238, 253–260; Koch, U., Stone, A. J.

J. Chem. Soc., Faraday Trans. 1996, 92, 1701–1708.
187Plattner, N., Meuwly, M. Biophys. J. 2008, 94, 2505–2515.
188Pacios, L. F., Gomez, P. C. J. Mol. Struct.: THEOCHEM 2001, 544, 237–251.
189Huetz, P., Ramseyer, C., Girardet, C. Chem. Phys. Lett. 2003, 380, 424–434.
190Söderhjelm, P., Ryde, U. J. Comp. Chem. 2008, 30, 750–760.
191Baucom, J., Transue, T., Fuentes-Cabrera, M., Krahn, J. M., Darden, T. A., Sagui, C. J. Chem. Phys.
2005, 121, 6998–7008; Babin, V., Baucom, J., Darden, T. A., Sagui, C. J. Phys. Chem. B 2006, 110,

http://dx.doi.org/10.1021/jp0652190
http://dx.doi.org/10.1002/jcc.10240
http://dx.doi.org/10.1021/ct800166r
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Most recently, Plattner and Meuwly have published a series of articles where they system-
atically consider multipole interactions for carbon monoxide during simulations.192 In the one
already mentioned,187 they investigate the dynamics of myoglobin, where the inclusion of a
fluctuating quadrupole moment leads to a correct description of the B-state (the location of
the CO molecule after the Fe-O bond in myoglobin breaks). In another study,193 the same
authors simulate carbon monoxide with fluctuating multipole moments in various ice models
and reproduce the experimental splitting of the CO absorption band, related to two different
positions of the CO impurity, at interstitial and substitution sites.

A different approach was adopted by Liem and Popelier based on AIM theory, where they
engaged up to quadrupole-quadrupole interactions for improving the electrostatic interaction
in simulations of water194 and liquid hydrogen fluoride.195 Gresh et al. on the other hand have
used distributed multipole moments to improve intramolecular interaction in flexible molecules
in their SIBFA potential.196

Most of these approaches assume that the simulated molecules are rigid, or represent
the conformational dependence of atomic multipoles in linear molecules with an approximate
function of the bond length. However, in molecules with more than 4-5 atoms the number of
vibrations for which the atomic moments would need to parametrized is overwhelming. So
it seems that if full-fledged atomic simulations are to be developed that consider multipole
interactions between flexible molecules, new solutions will no doubt be necessary. Appendix
A provides a short outlook and discussion of a feasible approach.

2.6 Charge redistribution along reaction paths

Some of the most interesting questions to be asked about bond formation and dissociation
concern the changes that take place in the electron distributions around atoms. Since a
representation in terms of multipole expanded atomic moments can describe the distribution
of charge around molecules, it is natural to ask if they can be used to characterize the changes
that occur during reactions.

Two cases are studied here: the alkaline hydrolysis of O,O-dimethylphosphorofluoridate
(DMPF) and the synthesis of carbonic acid. In both cases, the basic question is how well atomic
multipole derived potentials describe the molecular electrostatic potential around reactants
and how this representation converges with the expansion rank.

The first reaction – the hydrolysis of DMPF – was studied in greater detail, and was
based on a recent report by Dyguda-Kazimierowicz et al.,197 which describes the hydrolytic
degradation of several organophosphorous compounds. All of the compounds studied there

11571–11581.
192Plattner, N., Meuwly, M. J. Mol. Model. 2009, 15, 687–694.
193Plattner, N., Meuwly, M. ChemPhysChem 2008, 9, 1271–1277.
194Liem, S. Y., Popelier, P. L. A., Leslie, M. Int. J. Quant. Chem. 2004, 99, 685–694.
195Liem, S. Y., Popelier, P. L. A. J. Chem. Phys. 2003, 119, 4560–4566; Houlding, S., Liem, S. Y., Popelier,

P. L. A. Int. J. Quant. Chem. 2007, 107, 2817–2827.
196Gresh, N., Kafafi, S. A., Truchon, J.-F., Salahub, D. R. J. Comp. Chem. 2004, 25, 823–834.
197Dyguda-Kazimierowicz, E., Sokalski, W. A., Leszczyński, J. J. Phys. Chem. B 2008, 112, 9982–9991.
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are notable in that they are known to be substrates for the enzymatic reactions catalyzed by
phosphotriesterase, and the authors acknowledge and carefully study the multistage nature of
some of those degradation reactions.

The present analysis is limited to the first stage of the ”A” path in DMPF degradation,
designated by INT1→TS1a→INT2a,198 where in the transition state (TS1a) hydroxide is
aligned with the phosphoryl oxygen atom. The reaction coordinate in Fig. 2.7 and subsequent
plots correspond to this path, with zero denoting the transition state.

Besides the evolution of atomic moments, Fig. 2.7 shows four different measures of the ab
initio molecular electrostatic potential on the Connolly surface, namely its average, median,
minimum and maximum values (the average value is approximately constant, in accordance
with Gauss’s law). The Connolly or solvent-excluded surface199 was chosen as it represents a
typical region in space at which other molecules could interact.200

The first observation to be made here is that these measures do not change in a concerted
way. In particular, the maximum or weakest potential on the surface does not exhibit any
significant change at all. Meanwhile, the minimum or strongest potential has its largest
absolute value at reaction coordinates of approximately -10, where the other measures remain
constant. The fact that the minimum (most negative) potential changes the most is not
surprising, since the reactants are charged negatively thus emphasizing negative potentials,
and these are the most representative for monitoring charge redistribution during the reaction.

Already from these crude characteristics of the MEP it is evident that the largest reorga-
nization take place before and after the transition state, the second region being just before a
reaction coordinate value of +5. The circumstances of this second region are different, since
along with a rise in the minimum value, there is a visible dip in the median. This means
that the negative potential spreads out on the surface and becomes smaller on average, which
might be caused by a conformational change in the reactants relative to the surface.

This pattern is reflected in the evolution of atomic charges (Fig. 2.7), where the largest
changes also take place after the transition state (reaction coordinate zero), and can also
be identified in the evolution of a number of atomic moments (Fig. 2.8). The first region
(around reaction coordinate -10) involves local charge redistribution within the hydroxyl ion
and nearby methyl groups (electron transfer from C6 to H7). After that, redistribution gradu-
ally intensifies with little variation in the minimum value, with even the charge on the central
phosphorous (P1) changing by 0.1𝑒 before the transition state.

Much of the charge transfer takes place in the second region, which can be read from the
atomic charge evolution in Fig. 2.7. After the transition state, the approaching oxygen atom
is 2.6

∘
A from the phosphorous situated between the methyl groups, with H7-O14-H11 being

198Results presented here are based on the geometries obtained by Dyguda-Kazimierowicz et al. ; potentials
and multipole moments were recalculated at the Hartree-Fock level using the 6-311++G(d,p) basis set.
199Connolly, M. J. Appl. Crystall. 1983, 16, 548–558; Connolly, M. Science 1983, 221, 709–713.
200The surface was generated using code published by Connolly and scripts by Paweł Kędzierski. The

probing distance was set to the van der Waals radii according to Pauling and Bondi (for carbon and fluorine),

extended by the radius of the water molecule (1.4
∘
A). Further details on the implementation can be found in

P. Kędzierski, Ph.D. Thesis: Study of the nature of interactions in the active sites of enzymes (2001).

http://dx.doi.org/10.1107/S0021889883010985
http://dx.doi.org/10.1126/science.6879170
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Figure 2.7: Evolution of atomic Mulliken (CAMM) charges and ab initiomolecular electrostatic potential and on the Connolly
surface around reactants during the first stage of the alkaline hydrolysis of DMPF, INT1→TS1a→INT2a. Atomic charges are
plotted relative to their value at the first step NT1 (left hand side), with the embedded molecular structure defining the names
and numbering of atoms used in the legend. The upper plot shows the corresponding evolution of the average, median and
maximum values of molecular electrostatic potential.
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Figure 2.8: Evolution of atomic multipole (CAMM) moments during the first stage of the alkaline hydrolysis of DMPF,
INT1→TS1a→INT2a, with the same path and atom definitions as in Fig. 2.9.
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Figure 2.9: Root mean square deviation of the multipole-derived electrostatic potential compared to its ab initio
value on the Connolly surface around the alkaline hydrolysis reaction of O,O-dimethylphosphorofluoridate (DMPF).

roughly linear. The O14 oxygen proceeds to give away almost 0.3𝑒, and it is not surprising
that much of the charge donated by O14 ends up on the other oxygen atoms bonded to the
phosphorous atom. However, the second largest change is found for the H7 and H11 atoms
(above 0.2𝑒), a drop that returns their charge to “standard“ values, similar to the other
hydrogen atoms of the methyl groups.

At first sight, it may seem surprising that much of the charge redistribution takes place
after the transition state, nonetheless this agrees with energetic considerations. Since the
transition state is essentially a stationary point on the potential energy surface, its derivative
there with respect to the reaction coordinates is zero and the energy should not change very
much in the vicinity. As the energy is a function of the charge distribution, it follows the
latter should also not change significantly.

Mulliken charges and the associated CAMM atomic moments are arbitrary and often
strongly basis set dependent,167 but the plotted changes in atomic charges illustrate the mag-
nitude of charge redistribution and should be less sensitive (Löwdin charges were compared
in this case). If anything, these changes pinpoint which atoms participate in the reaction and
in which direction the flow of charge takes place.

The same is true for atomic moments, some of which are plotted in Fig. 2.8. They describe
the finer effects of charge redistribution, also within the bounds of individual atoms. It is
hard to draw any final conclusions from them, but some general observations about the role
of certain atoms are possible. The largest dipole moments in the system (O2, P1, C6) are
all reinforced during the reaction, however their directions do not change significantly. The
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Figure 2.10: Root mean square deviation of the multipole-derived electrostatic potential compared to its ab initio
value on the Connolly surface along the reaction path of carbon dioxide hydration.

direction of dipoles in the hydroxyl group changes by about a right angle, which is expected
when the methyl groups stop interacting and the oxygen atom enters the new bond. Surpris-
ingly, however, the dipole moment on the fluoride atom, although small, changes its direction
by almost 180 degrees.

For the higher moments, the central phosphorous atom exhibits by far the largest values and
most rapid changes, since the charge distribution around its nucleus is the most anisotropic.
Not all of these subtle changes will have an effect on the surroundings, which leads to the
question of how the moment-derived molecular potential converges with the increasing rank of
the multipole expansion. For example, the hexadecapole (denoted in Fig. 2.8 by 𝑀 (4)) changes
drastically after the transition state, while the difference in the multipole interaction on the
Connolly surface between ranks L=3 and L=4 (Fig. 2.9) is very small.

Fortunately, the redistribution of molecular charge density can be monitored more directly
through the multipole expansion of any well-defined molecular property, such as the MEP or
electric fields. In their case, the arbitrary character of a particular atomic charge definition is,
to a large degree, eliminated, yielding static or dynamic catalytic fields122 and aiding de novo
catalyst design.201

The error given in Fig. 2.9 is the root mean square deviation of the MEP estimated from
atomic multipole expansions relative to the ab initio value on the Connolly surface, using the
same reaction and coordinates as in previous figures concerned with DMPF.

201Dziekoński; Sokalski; Podolyan; Leszczyński, 2003, in Ref. 124 on page 25, and other references by
Dziekoński et al. in Section 2.2.3.
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Using only atomic charges (L=0) in this case implies an error of over 7 mH, and adding
charge-dipole interactions (L=1) lowers it to 4-5 mH. Moments up to octupoles (L=3) are
needed in order to bring the deviation below 2 mH (similar to the octupole-level convergence
observed for the transferable atom equivalent method183). However, about 1 mH is the lowest
root mean square (RMS) that can be achieved on the Connolly surface in this case. The
average value on this surface, plotted in Fig. 2.7, is no less that 110 mH, which means that
the converged expansion carries an error below 1%.

If the multipole expansion is converged, then this value can be interpreted as an estimate
of the average value of penetration effects at this distance according to (2.44). To compare,
using atomic charges implies an error of about 6%. It should be mentioned that in this case
the multipole expansion starts to diverge for higher ranks, and the RMS deviation starts to
increase for 𝐿 > 9.

Fig. 2.10 presents the same RMS deviation of the multipole potential at twelve points
along the second phase of the CO2 reaction with water, namely during the forming of the CO
double bond.202 Using atomic charges only (L=0) in this case implies an error of about 4-5
mH, and adding charge-dipole interactions (L=1) lowers it by only about 1 mH. Moments up
to octupoles (L=3) are needed in order to bring the deviation into the sub-millihartree range,
and it converges to around 0.2 mH for higher multipole ranks (tested up to L=16).

It is important to emphasize the logarithmic scale, used for clarity, and that the decrease in
the error is twenty-fold. Compared to absolute values of the potential, which oscillate around
20 mH for this reaction, this corresponds to improving the deviation from 20% to 1%. Again,
using octupoles (L=3) generally brings the MEP estimated from atomic multipole expansions
close to the best approximation of the exact potential that is possible – with an estimate of
penetration effect of about 1%.

202The transition state geometry was obtained here at the RHF/6-31G** level, and potentials and atomic
moments were generated using the 6-311++G(d,p) basis set.
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2.7 Conclusions

Besides glancing at the current state of research in intermolecular interactions, the present
chapter demonstrates the utility of two methods central to this work. The first of these is the
hybrid variation-perturbation method (HVPT) described in Section 2.2.3, which partitions
the intermolecular interaction energy into components defining a hierarchy of gradually ap-
proximate theory levels. HVPT components correspond closely to the values obtained from
SAPT, as demonstrated by Tables 2.3 and 2.4 as well as Fig. 2.2. They are also noteworthy for
exhibiting the same high degree of basis set stability, although with smaller cost. In particular,
compared to other variational schemes of the EDA type, the stability achieved using smaller
basis sets (aug-cc-pVDZ was the smallest basis set used in the comparison) is encouraging for
applications on large systems.

As a general conclusion, the HVPT scheme is found to be a satisfactory alternative for
state-of-the-art, but expensive SAPT calculations. It is adequate for analyzing interaction
energies in medium-sized to large complexes, particularly those that are out of reach today for
perturbation methods or variational methods that do not employ direct integral evaluation or
other technical enhancements. This choice has allowed relatively large systems to be studied
in this dissertation, while still retaining the core of physically meaningful interaction energy
components.

Section 2.4.1 follows the origin of the Cartesian multipole expansion and the sections that
follow discuss its use in various contexts, with several examples of convergence properties for a
few select systems. While convergence is not compared to other types of multipole expansions,
cases are shown where relatively high multipole moments are necessary in order to obtain a
converged approximation to the electrostatic interaction energy. The most relevant example
are stacking interactions at distances typical for DNA (∼3.4

∘
A), which require moments up

to rank five or six.
The convergence rate of the multipole expansion was also studied for the electrostatic

potential around the reactants of two reaction models, and assessed using its root mean square
deviation from the expected value on the Connolly surface. The converged multipole potentials
deviated from the expected value in both cases by around 1%, which can be considered an
estimate of the average magnitude of penetration effects at such distances.

The first reaction, the alkaline hydrolysis of DMPF, was studied in greater detail. An
examination of the median and largest electrostatic potentials on the Connolly surface and
of atomic charge changes show that most of the charge redistribution takes place before and
after the reaction’s transition state (between the reaction coordinates -10 and +5), which is
expected energetically. The higher multipole moments on atoms complementing charges give
a finer description of the charge redistribution. Magnitudes as well as directions of higher
moments may be important in certain cases, especially those of dipoles. These results clearly
demonstrate the significant variability of atomic charges along the reaction path as well as the
non-trivial role of higher atomic multipole moments during chemical reactions.





3 Statistical relationships between
interaction energy terms

[..] the interaction between a drug and receptor will perturb both molecules. It is our basic
hypothesis that at the most remote distance of drug—receptor engagement it is the preferred
conformation of the drug or a conformation close in energy which is recognized by the receptor.

Lemont B. Kier
The Prediction of Molecular Conformation

as a Biologically Significant Property203

3.1 Introduction

Kier called the quoted supposition the hypothesis of remote recognition of preferred confor-
mation, which he applied in constructing structure-function relationships for small molecules
based on early computational methods such as extended Hückel theory (EHT) or complete
neglect of differential overlap (CNDO).203 Neurotransmitters were of particular interest, and
according to the theory a signal molecule makes a “preliminary, weak bond with its receptor
while in a minimum energy state”.204, implying that this long-range interaction is favorable
and somehow corresponds to the strength of the final bond and to the molecule’s activity.

An example of the kind of observations that support this hypothesis were the parallel
dual function and two conformations found for histamine. In particular, Kier suggested that
two classes of histamine receptors interact selectively with the two distinguished conforma-
tions.205 Since then, however, experiments and calculations have shown histamine to adopt
other conformations, especially in solution206 and its mechanism of action is known to be more
complicated, with at least four distinct receptors.

Further studies showed that the remote recognition hypothesis is too simplistic for certain
systems and fails for example when interacting lone electron pairs are involved.207 Nonetheless,
the idea and similar ones have permeated molecular studies not only in theoretical pharmacol-
ogy,appearing in different forms throughout the years. For example, the concept of near attack
conformers (NAC) advocated by Bruice208 is essentially a paraphrase in the context of enzy-
matic catalysis. A NAC is supposed to be structurally similar to the transition state, while

203Kier, L. B. Pure Appl. Chem. 1973, 35, 509–520.
204Kier, L. B., Höltje, H.-D. J. Theor. Biol. 1975, 49, 401–416.
205Kier, L. B. J. Med. Chem. 1968, 11, 441–445.
206Ramirez, F. J., Tunon, I., Collado, J. A., Silla, E. J. Am. Chem. Soc. 2003, 125, 2328–2340.
207Hall, L. H., Kier, L. B. J. Theor. Biol. 1976, 58, 177–195.
208Bruice, T. C. Acc. Chem. Res. 2002, 35, 139–148.

http://dx.doi.org/10.1351/pac197335040509
http://dx.doi.org/10.1016/0022-5193(75)90181-2
http://dx.doi.org/10.1021/jm00309a005
http://dx.doi.org/10.1021/ja027103x
http://dx.doi.org/10.1016/0022-5193(76)90146-6
http://dx.doi.org/10.1021/ar0001665
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being in thermal equilibrium with the substrates. The role of the catalyst in this case is under-
stood to also include stabilization of the NAC, thus reorganizing substrates to conformations
that are closer to the transition state.

Figure 3.1: Conceptual plot of the total interaction energy 𝐸int

and its electrostatic component Δ𝐸
(1)
el at misguided intermolec-

ular distances r.

It is the purpose of this work and of gen-
eral interest to explore such notions with re-
gard to the interaction energy and the physi-
cal effects it arises from. Long-range interac-
tions between drug and receptor, as well as
between substrate components in their near
attack conformations, these must be related
to the corresponding interaction energy at
equilibrium and in the transition state, re-
spectively. Additionally, long-range interac-
tions will be dominated by electrostatic ef-
fects, pointing to a special role of the latter in
molecular recognition. In the present chap-
ter, this aspect is approached using statistical
analysis, providing measures of the relation-
ship between interaction energies at equilibrium and at large distances.

Another motivation for this study, which touches on the subject of electrostatic interac-
tions, lies on the opposite side of the scale, namely at shortened intermolecular distances. It
is well known that force fields can generate misguided geometries, with an RMS error that
varies from anywhere between 0.2

∘
A to more than 3

∘
A, depending on the force field used and

type of system tested.209 A recent study by Grzywa et al. illustrates that an error in the
intermolecular distance predicted by a force field can strongly influence a subsequent, theo-
retically more rigorous analysis.210 In their case, the nearest contacts between inhibitors and
active site residues were shorter than in the more accurate MP2 geometries by up to 1

∘
A.

Due to this, the MP2 interaction energy calculated for geometries obtained using the force
field failed to correlate with experimental activities. Surprisingly, its electrostatic component
exhibited good correlation. Although the sample size was too small to make objective conclu-
sions, this observation suggests that electrostatic interaction may provide a better prognostic
of the actual stability in the equilibrium geometry than the total energy.

Therefore, the present analysis also encompasses interactions at shortened intermolecular
distances. The general aim is to test what relationships can be found between interaction
energies at various intermolecular distances, analyzed using the HVPT method, and the equi-
librium interaction strength. In doing so, the electrostatic component is the major target,
for the reasons given above and because it is the least expensive and dominating term at
large distances. The final question sought to be answered is: to what extent can electrostatic

209Paton, R. S., Goodman, J. M. J. Chem. Inf. Model. 2009, 49, 944–955.
210Grzywa, R., Dyguda-Kazimierowicz, E., Sieńczyk, M., Feliks, M., Sokalski, W. A., Oleksyszyn, J. J. Mol.

Model. 2007, 13, 677–683.

http://dx.doi.org/10.1021/ci900009f
http://dx.doi.org/10.1007/s00894-007-0193-8
http://dx.doi.org/10.1007/s00894-007-0193-8
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effects at various distances be used to predict relative equilibrium stability? Before present-
ing results, however, a short introduction and rationale is provided for the non-parametric
statistical measures used.

3.1.1 Rank-based statistics for interaction energies

By far the the most popular way to capture statistical dependence is the Pearson correlation
coefficient, which tests for a linear relationship between two samples drawn from (usually
normal) probability distributions. When considering any two molecular properties, however,
there is no reason to expect a linear relationship. Since the choice of molecules is always biased
and usually rooted in a preference for some specific type of connectivity, the properties also
cannot be said to depend on a random variable. Furthermore, the Pearson coefficient is also
not a robust measure as outliers in the data, which can be frequent when molecules are chosen
arbitrarily, can have a strong influence on the correlation coefficient.

In such cases it is natural to turn to non-parametric statistics, which are distribution-
free and more robust since they exclude the numerically extreme character of outliers. The
interpretation of rank-based statistics is especially straightforward if the tested hypothesis is
suitably formulated. For example, the minimum practical information needed when screening
a large set of compounds is whether the activity of one compound is larger than another. If
this can be decided using energetic criteria, then the main concern becomes how to efficiently
reproduce the ascending or descending order of these energies. Their exact values then are
not most important, and one may turn towards the analysis of their ranks.

Let two sets of energies with the same number of elements 𝑁 , {𝐴𝑖} and {𝐵𝑖}, be well-
ordered. The index 𝑖 has the same meaning for both 𝐴 and 𝐵, symbolizing a specific molecule
or intermolecular complex. The elements of these sets, energies, are treated as raw scores, and
can be readily converted into ranks. The rank 𝑎𝑖 of an element 𝐴𝑖 corresponds to its position
when the set is sorted in an ascending or descending order. If descending order is assumed,
this is equivalent to the number of elements that are greater or equal to 𝐴𝑖:

𝑎𝑖 = |{𝑗 : 𝐴𝑗 ≥ 𝐴𝑖}| . (3.1)

If two elements happen to have the same numerical values, then their rank is taken as the
average of what their ranks would otherwise be. To illustrate this case with a simple example,
suppose that 𝐴 = {1, 2, 2, 3}. The ranks of the middle elements will then be 𝑎2 = 𝑎3 = 2.5.

One of the non-parametric measures used in the present study is the Spearman rank
correlation coefficient, denoted by 𝜌𝑆 and often defined as the Pearson correlation coefficient
between the two sets of ranks 𝑎 and 𝑏:211

𝜌𝑆 =

∑︀
𝑖 (𝑎𝑖 − 𝑎)

(︀
𝑏𝑖 − 𝑏

)︀√︁∑︀
𝑖 (𝑎𝑖 − 𝑎)2

∑︀
𝑖

(︀
𝑏𝑖 − 𝑏

)︀2 . (3.2)

211Lehmann, E. L., D’Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev.; Prentice-
Hall, 1998.
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It follows that 𝜌𝑆, just as the Pearson correlation coefficient, adopts values between -1 and
1, and is positive when 𝐵𝑖 tends to increase as 𝐴𝑖 increases. A value of one indicates that
there is a perfect monotonic relationship. If there are no ties between elements in the sets, in
other no two elements have the same value, then a simpler procedure can be used to calculate
the Spearman rank coefficient:

𝜌𝑆 = 1− 6
∑︁
𝑖

(𝑎𝑖 − 𝑏𝑖)2

𝑁(𝑁2 − 1)
, (3.3)

Another way to express the strength of a monotonic relationship between 𝐴 and 𝐵 in a
non-parametric way is to count the number of concordant and discordant pairs among the
sets, 𝑁C and 𝑁D respectively. These two numbers are the cardinalities of sets that contain
aligned or misaligned pairs. For example, the number of discordant pairs 𝑁D is equal to |𝐴𝐷|,
where

𝐴𝐷 = {(𝑖, 𝑗) : 𝑖 < 𝑗, (𝐴𝑖 > 𝐵𝑖 ∧ 𝐴𝑗 < 𝐵𝑗) ∨ (𝐴𝑖 < 𝐵𝑖 ∧ 𝐴𝑗 > 𝐵𝑗)}, (3.4)

with an analogous definition for 𝑁C = |𝐴𝐶 |.

The numbers 𝑁C and 𝑁D already give a good idea of the monotonic relationship, especially
its success rate when expressed as fractions or percentages. Here, however, they will be used
as the basis for the Kendall tau coefficient, a non-parametric statistic that measures the
correspondence of rankings,

𝜏K =
𝑁C −𝑁D

1
2
𝑁(𝑁 − 1)

. (3.5)

Considering that the sets of energies dealt with here contain real numbers, this rank cor-
relation coefficient can be equivalently written as

𝜏K =
1

1
2
𝑁(𝑁 − 1)

𝑁𝑖∑︁
𝑖

𝑁𝑗∑︁
𝑗

𝑖>𝑗

sgn ((𝐴𝑖 −𝐵𝑖) (𝐵𝑗 − 𝐴𝑗)) . (3.6)

Similar to the Pearson and Spearman coefficients, 𝜏K assumes values between -1 and 1,
extremes that correspond to opposite ideal monotonic relationships. A statistical significance
can be assigned to all these correlation coefficients, interpreted as the probability of the ob-
served rank sets 𝑎 and 𝑏 assuming the null hypothesis is true. Since 𝑎 is sought to be used
to reproduce 𝑏 or vice versa, the null hypothesis is that there is no monotonic correspondence
between or that the order in 𝐴 and 𝐵 is random.

As mentioned above, a simple and practical measure of how well two sets of energies are
aligned is the number of concordant or discordant pairs. Likewise, the number of errors or
misaligned pairs can be counted for either the monotonic or anti-monotonic cases if 𝑁D is
taken when 𝜏K > 0 and 𝑁C when 𝜏K < 0. This will be equal to the minimum of the two
numbers, in general. Divided by the total number of pairs, this provides a fractional measure
of the amount of mistakes made when reproducing the order of elements in set 𝐵 from the
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order in 𝐴, 𝑁mis, which can be expressed as a percentage,

𝑁mis = 100% · min(𝑁𝐷, 𝑁𝐶)
1
2
𝑁(𝑁 − 1)

. (3.7)

In order to estimate the magnitude of the mistakes made, the average difference between
the values of mistaken pairs can be calculated. There will be two such averages, one for 𝐴𝑖
and another for 𝐵𝑖. The first of these, ∆̄A

mis, will be

∆̄A
mis =

1
1
2
𝑁mis(𝑁mis − 1)

𝑁mis∑︁
(𝑖,𝑗)∈𝑀

|𝐴𝑖 − 𝐴𝑗|, (3.8)

where 𝑀 is the set of discordant or concordant pairs, depending on the direction of the
monotonic relationship, or whether 𝜏K is positive or negative:

𝑀 =

⎧⎨⎩𝐴𝐷 : 𝑁𝐶 > 𝑁𝐷

𝐴𝐶 : 𝑁𝐶 < 𝑁𝐷

. (3.9)

The magnitude ∆̄A
mis, in the context of energies as discussed here, is a measure with clear

practical meaning. It is the average difference between two energies in 𝐴 when their order is
opposite than the majority of concordant or discordant pairs with respect to 𝐵. The same
delta can be defined for 𝐵 relative to 𝐴 – ∆̄B

mis – and the particular choice of symbols depends
on which set is used to predict which.

3.2 Small dimers from the S22 training set

State-of-the-art interaction energies at the CCSD(T) level of theory extrapolated to the com-
plete basis set (CBS) limit were published in 2006 by Hobza and coworkers for a series of
van der Waals dimers.212 This was intended to be a point of reference for future benchmarks
and analysis, and a smaller S22 training set was meant to be a testbed for developing new
approximate methods. The dimers chosen for the S22 set are listed in Fig. 3.1, along with
their symmetries, reference energies and symbols used herein for convenience.

A more recent study by Fusti Molnar et al. is also based on the S22 training set and
extends the interaction energy calculations to a range of intermolecular separations, generated
by varying the distances between monomer centers of mass.213 The same fourteen deviations
from equilibrium were used for each dimer, namely -0.8, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4, 0.7, 1.0,
1.5, 2.0, 3.0, 5.0 and 10.0

∘
A.

This case study follows in the footsteps of Fusti Molnar et al. and make use of the ge-
ometries published as supplementary material to their article.213 Mentions of the reference
or original CCSD(T) interaction energies, however, will everywhere refer to the first values

212Jurečka, P., Šponer, J., Černý, J., Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.
213Fusti Molnar, L., He, X., Wang, B., Merz, K. M. J. J. Chem. Phys. 2009, 131, 065102.

http://dx.doi.org/10.1039/b600027d
http://dx.doi.org/10.1063/1.3173809
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published by Jurecka et al.,212 and denoted by ∆𝐸CBS
CCSD(T). Wherever used, the equilibrium

or out-of-equilibrium CCSD(T) interaction energies published by Fusti Molnar et al. will be
marked additionally with a prime – ∆𝐸CBS′

CCSD(T).

dimer (geometry) [kcal/mol]

hy
d

ro
ge

n
-b

on
d

ed

A ammonia dimer (C2ℎ) -3.17
B water dimer (C𝑠) -5.02
C formic acid dimer (C2ℎ) -18.61
D formamide dimer (C2ℎ) -15.96
E uracil dimer (C2ℎ) -20.65
F 2-pyridoxine·2-aminopyridine (C1) -16.71
G adenine·thymine (C1) -16.37

d
is

p
er

si
on

-d
om

in
at

ed H methane dimer (D3𝑑) -0.53
I ethene dimer (D2𝑑) -1.51
J benzene·methane (C3) -1.50
K benzene dimer (C2ℎ, stacked) -2.73
L pyrazine dimer (C𝑠, stacked) -4.42
M uracil dimer (C2, stacked) -10.12
N indole·benzene (C1, stacked) -5.22
O adenine·thymine (C1, stacked) -12.23

m
ix

ed
co

m
p

le
xe

s P ethene·ethine (C2𝑣) -1.53
Q benzene·water (C𝑠) -3.28
R benzene·ammonia (C𝑠) -2.35
S benzene·HCN (C𝑠) -4.46
T benzene dimer (C2𝑣 , T-shape) -2.74
U indole·benzene (C1, T-shape) -5.73
V phenol dimer (C1, T-shape) -7.05

Table 3.1: Overview of dimers in the S22 training set pub-
lished by Jurečka et al..212 Reference extrapolated CCSD(T)
interaction energies and symmetries imposed on the dimers are
given, along with conformation types in a few cases.

Presently, the goal is to study the com-
ponents of the interaction energy using the
HVPT method described in Section 2.2.3, in
particular by the hierarchy in (2.23). Curves
of the interaction energy at the MP2 and
other levels of theory for the geometries bor-
rowed from Fusti Molnar et al. are presented
collectively for all of the 22 training dimers in
Fig. 3.2. The accompanying plots in Fig. 3.3
correspond to interaction energies at various
levels of theory.214

The first step in any statistical correla-
tion study is often to create a scatter plot
that gives an overview of the data. Fig. 3.4
presents such a scatter plot, where the
MP2 interaction energy (∆𝐸MP2) and first
order electrostatic component (∆𝐸(1)

el ) are
shown against the reference CCSD(T) energy
(∆𝐸CBS

CCSD(T)), all at the original CCSD(T)
equilibrium geometries. The data points are
quite well distributed over the whole range of interaction energies (from -20 kcal/mol to almost
zero), although a larger part is concentrated in the region above -5 kcal/mol.

Combining the practical issues that were outlined at the start of this chapter with the
statistical considerations introduced in Section 3.1.1, a number of specific questions can be
raised and addressed by analyzing this collection of benchmark results. Above all, it is inter-
esting whether the statistics introduced, such as 𝜏K and ∆̄mis, support a remote recognition
hypothesis akin to the one proposed by Kier. If the answer is affirmative, guidelines could be
given to facilitate computational screening techniques. Another important issue is whether
and to what extent electrostatic effects at distances closer than the equilibrium prognose the
equilibrium stability of a complex.

Table 3.2 follows the rank of the electrostatic component for all dimers, by showing how the
order of dimers changes with distance; the alphabetical symbols used are defined in Table 3.1.
It also color-codes the number of misaligned pairs (𝑁mis) with respect to the extrapolated
equilibrium CCSD(T) interaction energy, using the intensity of red in the background of each
cell to represent the percentage of misaligned pairs that a particular dimer is involved in.

214All results presented in this dissertation were based on interaction energies calculated with the aug-cc-
pVDZ basis set. The same calculations were als operformed for most of the dimers with larger basis sets,
yielding similar conclusions.
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Figure 3.2: HVPT interaction energy components for all molecular dimers in the S22 training set. The letter used to label
each dimer corresponds to the list in Fig. 3.1.



64 3.2 Statistical relationships between interaction energy terms: S22 training set

Figure 3.3: The interaction energy at various levels of theory for all molecular dimers in the S22 training set. The letter used
to label each dimer corresponds to the list in Fig. 3.1.
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Figure 3.4: Scatter plot of the MP2 and Hartree-Fock elec-
trostatic interaction component against the reference extrapo-
lated CCSD(T) interaction energies.

It is helpful to clarify the method of pre-
sentation with a simple example. Consider
the stacked uracil dimer (which is denoted by
“M”) and the stacked adenine-thymine dimer
(O). The ranks for their electrostatic interac-
tions within the S22 set, equivalent to their
vertical positions in the table, do not change
up to 0.7

∘
A away from the equilibrium – and

the adenine-thymine dimer (O) always shows
a stronger interaction energy than dimer M.
Therefore, their stability at the equilibrium
distance relative to any other S22 dimer can
be predicted based on ∆𝐸

(1)
el in this regime.

However, when the centers of mass in these
dimers are separated by more than 0.7

∘
A be-

yond the equilibrium distance, the electrostatic term for the uracil dimer becomes larger. At
this point the two dimers switch ranks and rows in Table 3.2, which means that their relative
equilibrium stability would not be predicted correctly anymore using ∆𝐸

(1)
el .
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Table 3.2: Evolution of 𝑁mis for the equilibrium CCSD(T) interaction energy and electrostatic component at various distances,
for all dimers in the S22 training set. Each cell corresponds to a single dimer from the S22 set (letters the same as in Fig. 3.1),
and the intensity of the background red represents the number of misaligned pairs that contain that dimer. Each column is
sorted by descending interaction energy from top to bottom. The leftmost, detached column represent the equilibrium CCSD(T)
interaction energy extrapolated to the basis set limit. All other columns represent the uncorrelated electrostatic component, at
distances marked on the the axis.
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Moderate amounts of misalignment are present at all distances. Even for 𝑑COM = 0, at
which the ammonia dimer (A) is misaligned in over 20% of the possible pairs. There is also a
region of exceptionally large misalignment, in the lower right hand corner of the table, where
dimers exhibiting the weakest long-range electrostatic interactions are located. In particular,
several of the larger stacked complexes incur many misalignments, namely benzene·benzene
(K) and indole·benzene (N), as well as the adenine-thymine hydrogen-bonded dimer (G). In
the worst case, if one were to base predictions of relative equilibrium stability solely on the
electrostatic component in the stacked indole-benzene dimer at distances above ∼ 0.5

∘
A, the

choices would be as good as random since the success rate would be roughly 50%.

Table 3.3 in turn shows the summary statistics for such evaluations, testing the electrostatic
term as well as other interaction energy components in the role of the prognostic, at the
equilibrium distance and for displacements of -0.4

∘
A and 0.7

∘
A. Three of these statistics – 𝜏K,

𝑁mis and ∆̄ref
mis– are also plotted as functions of 𝑑COM in Fig. 3.5, but for corresponding levels

of theory instead of components. It should be stressed that in both cases the distance 𝑑COM is
given relative to the equilibrium distance between monomers, so that 𝑑COM = 0.1

∘
A refers to

the set of all S22 dimers where the distance between centers of mass was extended by 0.1
∘
A.

The main target of this work, namely the electrostatic component, performs
surprisingly well. Especially at shortened distances, none of the three statistics are notice-
ably worse compared to the correlation coefficient at equilibrium. The Kendall tau in this
range is around 0.86-0.87, while the Spearman and Pearson coefficients are well above 0.95.
What is the practical value of these correlations? Measures associated with misaligned pairs
provide more insight: 𝑁mis is below 0.08 in this range, which means that only 8% of all pre-
dictions would be false positives. What is more important, the average difference between
CCSD(T) energies for these mistakes (∆̄ref

mis) is around 1 kcal/mol. This is logical when com-
pared to the scatter plot in Fig. 3.4, in which a few tight groups about 1kcal/mol in diameter
can be seen. It is pairs of dimers inside these groups that usually cause the misalignments.

At long range, the statistics for the electrostatic component become gradually worse, but
are still significant. Interestingly, the Pearson coefficient remains almost unchanged (with a
drop of about 0.01), while both 𝑁mis and ∆̄ref

mis almost double. This is a typical example where
the assumption of a linear relationship can lead to an erroneous conclusion about the quality
of a statistical relationship – in this case the quality is clearly overestimated.

It is interesting to compare statistics between interaction components – the exchange
(∆𝐸(1)

ex ) and delocalization (∆𝐸(R)
del ) terms both exhibit high correlation coefficients, and their

misalignment rates are as good as or better than ∆𝐸
(1)
el . On the other hand, the difference in

the reference interaction energy that they misjudge on average is always larger than for the
electrostatic component. This single difference in the trends of ∆̄ref

mis with 𝑑COM is probably
influenced by the fact that ∆𝐸

(1)
el fades slower other interaction energy terms and dominates at

larger values of 𝑑COM (above 1.5
∘
A). While the ranks of ∆𝐸

(1)
ex and ∆𝐸

(R)
del may remain similar

to that of the equilibrium stability, their ranges will be much narrower, leading to more serious
energetic mistakes in the predicted order.

The behavior outlined in the previous paragraph seems logical, since all these terms are
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𝜏K/p 𝑁mis Δ̄ref
mis Δ̄mis 𝜌S/p 𝜌P/p

— — [kcal/mol] [kcal/mol] — —

Δ𝐸MP2 ·Δ𝐸
(1)
el

𝑑COM = -0.4 0.844/4e-08 8% 1.13 4.03 0.950/1e-11 0.952/9e-12

𝑑COM = 0.0 0.818/1e-07 9% 1.39 1.54 0.931/3e-10 0.937/1e-10

𝑑COM = 0.7 0.662/2e-05 17% 2.32 0.95 0.798/9e-06 0.911/4e-09

Δ𝐸CBS
CCSD(T) ·Δ𝐸

(1)
el

𝑑COM = -0.4 0.861/2e-08 7% 0.99 4.39 0.954/7e-12 0.976/1e-14

𝑑COM = 0.0 0.870/1e-08 6% 0.96 1.00 0.963/8e-13 0.972/4e-14

𝑑COM = 0.7 0.766/6e-07 12% 1.60 0.76 0.879/7e-08 0.960/1e-12

Δ𝐸CBS
CCSD(T) ·Δ𝐸

(1)
ex

𝑑COM = -0.4 -0.827/7e-08 9% 1.00 9.30 -0.948/2e-11 -0.965/4e-13

𝑑COM = 0.0 -0.801/2e-07 10% 1.50 2.77 -0.928/5e-10 -0.960/2e-12

𝑑COM = 0.7 -0.758/8e-07 12% 2.25 0.43 -0.895/2e-08 -0.920/1e-09

Δ𝐸CBS
CCSD(T) ·Δ𝐸

(R)
del

𝑑COM = -0.4 0.870/1e-08 6% 1.75 2.80 0.970/1e-13 0.917/2e-09

𝑑COM = 0.0 0.879/1e-08 6% 2.07 0.63 0.968/2e-13 0.928/5e-10

𝑑COM = 0.7 0.835/5e-08 8% 2.34 0.10 0.950/1e-11 0.946/3e-11

Δ𝐸CBS
CCSD(T) ·Δ𝐸

(2)
disp

𝑑COM = -0.4 0.221/2e-01 39% 7.53 7.76 0.316/2e-01 0.091/7e-01

𝑑COM = 0.0 0.186/2e-01 41% 7.60 4.28 0.269/2e-01 0.085/7e-01

𝑑COM = 0.7 0.048/8e-01 48% 8.20 1.64 0.056/8e-01 0.011/1e+00

Δ𝐸CBS
CCSD(T) ·Δ𝐸

(1)
HL

𝑑COM = -0.4 -0.784/3e-07 11% 1.28 6.29 -0.914/3e-09 -0.932/3e-10

𝑑COM = 0.0 -0.022/9e-01 49% 7.19 3.08 -0.074/7e-01 0.102/7e-01

𝑑COM = 0.7 0.654/2e-05 83% 7.99 3.85 0.804/7e-06 0.916/2e-09

Δ𝐸CBS
CCSD(T) ·Δ𝐸RHF

𝑑COM = -0.4 -0.143/4e-01 57% 6.72 7.36 -0.233/3e-01 -0.072/8e-01

𝑑COM = 0.0 0.455/3e-03 27% 3.65 3.48 0.599/3e-03 0.819/3e-06

𝑑COM = 0.7 0.671/1e-05 16% 2.40 1.16 0.806/6e-06 0.931/3e-10

Δ𝐸CBS
CCSD(T) ·Δ𝐸MP2

𝑑COM = -0.4 0.411/7e-03 29% 7.43 3.03 0.490/2e-02 0.111/6e-01

𝑑COM = 0.0 0.896/5e-09 5% 0.46 0.79 0.979/3e-15 0.988/1e-17

𝑑COM = 0.7 0.905/4e-09 5% 0.33 0.43 0.982/6e-16 0.990/2e-18

Δ𝐸CBS
CCSD(T) ·Δ𝐸CBS′

CCSD(T)

𝑑COM = -0.4 0.484/3e-03 26% 5.71 1.24 0.544/1e-02 0.709/5e-04

𝑑COM = 0.0 0.989/1e-09 1% 0.20 0.05 0.998/4e-24 1.000/1e-30

𝑑COM = 0.7 0.937/8e-09 3% 0.25 0.07 0.988/5e-16 0.998/2e-22

Table 3.3: Kendall (𝜏K), Spearman (𝜌𝑠) and Pearson (𝜌𝑝) correlation coefficients within the S22 training set between a reference
equilibrium interaction energy and an interaction component at representative distances. The value of 𝑑COM is always relative to
the equilibrium separation of monomer centers of mass, and the 𝑝 in 𝜏K/𝑝 and other coefficients denotes the 𝑝-value or statistical
significance of the correlation coefficient. The titles on the left of each three-row section define the reference equilibrium energy
and the interaction component used as the predictor. For example, Δ𝐸CBS

CCSD(T)
· Δ𝐸(1)

el means that the first order electrostatic

component Δ𝐸(1)
el was correlated with the reference equilibrium CCSD(T) interaction energy; this particular case is also illustrated

in detail in Table 3.2. The superscript “ref” in Δ̄ref
mis means that the average difference was calculated for the reference interaction

energy (Δ𝐸CBS
CCSD(T)

or Δ𝐸MP2), and Δ̄mis without a superscript refers to the average difference for the electrostatic or other
prognostic component.
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actually part of the total interaction energy and therefore should hint at the relative equilib-
rium stability of a complex to some extent. For this reason, it is important to quantify how
well particular terms perform in this regard, and evaluating ∆̄ref

mis is an example of one simple
way to do that. The dispersion component ∆𝐸

(2)
disp seems to be an exception to this, as in its

case all correlation coefficients at all separations are insignificant, with mistakes in predicting
relative stability being made over 40% of the time. Correlation results that consider only
stacking complexes in the following section (see Table 3.4, for example) suggest that this is
not a consequence of the diversity of interaction types in the S22 set.

Table 3.3 and Fig. 3.5 also show the “auto-correlation” of the CBS-extrapolated CCSD(T)
interaction energy – ∆𝐸CBS

CCSD(T) ·∆𝐸CBS′

CCSD(T), where the original values of Hobza and coworkers
(∆𝐸CBS

CCSD(T))
212 are reproduced by those of Fusti Molnar et al. (∆𝐸CBS′

CCSD(T)).
213 The percentage

of mistakes 𝑁mis in this case is not zero due to technical differences methods (note: the latter
results also omit two of the largest dimers in the training set). For obvious reasons, this is the
best among all correlations shown. The Kendall tau drops below 0.9 only for values of 𝑑COM

> 3
∘
A, where the fraction of misaligned pairs exceeds 10% and ∆̄ref

mis reaches 1.5 kcal/mol.
The statistics associated with the MP2 interaction energy acting as a prognostic are not much
worse. For both MP2 and CCSD(T), however, all measures of correlation degrade rapidly at
shortened separations, namely for values of 𝑑COM below -0.2

∘
A.

Lastly, it is important to notice that statistics for the first order, uncorrelated electrostatic
term ∆𝐸

(1)
el do not converge to those of ∆𝐸CBS′

CCSD(T) at long range. Since for 𝑑COM > 1.5
∘
A the

interaction energy is dominated by non-penetrative, multipole electrostatic effects, intramolec-
ular correlation for long range electrostatic interactions seems to be important. This could
be confirmed by repeating the present analysis using multipole-expanded electrostatic interac-
tions based on coupled cluster densities (notice that the delta ∆̄ref

mis for ∆𝐸CBS
CCSD(T) ·∆𝐸MP2 also

converges to a different limit). If statistical correlation could be obtained with such multipole
moments comparable to that found here at large distances for ∆𝐸CBS

CCSD(T) · ∆𝐸CBS′

CCSD(T), they
would provide a valuable and inexpensive tool for predicting stabilization energies, with a suc-
cess rate of over 90%. More importantly, the average error for the reference interaction energy
would probably also be around 1 kcal/mol, comparable to the average deviation reported in a
larger portion of the same training set for dispersion corrected density functionals215.

215Antony, J., Grimme, S. Phys. Chem. Chem. Phys. 2006, 8, 5287–5293.

http://dx.doi.org/10.1039/b612585a
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Figure 3.5: Distance dependence of the Kendall tau (𝜏K), fraction of misaligned pairs (𝑁mis) and average difference in
reference values for misaligned pairs (Δ̄ref

mis) in the S22 training set. Green denotes correlations that behave adequately at short

separations (𝑑COM < 0.2
∘
A), blue is used for the best correlations in the intermediate and long ranges, and plots involving

Δ𝐸RHF and Δ𝐸
(1)
HL (with bad correlation around equilibrium) are shown in red.
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3.3 Stacked dimers of nucleic acid bases

In this section, the rank-based statistical concepts introduced above are applied to HVPT
interaction energy analyses that were performed for stacked nucleic acid base geometries.
While a wider, historical context of research on nucleic acids is portrayed in the introduction to
Chapter 4, all the topics discussed there depend on recognition and intermolecular interactions,
lending more motivation to this study.

Non-covalent interactions of nucleobases in arbitrary intermolecular geometries are compli-
cated by the number of factors that need to be considered simultaneously, including hydrogen
bonding and 𝜋-𝜋 interactions. The first is well characterized in terms of the geometries of
donor hydrogens and acceptor atoms and electrostatic forces, the latter however does not
seem susceptible to any such straightforward description.216 Difficulties emerge from multiple
intermolecular contacts, variable geometrical parameters and the influence and large number
of feasible functional groups. Computational barriers here are also significant. All these com-
plications led researchers to study the smallest representative isolated model systems – such
as dimers of benzene-derived molecules and nucleobases. We focus here on stacked nucleobase
dimers due the interest they enjoy and the controversy they have caused in the computational
literature of the last decade.

As far as the importance of electron correlation effects and choice of methods required
to obtain reliable total energies are concerned, the differences between hydrogen-bonded and
stacked nucleic acid base dimers are well known. Early studies, summarized already in 1999 by
Hobza and Šponer,217 settled the electrostatic nature of hydrogen bonded base pairs. On the
other hand, they revealed the important role of dispersion interactions for the stabilization of
𝜋-𝜋 stacks.218 Reliable ab initio calculations for nucleic acid bases are themselves relatively new
and provide fresh insight into the properties and complexation of these molecules. The general
attitude at the turn of the century concerning this topic was concisely described by Sponer et
al.:219 “QM studies of DNA bases have been attempted for more than 30 years. However,
before [the] advance of powerful supercomputers in the beginning of the 1990s, no reliable
calculations on medium-sized molecular clusters (such as base pairs) were possible. Thus the
old results were necessarily highly inaccurate, mutually contradicting, and method dependent.
[..] Modern high-level ab initio calculations provide data of great accuracy and reliability,
which for nucleobase interactions cannot be presently obtained by any other experimental or
computational technique.”

Subsequent studies by Hobza and collaborators have chiseled the energies of nucleobases
and their dimers to increasingly higher accuracies. The large effort put forward in order to

216Hunter, C. A., Lawson, K. R., Perkins, J., Urch, C. J. J. Chem. Soc. Perkin Trans. 2 2001, 651–669;
Meyer, E. A., Castellano, R. K., Diederich, F. Angew. Chem. Int. Ed. 2003, 42, 1210–1250.
217Hobza, P., Šponer, J. Chem. Rev. 1999, 99, 3247–3276.
218This is in contrast to isolated nucleobases, for which DFT and MP2 provide similar electric properties,

including charges, dipoles and MEPs as shown for methylated nucleobases in Bakalarski, G., Grochowski, P.,
Kwiatkowski, J. S., Lesyng, B., Leszczyński, J. Chem. Phys. 1996, 204, 301–311.
219Šponer, J., Leszczyński, J., Hobza, P. Biopolymers 2002, 61, 3–31.

http://dx.doi.org/10.1039/b008495f
http://dx.doi.org/10.1002/anie.200390319
http://dx.doi.org/10.1021/cr9800255
http://dx.doi.org/10.1016/0301-0104(95)00413-0
http://dx.doi.org/10.1002/1097-0282(2001)61:1<3::AID-BIP10048>3.0.CO;2-4
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Figure 3.6: All 16 combinations of stacked nucleobase dimers in their typical B-DNA conformations.

apply MP2 and CCSD(T) methods and to extrapolate to complete basis sets220 gives a clear
picture of the gas phase properties of these dimers and the magnitude of the interactions
involved.221 More recent studies have also sought to use these exact references and describe
stacked nucleobases with less expensive alternatives, including force fields222 and approxima-
tions such as MP2.5.223

These efforts are seconded by studies on simpler stacked aromatic molecules. Tsuzuki et al.
showed how important the dispersion interaction is for various conformations of the benzene
dimer by comparing interaction energy curves at the Hartree-Fock, MP2 and CCSD(T) levels of
theory,224 followed by a similar inspection of the naphthalene dimer with similar conclusions.225

Recent, extensive studies of the benzene dimer potential energy surface by Janowski and Pulay
have provided more accurate reference data226 that allow less expensive, but reliable interaction
models to be developed.227 Tschumper and collaborators have demonstrated similar results for

220Hobza, P., Šponer, J. J. Am. Chem. Soc. 2002, 124, 11802–11808.
221Jurečka, P., Hobza, P. J. Am. Chem. Soc. 2003, 125, 15608–15613; Šponer, J., Jurečka, P., Marchan, I.,

Luque, F. J., Orozco, M., Hobza, P. Chem. Eur. J. 2006, 12, 2854–2865; Šponer, J., Riley, K. E., Hobza, P.
Phys. Chem. Chem. Phys. 2008, 10, 2595.
222Morgado, C. A., Jurečka, P., Svozil, D., Hobza, P., Šponer, J. J. Chem. Theor. Comp. 2009, 5, 1524–1544.
223Pitoňák, M., Janowski, T., Neogrády, P., Pulay, P., Hobza, P. J. Chem. Theor. Comp. 2009, 5, 1761–1766.
224Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., Tanabe, K. J. Am. Chem. Soc. 2002, 124, 104–112.
225Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. J. Chem. Phys. 2004, 120, 647.
226Janowski, T., Pulay, P. Chem. Phys. Lett. 2007, 447, 27–32.
227Hill, J. G., Platts, J. A., Werner, H. Phys. Chem. Chem. Phys. 2006, 8, 4072; Rubeš, M., Bludský,

O., Nachtigall, P. ChemPhysChem 2008, 9, 1702–1708; Bludský, O., Rubeš, M., Soldán, P., Nachtigall, P. J.
Chem. Phys. 2008, 128, 114102; Bludský, O., Rubeš, M., Soldán, P. Phys. Rev. B 2008, 77, 092103; Pitoňák,
M., Neogrády, P., Řezáč, J., Jurečka, P., Urban, M., Hobza, P. J. Chem. Theor. Comp. 2008, 4, 1829–1834.
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the diacetylene dimer, an even smaller model for 𝜋-𝜋 interactions,228 showing that electron
correlation effects must be included in order to retrieve the global minimum on the PES.

With the constant progress of available computer resources, quantum chemical calculations
of stacked 𝜋-𝜋 systems are now branching out to more intricate problems. Rubes et al.
addresses stacking interactions in the solid phase,229 and nucleobases-aromatic amino acid
interactions have been studied by others.230 It should be mentioned, again, that there is a
growing body of ab initio results on intercalated nucleic acids, which also entail aromatic
interactions, as discussed in depth in Section 4.

Yildirim and Turner quite bluntly recap the problems and hopes of the current situation,
albeit in the context of RNA folding dynamics, in their review RNA Challenges for Com-
putational Chemists231 – “Some experimental results for [..] folding cannot be explained by
simple pairwise hydrogen-bonding models. [..] Presumably, these results can be explained by
base stacking effects, which can be partitioned into Coulombic and overlap effects”. It is what
they call overlap effects, and the dispersion interaction in particular, which is so problematic
due to the prohibitively expensive computational methods needed to retrieve reliable energies.
Although it remains to be seen whether base stacking can in fact satisfactorily explain these
experimental results, any information provided via less expensive calculations is valuable if it
can make at least qualitative predictions about relative stability or structural properties.

3.3.1 Electrostatic effects in stacked nucleobase dimers

Perhaps the most influential outcome of this branch of research is the widely accepted notion
that stacked complexes are stabilized mostly by London dispersion forces, a point repeatedly
confirmed by quantum chemistry calculations. This general conclusion is by no means obvious
or easy to prove, and in his thoughtful communication Do Special Noncovalent 𝜋-𝜋 Stacking
Interactions Really Exist? Grimme recommends a cautious interpretation.232 He stresses that
in stacked aromatic dimers 𝜋 orbitals do not interact as in conventional overlap-driven cova-
lent bonding, and that the spatial arrangement of fragments is as important as the presence
of those 𝜋 electrons. It is the unique, planar shape of stacked molecules that allows for numer-
ous close atom-atom contacts while remaining outside the extreme Pauli exchange repulsion
regime, thus maximizing attractive dispersion forces and leading to overall cooperative 𝜋 ef-
fects. While acknowledging the dominant dispersion component, he also argues that exchange
and electrostatic effects push stacked complexes away from maximum overlap into parallel
displaced conformations.

The interaction between vertically stacked bases in nucleic acids has long been understood
to be an important factor that contributes to their stabilization and recognition in some mech-

228Hopkins, B. W., ElSohly, A. M., Tschumper, G. S. Phys. Chem. Chem. Phys. 2007, 9, 1550; ElSohly,
A. M., Hopkins, B. W., Copeland, K. L., Tschumper, G. S. Mol. Phys. 2009, 108, 923–928.
229Rubeš, M., Bludský, O. Phys. Chem. Chem. Phys. 2008, 10, 2611.
230Rutledge, L. R., Durst, H. F., Wetmore, S. D. Phys. Chem. Chem. Phys. 2008, 10, 2801; Copeland,

K. L., Anderson, J. A., Farley, A. R., Cox, J. R., Tschumper, G. S. J. Phys. Chem. B 2008, 112, 14291–14295.
231Yildirim, I., Turner, D. H. Biochemistry 2005, 44, 13225–13234.
232Grimme, S. Angew. Chem. Int. Ed. 2008, 47, 3430–3434.
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anisms, for example those involving enzymatic replication. Early experimental research, such
as the NMR studies of 6-methylpurine performed by Chan et al.,233 succeeded in identifying
the average mode of nucleobase association in solution as being partial overlap, in preference
to horizontal hydrogen bonding.

A significant, if vague role of electrostatic effects has often been pointed out in the interpre-
tations of experiments involving aromatic stacking complexes. Siegel and coworkers presented
elegant experiments to this end. By manipulating the electrostatic potential at the center of
the benzene ring face by substituents, they effectively affected the magnitude of interactions
between aligned aromatic molecules.234 A different approach was adopted by Newcomb and
Gellman, who compared bis-adenine and bis-naphthyl to control compounds, and found that
only the first associates via intramolecular stacking;235 since the attractive dispersion inter-
action should be available for both compounds, they concluded that it is not a decisive force
for stacking. On the other hand, Guckian et al. have argued that the affinity of nucleobase-
derived molecules to form stacking complexes in solution depends mostly on the overlap area
of monomers, at the same time indicating the governing role of solvation-driven hydrophobic
effects.236 Interestingly, they also observed that the stacking affinities of natural nucleobases
are far from maximal, a fact they ascribe to the necessity of the DNA double helix to unwind.

Another interesting experimental study was performed by Perez-Casas et al.,237 who de-
termined the association enthalpies of various aromatic 𝜋-𝜋 complexes by heat capacity mea-
surements in solution. By correlating these with interaction energies from molecular and
distributed multipole moments, they succeed in explaining the relative association enthalpies
with significant correlation coefficients. Cockroft et al. in different studies argue that sub-
stituent effects can also be rationalized by electrostatic effects.238 Itahawa and Imaizumi also
published results of solution experiments that stress electrostatic interactions in the mecha-
nism of aromatic stacking.239

From the theoretical side, an early model based on distributed multipole moments employed
by Price and Stone240 demonstrated its utility by demonstrating qualitative agreement with
experimental geometries. They also pointed out that simpler models, which employ empirical
point charges or molecular multipoles, fail to reproduce these geometries even qualitatively.

More recently, Swart et al. have decomposed the interaction energy in a survey of density
functionals for benzene-derived and nucleobase dimers.241 Their conclusions included an inter-

233Chan, S. I., Schweizer, M. P., Ts’o, P. O. P., Helmkamp, G. K. J. Am. Chem. Soc. 1964, 86, 4182–&.
234Cozzi, F., Cinquini, M., Annuziata, R., Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 5330–5331.
235Newcomb, L. F., Gellman, S. H. J. Am. Chem. Soc. 1994, 116, 4993–4994.
236Guckian, K. M., Schweitzer, B. A., Ren, R. X.-F., Sheils, C. J., Paris, P. L., Tahmassebi, D. C., Kool,

E. T. J. Am. Chem. Soc. 1996, 118, 8182–8183; Guckian, K. M., Schweitzer, B. A., Ren, R. X.-F., Sheils,
C. J., Tahmassebi, D. C., Kool, E. T. J. Am. Chem. Soc. 2000, 122, 2213–2222.
237Pérez-Casas, S., Hernández-Trujillo, J., Costas, M. J. Phys. Chem. B 2003, 107, 4167–4174.
238Cockroft, S. L., Hunter, C. A., Lawson, K. R., Perkins, J., Urch, C. J. J. Am. Chem. Soc. 2005, 127,

8594–8595; Cockroft, S. L., Perkins, J., Zonta, C., Adams, H., Spey, S. E., Low, C. M. R., Vinter, J. G.,
Lawson, K. R., Urch, C. J., Hunter, C. A. Org. Biomol. Chem. 2007, 5, 1062.
239Itahara, T., Imaizumi, K. J. Phys. Chem. B 2007, 111, 2025–2032.
240Price, S. L., Stone, A. J. J. Chem. Phys. 1987, 86, 2859–2868.
241Swart, M., Wijst, T., Guerra, C. F., Bickelhaupt, F. M. J. Mol. Model. 2007, 13, 1245–1257.
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esting point – that the classical electrostatic component is the most important factor shaping
the surface and depth of the PES for stacked nucleobases and causes a minimum to occur
along the energy profile of two stacked Watson-Crick base pairs at a twist angle of 36o. A
similar interpretation was given a decade earlier by Hunter et al.,242 who surmised the impor-
tant role of electrostatic interactions in determining the shift and slide of nucleobase stacks.
Tsuzuki and coworkers, in one their influential studies of the benzene dimer224 also conclude
that only electrostatic interactions are highly orientation-dependent and that dispersion and
electrostatics together determine the dimer’s directionality.

3.3.2 Correlations between interaction energy components

The literature reviewed above conjures a vague image of the interaction profile for stacked
aromatic complexes; in it, London dispersion effects account for most of the interaction energy.
Other effects, supposedly the electrostatic component foremost, determine the geometrical
details and relative stability.

We note that although calculations performed for large sets of stacked aromatic molecules
are well represented in the recent literature both at the most accurate212 and more cost-
effective215 levels, a systematic analysis of interaction components, their interplay
and relationship to the stacking geometry is lacking. It is the intent here to detail this
interaction profile from another aspect, by considering the interaction components for stacked
nucleobases. Similar to a recent study243, the interaction energy components were analyzed
for each stacked pair of nucleic acid bases. Whereas Heßelmann et al. adopted the DFT-
SAPT approach, we use the hybrid variation-perturbation decomposition scheme described in
Section 2.2.3.

Methodologically, the published results244 are a direct extension of a study conducted ear-
lier by Hill et al.,245 who have shown for a set of 10 stacked DNA bases that electrostatic
interactions and their multipole estimates follow ∆𝐸MP2 with a reasonable correlation coeffi-
cient.

This conclusion was later questioned by Toczyłowski and Cybulski,246 who point out that
the electrostatic penetration contribution (∆𝐸el,pen) between two stacked nucleic acids bases
cannot be neglected and that basis set dependence may destroy the observed correlations. We
aim to better establish the statistical significance of the assertions stated previously by Hill
et al. for stacked nucleic acid bases by considering various multipole expansion types and a
series of basis sets. Also, we highlight the failure of molecular multipole expansions to estimate
electrostatic interactions, and the limitations of multicenter expansions based on atoms due
to slow convergence and penetration effects.

242Hunter, C. A., Lu, X.-J. J. Mol. Biol. 1997, 265, 603–619.
243Heßelmann, A., Jensen, G., Schütz, M. J. Am. Chem. Soc. 2006, 128, 11730–11731.
244Langner, K. M., Sokalski, W. A., Leszczyński, J. J. Chem. Phys. 2007, 127, 111102.
245Hill, G., Forde, G., Hill, N., Lester, W. A., Sokalski, W. A., Leszczyński, J. Chem. Phys. Lett. 2003, 381,

729–732.
246Toczyłowski, R. R., Cybulski, S. M. J. Chem. Phys. 2005, 123, 154312–12.
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Δ𝐸MP2 Δ𝐸corr Δ𝐸
(2)
disp Δ𝐸RHF Δ𝐸

(R)
del Δ𝐸

(1)
ex Δ𝐸

(1)
el

Δ𝐸mol,3
el,mtp cc-pVDZ 0.547 -0.182 -0.041 0.450 0.129 0.071 0.471

cc-pVTZ 0.559 -0.185 -0.053 0.479 0.156 0.097 0.503

Δ𝐸mol,8
el,mtp cc-pVDZ -0.024 -0.103 -0.124 0.185 -0.024 -0.038 -0.009

cc-pVTZ -0.047 -0.115 -0.021 0.171 -0.009 -0.062 -0.062

Δ𝐸1
CAMM cc-pVDZ 0.924 -0.156 0.009 0.688 0.265 -0.044 0.818

cc-PVTZ 0.659 -0.232 -0.068 0.650 0.156 -0.015 0.776

Δ𝐸8
CAMM cc-pVDZ 0.818 -0.315 -0.147 0.788 0.156 0.088 0.794

cc-pVTZ 0.756 -0.321 -0.135 0.821 0.168 0.115 0.812

Δ𝐸
(1)
el cc-pVDZ 0.874 0.144 0.329 0.388 0.338 -0.379

aug-cc-pVDZ 0.924 0.115 0.294 0.447 0.382 -0.315
cc-pVTZ 0.944 0.144 0.315 0.424 0.353 -0.341

Δ𝐸
(1)
ex cc-pVDZ -0.221 -0.921 -0.950 0.576 -0.429

aug-cc-pVDZ -0.385 -0.929 -0.976 0.582 -0.479
cc-pVTZ -0.365 -0.929 -0.976 0.576 -0.429

Δ𝐸
(R)
del cc-pVDZ 0.147 0.209 0.350 0.032

aug-cc-pVDZ 0.315 0.274 0.447 0.012
cc-pVTZ 0.238 0.250 0.418 0.032

Δ𝐸RHF cc-pVDZ 0.491 -0.753 -0.635
aug-cc-pVDZ 0.347 -0.750 -0.600

cc-pVTZ 0.371 -0.747 -0.597

Δ𝐸
(2)
disp cc-pVDZ 0.238 0.965

aug-cc-pVDZ 0.400 0.962
cc-pVTZ 0.368 0.962

Δ𝐸corr cc-pVDZ 0.085
aug-cc-pVDZ 0.250

cc-pVTZ 0.224

Table 3.4: Spearman rank correlation coefficients between various interaction components for all the possible pairs of stacked
nucleic acid bases in B-form DNA (set 1), using the cc-pVDZ, aug-cc-pVDZ and cc-pVTZ basis sets.

However subtle the supposed role of monomer electrostatic interactions is, it may still pro-
vide information on the relative stability of the different complexes, and a reliable electrostatic
model with a known margin of error is of major interest. That is the practical precedent for
this study, in which we survey all 16 B-DNA type stacked nucleobases (shown in Fig. 3.6)
and compare the electrostatic contribution to the total interaction energy at the second order
Möller-Plesset level ∆𝐸MP2. We go further, however, and address the statistical relationships
of any two interaction energy components – statistics for these relationships are summarized
in Table 3.4.

The structures chosen for this study fall into one of four categories,

set 1: all 16 base pairs of stacked model B-form DNA (base step: 3.38
∘
A, twist: -36𝑜)

set 2: all 16 base pairs of stacked model A-form DNA (base step: 2.56
∘
A, twist: -32.7𝑜)

set 3: 6 pairs of stacked bases studied by Hill et al.245

set 4: 18 pairs of stacked bases published by Jurecka et al.212

Since there is no reason to assume a normal distribution of the interaction energies being
compared, Spearman rank correlation coefficient as defined in (3.3) were used to describe the
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relationships between interaction terms, instead of the more popular Pearson product-moment
correlation coefficient.

Figure 3.7: Second-order Möller-Plesset interaction energy and its
selected components for all 16 pairs of stacked nucleic acid bases in
B-form DNA (set 1): a) aug-cc-pVDZ basis set, b) cc-pVTZ basis set.
The structures on the x-axis are ordered by decreasing MP2 interaction
energy (Δ𝐸MP2) in the cc-pVTZ basis set. The smaller, filled points
(triangles and squares) near the plots of the exchange and dispersion
terms (Δ𝐸(1)

ex and Δ𝐸
(2)
disp, respectively) represent values fitted using

the function described by 3.10.

Among all pairs of interaction terms,
the correlation coefficients of a few
are meaningfully high; among these,
𝜌(∆𝐸

(1)
el ,∆𝐸MP2) and 𝜌(∆𝐸

(1)
ex ,∆𝐸

(2)
disp)

are the most noteworthy. These two
pairs of components and a few others are
plotted in Fig. 3.7 for the aug-cc-pVDZ
and cc-pVTZ basis sets. The correlation
coefficients for all pairs of interaction en-
ergy components are shown for set 1 in
Table 3.4. For the remaining sets of ge-
ometries, the two most significant corre-
lations as well as 𝜌(∆𝐸RHF,∆𝐸MP2) and
𝜌(∆𝐸

(2)
disp,∆𝐸MP2) are listed in Table 3.5.

Surprisingly, the most pro-
nounced correlation is observed be-
tween the exchange ∆𝐸

(1)
ex and dis-

persion ∆𝐸
(2)
disp terms, with a correla-

tion coefficient below -0.95 in set 1 for
all the basis sets studied. Some insight
into the practical applicability of such a
correlation can be gained by calculating
the prediction interval of the difference
between ∆𝐸

(2)
disp and its linear regression

estimate 𝑎∆𝐸
(1)
ex +𝑏. The 95% prediction

interval of this kind is below 1.4 kcal/-
mol for all basis sets, which means that
95% of the values calculated from such a linear regression equation are expected to be within
1.4 kcal/mol of ∆𝐸

(2)
disp. This is a crude estimate due to the small population size (16 geome-

tries) and the assumption of a linear relationship; nonetheless, it gives an idea of the minimum
difference in energies needed to draw conclusions about the correlated interaction term. The
correlation between ∆𝐸

(1)
ex and ∆𝐸corr = ∆𝐸MP2−∆𝐸RHF is weaker, but still evident - with a

correlation coefficient below -0.92 and prediction interval below 1.8 kcal/mol for all basis sets
(also within geometry set 1).

These results may indicate a strong relationship between the dispersion damping and
exchange repulsion interactions, both closely related with intermolecular overlap as in the in-
teraction model devised by Tang and Toennies247. While it has been acknowledged earlier that
the Pauli exchange and dispersion components of the interaction energy in stacked structures

247Tang, K.-T., Toennies, J. P. J. Chem. Phys. 1984, 80, 3726–3741.
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geometries/basis set 𝜌(Δ𝐸
(1)
el ,Δ𝐸MP2) 𝜌(Δ𝐸

(1)
ex ,Δ𝐸

(2)
disp) 𝜌(Δ𝐸RHF,Δ𝐸MP2) 𝜌(Δ𝐸

(2)
disp,Δ𝐸MP2)

set 1 (B-DNA)/631g(1d,1p) 0.800 -0.962 0.647 0.024
set 1 (B-DNA)/631g(2d,2p) 0.912 -0.965 0.374 0.341
set 1 (B-DNA)/6311g(1d,1p) 0.879 -0.953 0.494 0.253
set 1 (B-DNA)/631g(1d,1p,1f) 0.879 -0.965 0.494 0.203
set 1 (B-DNA)/cc-pVDZ 0.874 -0.950 0.491 0.238
set 1 (B-DNA)/cc-pVTZ 0.944 -0.976 0.371 0.368
set 1 (B-DNA)/aug-cc-pVDZ 0.924 -0.976 0.347 0.400

set 2 (A-DNA)/cc-pVDZ -0.238 -0.971 0.829 -0.535
set 2 (A-DNA𝑎)/cc-pVDZ 0.643 -0.930 0.615 0.056

set 3 (Hill et al.245)/6311g(1d,1p) 0.943 -0.943 0.257 -0.200
set 3 (Hill et al.245)/cc-pVDZ 0.829 -0.943 0.257 -0.200

set 4 (Jurecka et al.212)/631g1d1p 0.794 -0.781 0.593 0.480
set 4 (Jurecka et al.212)/6311g1d1p 0.756 -0.777 0.536 0.540
set 4 (Jurecka et al.212)/cc-pVDZ 0.771 -0.777 0.546 0.519

all sets combined 0.358 -0.794 -0.115 0.758

Table 3.5: Spearman rank correlation and other coefficients between selected interaction energy components for the four studied
sets of stacked nucleic acid geometries and for various basis sets.
𝑎Values for set 2 without the AT, CT, GT, and TT stacks (outliers in Fig.2), in which a misplaced methyl group (distance from

hydrogen to nearest atom below 2
∘
A) introduced additional non-stacking exchange interactions.

have opposite signs and large values that partially compensate each other245, we point out that
they correspond closely - although not in a linear fashion - at least within a set of geomet-
rically similar structures (here, for B-DNA type geometries). Such observations complement
and may help support approximate methods for calculating dispersion interactions that are
presently being developed, for example based on density functional theory248.

The correlation coefficient between ∆𝐸
(1)
el and ∆𝐸MP2 is also significant, above 0.85 for

all basis sets, close to values reported earlier by Perez-Casas et al.237 and Hill et al..245. The
95% linear prediction interval in this case is always below 1.5 kcal/mol. A practical use of
this result: it would likely be sound to assert based on electrostatic interactions alone that
among the B-DNA stacked nucleobases the guanine-cytosine dimer (GC) is more stable than
any other. On the other hand, the relative stability of CT, CG, AT, AA and AG should not
be discriminated based on the electrostatic component if a confidence level of the order of 95%
is needed. In fact, the electrostatic components for this series of dimers are in opposition to
the ∆𝐸MP2 energy.

A few observations should be added for the multipole estimates to the electrostatic inter-
action. Foremost, interactions based on molecular electrostatic multipoles do not correlate
well with any other terms, even ∆𝐸

(1)
el , and quickly diverge (the correlation coefficient tends

to zero when including higher order moments). Such behavior is reminiscent of the example
presented in order to illustrate convergence in Fig. 2.4 of Section 2.5.3. In the case of the
atomic multipole expansion used (CAMM), correlation with ∆𝐸MP2 exists but is worse than
for the full electrostatic interaction ∆𝐸

(1)
el due to penetration effects.

The relationships outlined above refer to the structures in set 1, namely B-form DNA
constructed in ideal geometries. Results for the other geometry sets and basis sets are shown
in Table 3.6 and the full list of statistical parameters published as Supporting Information244.

248Misquitta, A. J., Jeziorski, B., Szalewicz, K. Phys. Rev. Lett. 2003, 91, 033201; Heßelmann, A., Jansen,
G., Schütz, M. J. Chem. Phys. 2005, 122, 014103.

http://dx.doi.org/10.1103/PhysRevLett.91.033201
http://dx.doi.org/10.1063/1.1824898
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Δ𝐸
(2)
disp = 𝑎Δ𝐸

(1)
ex + 𝑏 Δ𝐸MP2 = 𝑎Δ𝐸

(1)
el + 𝑏

geometries/basis set 𝑎 𝑏 𝑅2 P 𝑎 𝑏 𝑅2 P

set 1 (B-DNA)/631g(1d,1p) -0.85 -1.49 0.94 0.99 0.70 -0.39 0.88 1.09
set 1 (B-DNA)/631g(1d,1p,1f) -0.92 -1.55 0.94 1.08 0.74 -0.90 0.90 1.01
set 1 (B-DNA)/6-311G(1d,1p) -0.98 -1.57 0.93 1.18 0.75 -1.48 0.90 1.05
set 1 (B-DNA)/631g(2d,2p) -1.04 -2.12 0.94 1.16 0.76 -2.42 0.89 1.10
set 1 (B-DNA)/cc-pVDZ -0.94 -1.32 0.93 1.14 0.73 -0.95 0.90 1.02
set 1 (B-DNA)/cc-pVTZ -1.15 -2.46 0.94 1.32 0.82 -3.57 0.87 1.35
set 1 (B-DNA)/aug-cc-pVDZ -1.17 -2.87 0.94 1.36 0.83 -4.14 0.85 1.45

set 2 (A-DNA)/cc-pVDZ -0.33 -5.60 0.89 3.17 -0.58 -3.18 0.35 7.87

set 3 (Hill et al.245)/6-311G(1d,1p) -1.26 -1.61 0.38 0.99 0.52 -3.06 0.81 0.70
set 3 (Hill et al.245)/cc-pVDZ -1.22 -1.32 0.37 1.08 0.53 -2.59 0.85 0.59

set 4 (Jurecka et al.212)/6-31G(1d,1p) -0.48 -5.49 0.69 1.82 0.48 -2.51 0.86 1.48
set 4 (Jurecka et al.212)/6-311G(1d,1p) -0.52 -6.53 0.67 2.11 0.48 -3.99 0.83 1.66
set 4 (Jurecka et al.212)/cc-pVDZ -0.50 -6.13 0.67 2.03 0.47 -3.47 0.81 1.67

Table 3.6: Linear regression parameters (𝑎, 𝑏, and 𝑅2) and prediction intervals (𝑃 = 𝜎𝑛𝑇0.95
√︀

1 + (1/𝑛), where 𝑇0.95 is the

appropriate percentile of Student’s t-distribution) for the pairs Δ𝐸
(1)
ex and Δ𝐸

(2)
disp, and Δ𝐸

(1)
el and Δ𝐸MP2. All values in kcal/mol

where applicable.

They are similar, provided that the chosen structures are planar and span a significant range
of interaction energies. For instance, four dimers in set 2 (A-form DNA) exhibit interatomic
distances smaller than 2

∘
A due to a nonplanar methyl group, whose presence disrupts the re-

lationships between interaction terms. Without these four dimers, the same relationships (be-
tween ∆𝐸

(1)
ex and ∆𝐸

(2)
disp, and ∆𝐸

(1)
el and ∆𝐸MP2) are observed. Conversely, these relationships

are much weaker when dimers with different stacking geometries are evaluated together; set 4
(Jurečka et al. contains both experimental and in vacuo optimized structures, and in this case
𝜌(∆𝐸

(1)
el ,∆𝐸MP2) = 0.771 and 𝜌(∆𝐸

(1)
ex ,∆𝐸

(2)
disp) = −0.777. Calculated for all the geometry

sets together, these coefficients are 𝜌(∆𝐸
(1)
el ,∆𝐸MP2) = 0.358 and 𝜌(∆𝐸

(1)
ex ,∆𝐸

(2)
disp) = −0.794.

This also suggests that if a general functional relationship can be drawn between these interac-
tion components, covering various degrees of overlap between stacked molecules, it is certainly
not linear.

One more point that needs to be emphasized is that the relationships found hold for all
the tested basis sets, even though the energies obtained are certainly not saturated in terms
of electronic correlation. The linear regression parameters, however, differ between basis sets.

It is important to keep in mind when studying correlations like those above that they do
not not infer anything about the dependence or common origins of interaction energy terms
being considered – which would lead to a logical fallacy of the cum hoc ergo propter hoc kind.
In this context, this means simply that statistical correlation does not imply causation or, as
would be very useful computationally, does not imply their compensation. In the case of ∆𝐸

(1)
ex

and ∆𝐸
(2)
disp, both terms possibly depend similarly on the degree to which the stacked planar

molecules overlap, despite very different physical origins.

This behavior they have in common can be seen by fitting the exchange and dispersion
components with any measure of the overlap. For example, Fig.1 also shows that the ab initio
exchange and dispersion terms are closely followed by functions that consider the distances
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Figure 3.8: The exchange and dispersion interaction components (Δ𝐸(1)
ex and Δ𝐸

(2)
disp, respectively) in a benzene-pyridine stack

(parallel with a separation of 3.4
∘
A) and all 16 stacked nucleic acid base pairs of B-DNA (set 1), plotted against the normalized

closeness function in 3.10 with 𝑛 = 1, i.e. 𝐷
𝑁𝐴𝑁𝐵

∑︀
𝑖,𝑗

1
|�⃗�𝑖−�⃗�𝑗 |

, where 𝐷 is the distance between the centers of mass and 𝑁𝐴 and

𝑁𝐵 are the numbers of atoms in each molecule. The range of overlaps for the benzene-pyridine stack were generated by sliding
the pyridine along the center of its mass-nitrogen axis, with a normalized closeness of ∼0.8 corresponding to maximum overlap.

between all pairs of atoms in two interacting molecules, in effect a function of their closeness:

𝐶𝑛 =

𝑁𝐴∑︁
𝑖

𝑁𝐵∑︁
𝑗

1

|�⃗�𝑖 − �⃗�𝑗|𝑛
, (3.10)

where 𝑖 and 𝑗 span over the heavy atoms in each molecule, in simple analogy to the multipolar
dispersion interaction advanced by Hodges and Stone.249 The exponent in this equation was
chosen 𝑛 = 12 for ∆𝐸

(1)
ex and 𝑛 = 6 for ∆𝐸

(2)
disp. Other similar, but arbitrary choices also yield

satisfactory fits (data not shown).
Looking at the compensation of the exchange and dispersion terms for a wider range of

overlaps hints that their relationship is not a linear one, and that the sum ∆𝐸
(1)
ex + ∆𝐸

(2)
disp

exhibits a trend for larger relative overlaps. This is illustrated here for a model benzene-
pyridine stacked dimer in Fig. 3.8. More importantly, normalized measures of overlap fall into
well-defined ranges for sets of related structures. In the case of set 1 (B-DNA), this range
is 0.59-0.72 and the sum of ∆𝐸

(1)
ex and ∆𝐸

(2)
disp is not constant due to differences in chemical

composition and conformation.

249Hodges, M. P., Stone, A. J. Mol. Phys. 2000, 98, 275–286.
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3.4 Conclusions

The surprising observation that at shortened intermolecular separations electrostatic effects
correlate stronger with the total equilibrium stabilization energy than either the MP2 or
CCSD(T) interaction energies do confirms the motivation behind the first issue outlined in
Section 1.2. An abrupt loss of relation between MP2 as well as CCSD(T) interaction ener-
gies and the interaction at equilibrium is a significant feature that can impact a number of
scenarios met in everyday computational chemistry. The fact that the correlation exhibited
by electrostatic interactions degrades marginally for these shorter contacts provides a way to
deal with these situations.

On the other hand, these correlations become gradually worse when studied for increasing
intermolecular separations. This suggests that the idea of molecular recognition formulated by
Kier and brought up in the Introduction can also be applied to the domain of interaction ener-
gies. It is in fact possible to reproduce to some extent relative stability based on interactions
at larger separations.

Furthermore, the different behavior of the statistics introduced for the electrostatic com-
ponent and total correlated energies (both ∆𝐸MP2 and the reference ∆𝐸CCSD(T)) point to the
possibility that correlated electrostatic effects are important. Repeating the present analyses
for electrostatic interaction derived from monomer Coupled-Cluster densities may provide a
route to further improve its prognostic value.

The relation observed by Hill et al.245 is confirmed within sets of similar structures for a
selection of basis sets and the predictive strength of this relationship is assessed. Also, the
failure of molecular multipole expansions to estimate electrostatic interactions is highlighted,
along with the limitations of multicenter expansions based on atoms due to slow convergence
and penetration effects.

Major components of the interaction energy that define several approximate levels start-
ing from second order Möller-Plesset theory were studied for 58 stacked nucleic acid dimers.
They included typical B-DNA and A-DNA structures, and selected published geometries. A
survey of the various terms yields an unexpected correlation between the Pauli exchange and
dispersion or correlation terms, which holds for each class of similar planar geometries and
for various basis sets. The geometries that exhibit these correlations span a specific range
of molecular overlaps when compared to a model benzene-pyridine stacked dimer. Also, the
relationship between electrostatic interactions and MP2 stabilization energies reported earlier
is confirmed and a prediction interval of practical relevance is estimated.



4 Non-empirical analyses of
intercalated nucleic acids

It is these chromosomes... that contain in some kind of code-script the entire pattern of the
individual’s future development and of its functioning in the mature state. Every complete set
of chromosomes contains the full code...

Erwin Schrödinger
What Is Life? 1944

4.1 Introduction

Already in the late 19th century nucleic acid had been isolated and studied as a chemical
substance, though it was the identification of its unique function for life on Earth that made
it the focal point of molecular biology it is today. A long trail of experimental research in the
mid-20th century inspired the concept: genetic information is embodied and carried by DNA
and propagated through processes such as replication and transcription. Several important,
less known early studies can be distinguished in this regard, such as those by Avery et al.
who already in 1944 induced predictable alterations in the cellular structure of bacterial hosts
using isolated salts of deoxyribonucleic acid.250 Hershey and Chase followed by demonstrating
the independent, auxiliary role of protein compared to DNA in bacteriophage growth,251 with
Meselson and Stahl raising important questions about the molecular mechanisms of DNA du-
plication.252 These studies and countless others provide the basis for our current understanding
of the special, hereditary role of nucleic acids as opposed to proteins, lipids, polysaccharides
and other molecules found in cells.

No less important was the recognition of DNA’s regular structure in a series of articles in
1953, the first of which placed the phosphate groups on the exterior of the X-ray crystallo-
graphic unit253 and suggested the celebrated double helix.254. Franklin et al. found evidence
of the same helical structure in vivo255, Wilkins et al. demonstrated A and B varieties,256 and
Watson and Crick famously discussed the genetic implications of their discovery.257

250Avery, O. T., MacLeod, C. M., McCarty, M. J. Exp. Med. 1944, 79, 137–158.
251Hershey, A. D., Chase, M. J. Gen. Physiol. 1952, 36, 39–56.
252Meselson, M., Stahl, F. W. Proc. Natl. Acad. Sci. 1958, 44, 671–682.
253Franklin, R. E., Gosling, R. G. Nature 1953, 172, 156–157.
254Watson, J. D., Crick, F. H. C. Nature 1953, 171, 737 – 738.
255Franklin, R. E., Gosling, R. G. Nature 1953, 171, 740–741.
256Wilkins, M. H. F., Stokes, A. R., Wilson, H. R. Nature 1953, 172, 738–740.
257Watson, J. D., Crick, F. H. C. Nature 1953, 171, 964–968.
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Much of the subsequent research – with the basics summarized for example by Lane and
Jenkins258 – has related the macromolecule’s structural features to its basic functional prop-
erties and recognized the molecular nature of key physicochemical processes such as double
helix melting259 and nucleic acid base dimerization.260 The place of DNA within the intricate
biochemical machinery of the cell has also been mapped, aided by discoveries of specialized
molecules dedicated to modifying and assisting the DNA function, such as topoisomerases261

and telomerases.262

A rich body of functional knowledge combined with the unique structural features of nucleic
acid strands – their relative planar stacking of aromatic bases along a helix sugar phosphate
backbone – are used to tailor new functional materials263 and sub-micron patterns264 in an
increasingly popular, emerging branch of nucleic acid nanotechnology. Another example of
how this knowledge is used are foldamers, which are designed specifically to mimic certain
behaviors and conformational patterns of DNA outside the cell environment.265

Among the many processes and applications associated with nucleic acids, their complex-
ation with specific small molecules undoubtedly has the largest impact on everyday life. One
of the recognized triumphs of medical research in the 20th century was the development and
clinical use of biologically active agents for successfully treating cancer. An early major step
forward in this regard has been understanding that such chemicals inhibit DNA synthesis by
interacting physically so as to distort structure and function.266

This medical application of science, which has saved and prolonged the lives of many,
directly benefits from fundamental investigations of small active agents. It is not surprising
therefore that their interactions, complexes and structural perturbations have consistently
provokes interest. Crystallographic and thermodynamic studies played an increasingly central
role,267 relating structure and function with the energetic driving forces behind drug action.268

Subtleties including selectivity for specific sequences or structural features have been extracted
thermodynamically, for example in the competition dialysis experiments reported by Ren and
Chaires.269 Most recently, other less ubiquitous methods have been brought into the arsenal

258Lane, A. N., Jenkins, T. C. Curr. Org. Chem. 2001, 5, 845 – 869.
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261Champoux, J. J. Ann. Rev. Biochem. 2001, 70, 369 – 413; Wang, J. C. Nat. Rev. Mol. Cell Biol. 2002,
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262Blackburn, E. H. Nature 2000, 408, 53–56; Blackburn, E. H. Cell 2001, 106, 661–673.
263Katz, E., Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042–6108; Liu, X., Diao, H., Nishi, N. Chem.
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to characterize binding modes, such as electrochemical measurements270 and single molecule
atomic force techniques.271

The rational design of new active compounds and tailoring them to bind with specific
motifs has become a major application of DNA research272 and is not necessarily limited
to double helices anymore.273 A steadily rising awareness of cellular structure and disease
processes continues to add more positions to the list of targeted components, one of the more
prominent currently being RNA.274

Behind these obvious advances and the practical success, one may easily argue that our
understanding of the molecular aspects of nucleic acids is still partial at best. This is espe-
cially clear when considering the non-local aspects of DNA and RNA strands in biochemi-
cal processes. An excellent example is the formation of secondary quadruplex structures in
guanine-rich end regions of the genome. While they have been known to exist for over 40
years275 as an in vitro artefact, G-quartets now attract much debate about their physical and
in vivo properties,276 and a number of solution studies have recently revealed new structural
details277 and data on energetic stability.278

Quadruplexed guanine-rich strands have also come into the spotlight as specific targets for
small molecules, which can function as fluorescent dyes279 or drugs that inhibit the action of
telomerase.280 One of the possible binding modes for these molecules is intercalation, and the
first quadruplex binders were actually derived from duplex DNA intercalators281. Whether or
not and under what circumstances particular ligands favor an intercalating location, external
stacking or another mode is discussed intensively in the literature, for example in the case of
porphyrin derivatives.282
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The present chapter deals with intermolecular interactions between intercalators and their
hosts, focusing on well studied intercalators in double-stranded nucleic acids. In line with
the previous sections, interaction energies are analyzed for specific geometries, using methods
based on first principles and highlighting the role electrostatics. In particular, we address
the nature of interactions by comparing the different energy components for three popular
cationic intercalators, for which crystallographic data is available – ethidium(+1)-UA/AU283,
ethidium(+1)-CG/GC284, and proflavine(+1)-CG/AU285. Discussion is focused on the Eth(+1)-
UA/AU complex, for which more extensive calculations were performed; a molecular repre-
sentation of this intercalation site is shown in Fig. 4.3.

4.1.1 Historical review of intercalation research

Figure 4.1: DNA intercalation model proposed by
Lerman – the unperturbed double helix is shown
on the left, and its intercalated counterpart on the
right, with the intercalator represented by the dark
areas.

Nearly half a century ago, Lerman successfully bridged
certain drug-DNA complexes and aromatic 𝜋-𝜋 in-
teractions by proposing a structural intercalation
model.286 Building on observations that the addition
of acridine, proflavine, or acridine orange to DNA in
solution results in a marked change in the viscosity and
sedimentation coefficient, he deduced that these small
molecules induce perturbations in the double helix at
the intercalation site as illustrated in Fig. 4.1.

Lerman described the net effect of DNA intercala-
tion in terms of three changes:

- an increase in the separation between neighbor-
ing base pairs,

- elongation of the nucleic acid strand (hence the
changes in sedimentation),

- local unwinding of the double helix.

While the amount of literature concerned with in-
tercalated nucleic acids since Lerman’s proposal has
been overwhelming and shows no signs of decreasing, it can be roughly divided into five
overlapping groups. Starting from the most application-oriented and ending at the most fun-
damental, the first type is directly related to biological activity. These studies of intercalating
drugs and their practical applications in medicine deal first-hand with toxic effects, from the
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A

B
C

Figure 4.2: Structural formulas of the intercalators studied: ethidium bromide (A), neutral proflavine (B) and cationic
proflavine (C).

Figure 4.3: Minimal model for the ethidium cation intercalated in RNA between AU/UA base pairs, as used in this
study. The geometry was obtained from crystallographic data, and the positions of the added hydrogen atoms optimized
as described in the text.

earliest experiments on bacteria growth287 to current efforts of assessing the inhibition of cell
proliferation.288

The second, largest group of studies is different in that it considers the intercalation process
in solution outside its biological context and focuses on the kinetic and overall thermodynamic
characteristics and physicochemical aspects. This approach is represented by a number of
important studies following Lerman’s seminal experiment and continues to be used extensively
in the current literature.

Waring was the first in 1965 to use UV spectroscopy to characterize the interaction of
ethidium bromide with DNA as a function of the ionic strength of the solution.289 In 1967,
LePecq and Paoletti showed that the fluorescence of intercalated ethidium is more than 20
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Koval, J., Ungvarský, J., Štefanǐsinová, M., Fedoročko, P., Kristian, P., Imrich, J. Bioorg. Med. Chem. 2008,
16, 3976–3984.
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times stronger than that of the unbound molecule290 and paved the way to using ethidium
bromide as an effective fluorescent marker in various situations,291 which most prominently
has become a standard and accurate tool for conducting electrophoresis assays292.

Already the case of ethidium appeared to be nontrivial, however, as more detailed ex-
periments showed that its binding exhibits significant sequence specificity.293 High affinity
binding to unique sequences was also later demonstrated and tuned for intercalators based on
actinomycin294, proflavine295 and other molecules.296

A natural further development has been the capability to distinguish intercalation from
other binding modes, and consequently a number of polycyclic molecules have been character-
ized as intercalators.297 Kinetics, structural changes and other data are now routinely collected
using techniques that include spectrophotometry,298 various other spectroscopies299, electro-
chemistry300 and interferometry.301 This kind of research has unveiled interesting possibilities,
for example the photoinduced switching of an inactive molecule into an intercalator proposed
by Starcevic et al.302

A related, third branch of experimental research in this field focuses on the energetic re-
quirements and thermodynamic effects of intercalation reactions303, and emerged from the
initial calorimetric differentiation of enthalpic and entropic contributions.304 Further analyt-
ical measurements from physics and biochemistry have revealed much about other aspects
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of intercalation energetics, such as electrostatic electrolyte contributions305 and heat capac-
ity changes.306 Dealing also with the environmental conditions necessary for intercalation, we
learn from these studies that the formation of intercalation complexes is dictated by a deli-
cate balance of free energy contributions from the intercalating agent, nucleic acid strand and
solution.

Conceptual approaches have been published that compare numerical calculations directly
to such experimental results. For example, Kostjukov et al. use a combination of method-
ologies to determine the electrostatic307 contribution to intercalation, and more recently the
overall profile of the Gibb’s free energy308. Rocha on the other hand describes a simple model of
the mechanical properties of intercalated DNA to reproduce spectroscopic and optical tweezer
experiments.309

Significant amounts of structural data for intercalation complexes, which provide direct in-
formation about the final complex, form another body of literature. This branch has been well
represented by X-ray crystallographic reports (for example the geometries of Eth+-AU/UA283,
Eth+-CG/GC284 and Pf-CG/AU285 used in this work), but also includes solution structures310

and other forms of binding such as to the minor groove311.

Lastly, a growing body of research detaches the final intercalation complex from its sur-
roundings and describes it in terms of molecular properties and intermolecular interactions.
These studies utilize largely theoretical approaches and often use existing structural data
as a starting point. An important experimental counterpart to these various computational
studies are single molecule observations of structural perturbations provided by atomic force
microscopy. Williams and coworkers have monitored DNA tertiary structure changes with
atomic force microscopy (AFM)312, and other similar reports have followed.313

Initially, most computational efforts were limited to analyzing conformational changes,
such as the early considerations of flexibility by Berman et al.314 Numerical methods based on
classical electrostatic have also been applied, such as the Poisson-Boltzman approach adapted
by Honig and coworkers.315 Empirical-based methods can also yield useful results – Cashman
and Kellogg tune intercalating molecules so they additionally bind to the major or minor
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groove at specific base sequences316, and Ricci and Netz recently demonstrated that docking
protocols can identify the intercalative binding mode of DNA ligands.317.

By far the most popular methods for conceptually studying nucleic acid intercalation,
however, have been molecular dynamics and quantum chemistry. In an interesting early
study for example, Elcock et al. manage to reproduce the crystallographic twist angles of
DNA intercalated by ellipticine with extensive MD simulations318. Trieb et al. provide an
interesting analysis of the cooperativity of intercalation events in duplex B-DNA.319 In a more
recent study, Mukherjee et al. study the dynamics of daunomycin in the vicinity of a twelve
base pair DNA fragment.320

It has only been in the last ten years that ab initio calculations for systems representing
intercalation sites have been possible. Probably the first to venture in this direction were
Bondarev et al., who reported MP2/6-31++G(d,p) interaction energies for the intercalator
amiloride with the four DNA bases and compared them to empirical results321. Soon afterwords
Reha et al. followed with a similar, more extensive investigation of four different intercalating
molecules, among them being ethidium322.

The main conclusion of these first reports was that in such electronic structure calculations
it is indispensable to include dispersion (denoted here as ∆𝐸

(2)
disp), as it constitutes the largest

part of the interaction energy. Other reports of MP2 calculations have followed, including that
of Dračinsky and Castano, who study the interaction energy for various distances and twists
between ellipticine and base pairs and compare them to force field results.323 Single point
energies were published by Xiao and Cushman for camptothecin in an attempt to correlate
them with experimental site selectivity in ternary cleavage complexes.324

Due to problems with the proper representation of dispersion interactions, density func-
tional theory has been adopted relatively late for exploring the behavior of intercalators325.
Recently, Car-Parinello dynamics and time-dependent DFT have also been employed by Fan-
tacci et al. in order to characterize the base pair influence on the excited states of an interca-
lated ruthenium compound.326

Across all these branches of research, the most prominent unifying concept has been that
of sequence specificity – where an intercalator binds preferentially to a site depending on its
nucleic acid base content. Ironically the last, theoretical branch mentioned above is often the
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starting point for the ultimate goal: rationally designing new, sequence-specific drugs that
target a given nucleic acid domain. At the same time, it is the most limited and gives the
least information on the final efficacy of a drug molecule.

It is not surprising, therefore, that critical links between the physical and chemical prop-
erties of these complexes and their biological effectiveness remain unclear303. Several reasons
can be formulated. First of all, there are several types of interactions associated with ligands
binding to DNA – these include intercalation, non-covalent groove binding, covalent binding
with cross linking, cleavage and nucleoside-analog incorporation. All these binding interac-
tions involve changes to both the DNA and drug molecules in order to accommodate complex
formation, and all of them can influence DNA function. Further, a single type of ligand may
bind in several ways simultaneously, depending on the surrounding conditions.

More importantly, DNA binding affinity in general does not directly correlate with biolog-
ical activity. This is usually due to the fact that the desired chemotherapeutic effects involve
additional components and binding patterns in ternary complexes of the ligand and DNA.
A prime example of this issue is the classic case of m-AMSA and its structural conformer o-
AMSA.327 Both ligands bind to DNA by intercalation – in fact, the binding affinity of o-AMSA
is about 4 times higher.328 In contrast, m-AMSA stimulates single and double-strand topoiso-
merase II mediated DNA cleavage,329 while o-AMSA is ineffective in eliciting such an affect.330

Wadkins and Graves point out that several intermolecular interactions must be considered in
this case,

Even when intercalation binding is considered as a separate process in its own right, another
problem is encountered when analyzing it, namely the characterization of thermodynamic
mechanisms associated with complex formation and therefore kinetics. As already mentioned,
thermodynamic studies by Breslauer et al.304 have shown that conclusions based solely on
measured values of the free energy ∆𝐺obs can be misleading. For instance, two complexes
may have near identical binding free energies and entirely different thermodynamic profiles
– driven mainly by enthalpy or entropy. The energetics of intercalation should therefore be
described in terms of separate enthalpy (∆𝐻obs) and entropy (∆𝑆obs) changes:

∆𝐺obs = ∆𝐻obs − 𝑇∆𝑆obs. (4.1)

A number of separate physical driving forces, each with their own enthalpic and entropic
contributions, have been identified for DNA intercalation.331 The free energy changes induced
by these forces are usually implicitly postulated to be independent and additive based on
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B. C., Wakelin, L. P. G., Waring, M. J. Mol. Pharmacol. 1981, 20, 404–414; Pommier, Y., Minford, J. K.,
Schwartz, R. E., Zwelling, L. A., Kohn, K. W. Biochemistry 1985, 24, 6410–6416.
328Wadkins, R. M., Graves, D. E. Biochemistry 1991, 30, 4277–4283.
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R. E., Zwelling, L. A. Biochemistry 1986, 25, 9–16.
330Pommier, Y., Covey, J., Kerrigan, D., Mattes, W., Markovits, J., Kohn, K. W. Biochem. Pharmacol.
1987, 36, 3477–3486.
331See section 3.2 in Graves; Velea, 2000, in Ref. 303 on page 86.
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general thermodynamic considerations of ligand binding332,

∆𝐺obs = ∆𝐺conf + ∆𝐺r+t + ∆𝐺pe + ∆𝐺hyd + ∆𝐺mol, (4.2)

where the individual contributions are related to the following mechanisms,

∆𝐺conf – unfavorable conformational changes needed to form the drug-DNA system,
including those described by the perturbation model of Lerman (Fig. 4.1),

∆𝐺r+t – loss of translational and rotational degrees of freedom; this is a purely entropic
effect, meaning that ∆𝐺r+t = −𝑇∆𝑆r+t, where typical values are approximately 50± 10

entropic units or +14, 9(±3, 0) kcal/mol at room temperature,

∆𝐺hyd – favorable entropy changes related to the disruption of the hydration shell
around the intercalator,

∆𝐺pe – polyelectrolyte effect, namely counterions being freed from DNA phosphate
groups in the case of cationic intercalators; additional counterions are freed when the
electron density along the nucleic acid strand delocalizes due to double helix elongation,

∆𝐺mol – intermolecular interactions within the binding site, which accounts for local
stability and drives the conformational changes that induce ∆𝐺conf .

These contributions are typically much larger than the total observed free energy of binding
∆𝐺obs, making their net thermodynamic values not always easy to identify or quantitate.

That the individual free energy terms are relatively large compared to their sum has also
been established by theoretical considerations – Bagiński et al. have argued this point re-
lying on a different kind of partitioning of the the free energy, based on electrostatic and
non-electrostatic contributions.333 They also find that while non-electrostatic interactions are
the main driving force in the intercalation of anthracycline derivatives, the electrostatic contri-
butions have greater potential for differentiating between similar intercalators. These results
have been used in practice, for example Lesyng and coworkers apply additional assumptions
about these free energy contributions and construct a computationally undemanding molecular
mechanics model, which is still shown to correspond with experimental data.334

Similarly, the binding energy of the final complex ∆𝐺mol, which includes non-covalent
molecular interactions, is not easily interpreted when the intercalation process is viewed as a
kinetic equilibrium. Obviously, ∆𝐺mol must be favorable in order for the intercalation complex
to form and be stable, nonetheless one may imagine a complex where the intermolecular
forces would be large but binding is impossible at all relevant environmental conditions due to
entropic factors or required unsurmountable conformational changes. Conversely, in situations
where the remaining contributions suppress each other, local intermolecular interactions can
be the deciding factor even if they are relatively small.

332Szwajkajzer, D., Carey, J. Biopolymers 1997, 44, 181–198.
333Bagiński, M., Fogolari, F., Briggs, J. M. J. Mol. Biol. 1997, 274, 253–267.
334Rudnicki, W. R., Kurzepa, M., Szczepanik, T., Priebe, W., Lesyng, B. Acta Biochim. Pol. 2000, 1–9.
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4.2 Interaction energy analyses for bound intercalators

It is to the local intermolecular interactions embodied in ∆𝐺mol that we turn to here – interac-
tions which in line with Lerman’s model are of the 𝜋-𝜋 stacking type akin to those studied in
Section 3.3. Although there have been a number of theoretical studies on intercalation, works
that probe the quantum chemical nature of these complexes are relatively scarce. As men-
tioned above, these calculations have been performed only in the last decade due to the size of
the systems involved and the recognized importance of dispersion effects. Kubar et al. provide
a fair discussion of the importance of dispersion and estimates for the free energy terms in
(4.2)335; they also underline the effective importance of the intermolecular stabilization energy
∆𝐺obs due to the cancellation of other terms.

Figure 4.4: A molecular model of the ethidium cation,
divided into hydrogen-capped fragments as used in parts
of this work.

For most practical purposes, models of inter-
calation sites are still too large to be treated rou-
tinely as entire quantum systems. Therefore, stud-
ies have been typically limited to the nearest two
or four nucleic acid bases, and interactions are
often analyzed pair-wise between the intercalator
and each base separately. It is the purpose of our
study to confirm the validity of dividing interca-
lation sites into nucleobases and other fragments
within the minimal model proposed by Kubar et
al.335, which consists of the intercalator, four near-
est nucleosides and two phosphate groups between them.

Starting from a crystallographic structure of ethidium intercalated in a AU/UA base pair
step of RNA284 (shown in Fig. 4.3), we examine models of various extent and evaluate the
magnitude of many body interactions.

The models used, which comprise various parts of the intercalation site and divide these
parts into smaller fragments in several different ways, are described by the colored schematic
representations in Fig. 4.5. Interaction energies for these models, analyzed according to the
decomposition scheme given by (2.23), are summarized in Table 4.1. Wherever the number of
interacting dimers 𝑁int was more than one, interactions were summed in a pair-wise fashion
for the intercalator and each RNA fragment. For example, in the case of model A2 the total
pair interaction energy consists of two parts that correspond to two base pairs:

∆𝐸(A2) = ∆𝐸(Eth..A/U) + ∆𝐸(Eth..U/A), (4.3)

where each dimer is calculated in its own basis set.

Model names beginning with A were limited to the ethidium molecule and its four nearest
base pairs. Model AC is a smaller version that additionally accounts for only the chromophore
of ethidium, disregarding the side chain and ring. This corresponds to the system studied in

335Kubař, T., Hanus, M., Ryjáček, F., Hobza, P. Chem. Eur. J. 2006, 12, 280–290.
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Model AC1
with 1 quartet

Model AC2
with 2 base pairs

Model AC4
with 4 nucleobases

Model A1
with 1 quartet

Model A2
with 2 base pairs

Model A4
with 4 nucleobases

Model Bns
with 4 nucleosides

Model B4.3
with 4 nucleotides, P on 3’

Model B4.5
with 4 nucleotides, P on 5’

Model B1
with 1 double strand

Model B2
with 2 strands

Model B6
with 2 backbones & 4 bases

Figure 4.5: Schematic drawings of the models used for the ethidium - AU/UA base pair complex. Each color represents a piece
of separately interacting RNA fragment around the binding site. The total interaction was constructed as the sum of all dimer
interactions among these pieces with ethidium.
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𝑁int 𝑁AO Δ𝐸
(1)
el Δ𝐸

(1)
ex Δ𝐸

(R)
del Δ𝐸corr Δ𝐸MP2

[kcal/mol] [kcal/mol]

model AC1 1 878 -24.8 31.8 -4.8 -33.4 -31.3

model AC2 2 615 -25.3 32.0 -4.7 -33.5 -31.5

model AC4 4 0 -26.0 32.3 -4.7 -33.3 -31.7

model A1 1 1030 -28.6 40.2 -6.1 -39.7 -34.3

model A2 2 733 -28.9 40.2 -6.0 -39.4 -34.2

model A4 4 601 -29.8 40.7 -6.2 -39.2 -34.5

model A4 (parts) 12 0 -30.1 41.6 -6.4 -39.6 -34.5

model Bns 4 753 -35.8 51.7 -10.6 -51.9 -46.6

model B1 · neutral (H) 1 1776 -41.9 54.9 -10.9 -54.7 -52.6

model B2 · neutral (H) 2 1106 -43.0 55.4 -11.1 -54.4 -53.1

model B6 · neutral (H) 6 829 -43.5 56.2 -11.3 -54.4 -52.9

model B4.3 · neutral (H) 4 799 -43.6 56.7 -12.1 -54.7 -53.7

model B4.5 · neutral (H) 4 832 -40.3 46.2 -10.5 -49.4 -54.0

model B1 · neutral (Na) 1 1802 -50.7 55.1 -10.9 -55.0 -61.5

model B1 · neutral (K) 1 1830 -52.7 55.1 -10.9 -55.1 -63.6

model B1 · charged -2 (H2O) 1 1814 -117.1 55.2 -11.0 -56.4 -129.3

model B1 · charged -2 1 1766 -121.1 55.2 -11.1 -56.5 -133.5

model B2 · charged -2 2 1101 -123.5 56.0 -13.9 -56.6 -138.0

model B6 · charged -2 6 824 -123.3 57.0 -16.0 -56.8 -139.2

model B4.3 · charged -2 4 794 -126.1 56.7 -15.2 -57.0 -141.7

model B4.5 · charged -2 4 827 -120.5 46.5 -15.5 -51.8 -141.2

Table 4.1: Components of the interaction energy of ethidium intercalated between AU/UA nucleic acid bases following (2.23);
the symbols correspond to various interaction models as illustrated in 4.5. The variant labeled parts for model A4 additionally has
the ethidium molecule divided into three parts – its chromophore, side chain and ring336 – making it a super set of model AC4.
In the charge variant neutral (H) protons were attached to the anionic phosphate groups to simulate counterions, and Na+ and
K+ were attached in the variants neutral (Na) and neutral (K). For charged -2 the RNA fragment was left charged, and in the
case of charged -2 (H2O) both phosphate groups were hydrated. The column 𝑁int contains the number of pair-wise calculations
comprising the interaction, and 𝑁AO denotes the maximum number of atomic orbitals used in any pair-wise calculation in the
model.

the previously published report336, restricted to the ethidium chromophore and four nearest
nucleobases.

Models designated with B include the sugars and phosphate groups connecting these base
pairs. The intermediate model name Bns disregards the phosphate groups and represents
the RNA fragment only by nucleosides. Additional numbers in the model names denote
the number of fragments of RNA treated separately when summing interactions from dimer
calculations – the different fragments are illustrated with different colors.

In order to estimate the possible magnitude of the influence of dynamic surroundings, the
charged and neutralized variants of the largest model (B), by optimizing the position of a
proton, sodium or potassium ion, or water molecule in the vicinity of the anionic phosphate
group oxygen atoms.

In all the models tested (AC, A, B and its variants), dividing the RNA fragment into
nucleobases and backbone strands or into nucleotides is justified from the energetic point of

336Langner, K. M., Kędzierski, P., Sokalski, W. A., Leszczyński, J. J. Phys. Chem. B 2006, 110, 9720–9727.

http://dx.doi.org/10.1021/jp056836b
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a) phosphate groups capped with hydrogen atoms b) hydrated phosphate groups

c) two Na+ counterions added d) two K+ counterions added

Figure 4.6: Comparison of the four ways the charged phosphate groups were compensated during calculations of the interactions
energy between the nucleic acid strand and intercalated ethidium.

view. For the neutral models, dividing the system changes the total interaction by no more
than 2%. In particular, for the smallest model AC, the difference between the sum of pair-
wise interactions of the ethidium chromophore with each nucleobase (AC4) and its interaction
calculated with all four nucleobases at once (AC1) was 0.4 kcal/mol. For the model including
the ethidium side chain and ring (A), the analogous difference was only 0.2 kcal/mol. The
error associated with approximating the interaction energy pair-wise was largest in the case
of the charged model (B charged -2), namely up to 6%. This is understandable, since the
delocalization of the additional charge is hindered by fragmenting the system.

Additionally, in the extended B models, two charge variants were considered. In the first,
the anionic phosphate groups were compensated by added extra hydrogen atoms simulating
counterions, labeled neutral. The other, labeled charged -2, left the phosphate groups charged.
In the neutral variants, the anionic phosphate oxygen atoms were compensated by either
protonation (H), adding one of two counterions (Na or K) or hydration (H2O).

When considering these results in the context of in vivo nucleic acids, one should remember
that they are dynamic systems in solution. Also, it has been shown before that the movement
of counterions is diffusive around DNA,337 therefore the type of compensation illustrated by
our calculation in models B (Na) and B (K) is at best a temporary situation. At times when a
counterion is not present near the phosphate groups, it is safe to argue that the intercalator will
feel a stronger interaction. Meanwhile, in this case hydration effects, as we show, damped this

337Varnai, P., Zakrzewska, K. Nucl. Acids Res. 2004, 32, 4269–4280.

http://dx.doi.org/10.1093/nar/gkh765
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interaction somewhat, and in reality include more than the one water molecule we consider.
In this light, our results can be viewed as identifying the range of intermolecular interaction
possible in solution. Especially, models B neutral (H) and B charged -2 can be treated as
approximate lower and upper limits of the interaction, respectively.

4.3 Alignment of ligands on the intercalation plane

In a previous study,336 interaction energy components were also examined for other positions
of ethidium intercalated in the Eth(+1)-UA/AU complex. Using the nomenclature from the
previous section, model AC4 was used, which means only the ethidium chromophore and its
four nearest nucleic acid bases were considered. The chromophore position was varied in the
plane of intercalation – including for example distances of ±0.5

∘
A and ±2.0

∘
A towards the

major groove – and to a limited extent perpendicular to the intercalation plane.
The interaction energy at various levels of theory and its components at these points are

presented in Fig. 4.7. The ∆𝐸MP2 energy has a minimum very close to the crystallographic
position of the chromophore (zero on the plots) - a parabola fit gives a diagonal offset (orig-
inating from two perpendicular directions in the plane of intercalation) of 0.09

∘
A, and an

energy difference of about 0.05 kcal/mol. This supports the notion that factors other than
local interactions - that is those between the intercalator’s chromophore and its nearest bases
- are of minor importance for chromophore alignment, and justifies the fragmentation method
adopted for ethidium in this study.

The multipole electrostatic interaction energy was evaluated based on the CAMM moments
defined in Section 2.5.2, between each chromophore and its four nearest bases. This energy is
presented in the form of a surface plot as a function of the displacement of the chromophore
geometric center from the crystal position – in Fig. 4.8 for the Eth(+1)-UA/AU system.

Steric constraints caused by the DNA side chain are illustrated in Fig. 4.8 by the shaded
region, in which the distance between any pair of atoms is smaller than the sum of their van
der Waals radii, scaled by a factor of 0.5. Similar plots were evaluated in the intercalation
planes of the other two studied cationic systems, Eth(+1)-CG/GC and PF(+1)-AU/CG (see
Section 3 of Supporting Information in the published report336); all three surface plots have a
significant central minimum. In contrast, the corresponding multipole interaction surface for
the neutral proflavine complex is highly irregular and does not reproduce the crystal binding
site in any reasonable way.

The deep central minimum in Fig. 4.8 has a value of -11.0 kcal/mol at the coordinates
(-1.3

∘
A, 0.0

∘
A), 0.3 kcal/mol below that of the crystal position. This minimum is accom-

panied by a second one, at the coordinates (1.5
∘
A, 0.5

∘
A) with a value of -10.7 kcal/mol.

Similar distances from the crystal position were obtained for the ∆𝐸𝜅69
CAMM surfaces of the

other two cationic intercalation complexes: 1.8
∘
A for Eth(+1)-GC/CG and 1.7

∘
A for PF(+1)-

AU/GC, which demonstrates the accuracy of this approach in reproducing the alignment of
chromophores between base pairs in these types of systems. In all cases, two central minima
were located on opposite sides of the crystallographic positions.
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Figure 4.7: Interaction energy profile for the ethidium cation and four nearest nucleobases along a path from the crystal position
to the major groove – individual interaction energy terms are shown on the right following (2.23), and the corresponding levels of
theory on the left according to (2.28).

An additional minimum is also present in Fig. 4.8 in the direction of the major groove, at
a distance of 5.7

∘
A from the crystal position at -11.5 kcal/mol). This minimum is observed

for only the two complexes involving ethidium, and at all interaction ranks. If similar studies
were to be performed for model systems without crystallographic data, it would be necessary
to study all the obtained minima with a more exact method.

When an intercalator approaches the intercalation site from the major groove, it should
experience an increase of electrostatic penetration and dispersion interactions. In order to
further investigate the relevance of the off-center minimum in ∆𝐸CAMM for the total inter-
action energy in the intercalation plane, the components of ∆𝐸MP2 were calculated for the
ethidium chromophore located along a path connecting the crystallographic binding site and
this minimum in the Eth(+1)-UA/AU structure, up to 8

∘
A away. This path simulates, in a

very simplified way, the movement of the chromophore when entering the intercalation site
(see section 5 in Supporting Information for an animation). Fig. 4.7 presents the components
calculated at different levels of theory along this path. The most evident conclusion is that
the profiles of the exchange (∆𝐸(1)

ex ) and correlation (∆𝐸corr) terms have similar shapes and
opposite signs. These two components, along with the electrostatic penetration term, cancel
each other out at distances above 5

∘
A. It is interesting to note that the first order interaction

(∆𝐸(1)
HL) and SCF interaction energy (∆𝐸RHF) completely fail to reproduce the crystallographic

binding site even along this one-dimensional path.
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Figure 4.8: Map of the multipole electrostatic interaction between ethidium and the four nearest nucleobases.

Furthermore, besides the full MP2 interaction energy, the multipole components (both the
one calculated from CAMM multipoles, ∆𝐸CAMM, and from DMA multipoles, ∆𝐸el,mtp), best
reproduce the crystallographic binding site along this path, more precisely than the entire
electrostatic interaction energy ∆𝐸

(1)
el (which includes penetration effects) or the correlation

component ∆𝐸corr. On the other hand, the magnitude of the multipole component is sig-
nificantly smaller that that of ∆𝐸MP2, but becomes more dominant as the chromophore is
withdrawn from the intercalation site. Although the MP2 interaction energy does not have
a second minimum where ∆𝐸9

CAMM does, it is not monotonic along the studied path, and
exhibits a plateau at around 2.6

∘
A from the binding site.

4.4 Convergence of multipole electrostatic interactions

In light of the discussions in Section 2.5.3 about the convergence of multipole electrostatic
interaction energies based on atomic moments, it is worthwhile to return to this issue in the
context of the intercalation complexes studied.

Fig. 4.9 shows a plot similar to the on in Fig. 2.4 for the cytosine-guanine dimer. In this
case, the convergence is followed for the three studied intercalation complexes, using CAMM
expansions representing the chromophores and base pairs, up to rank nine. At rank nine –
∆𝐸𝜅69

CAMM – the interaction is converged, but does so only for 𝜅 > 5. The lack of convergence
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Figure 4.9: Convergence of the multipole approximation to the electrostatic interaction energy Δ𝐸n
CAMM, where n is the

maximum rank.

for lower ranks is due to small intermolecular distances (the normal distance between inter-
calator and bases is 3.4

∘
A) and multiple contacts between atoms, characteristic of stacking

complexes. It is worthwhile to note that the interactions of the corresponding molecular mul-
tipole expansions are divergent (see Section 2 of the published Supporting Information336),
which is expected considering the previous failures of molecular expansions for relatively sim-
pler systems. The atomic-based multipole interaction energies, on the other hand, exhibit a
similar trend already for ranks above 2, which makes them useful in comparative studies, such
as dealing with the effect of base pair sequence.

The slow convergence of the electrostatic multipole term is relevant in the context of
penetration effects. Since the magnitude of these effects is calculated as the difference between
the total electrostatic interaction and its multipole component as in (2.44), it will be inaccurate
if the multipole expansion used does not provide a converged value.

Previous studies using atomic expansions have rarely proceeded beyond octupole moments.
For instance, Toczyłowski and Cybulski published an exhaustive study on the electrostatics of
hydrogen-bonded and stacked DNA bases,338 in which DMA was expanded through hexade-
capoles. The present results suggest that this does not suffice, and that multipole interactions
start to converge only above rank five (Fig.4.9). Using DMA moments up to rank 4 results in
an overestimate, which leads to an incorrect estimate of the penetration term.

Another interesting observation for Fig.4.9 is that treating base pairs as a whole, as sug-
gested by Řeha et al.322, does not significantly change the slow convergent trend in the Eth(+1)-
AU/UA complex. While there is a constant difference of ∼ 0.4 kcal/mol in this case between
the base pair (x) and single base (+) models used, the convergence trends behave similarly.

338Toczyłowski, R. R., Cybulski, S. M. J. Chem. Phys. 2005, 123, 154312–12.

http://dx.doi.org/10.1063/1.2069887
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Eth(+1)-UA/AU Eth(+1)-GC/CG PF(+1)-AU/CG PF(0)-AU/CG

100x100 33x33 100x100 33x33 100x100 33x33 100x100 33x33

Maximal change [kcal/mol]
Δ𝐸𝜅60

CAMM → Δ𝐸𝜅61
CAMM 7.20 7.20 6.80 6.80 5.33 4.08 6.00 6.00

Δ𝐸𝜅61
CAMM → Δ𝐸𝜅62

CAMM 5.46 5.26 5.60 5.60 7.36 7.36 8.38 8.38
Δ𝐸𝜅62

CAMM → Δ𝐸𝜅63
CAMM 4.83 4.83 4.20 4.20 5.80 5.80 4.89 4.89

Δ𝐸𝜅63
CAMM → Δ𝐸𝜅64

CAMM 2.27 2.27 1.94 1.94 1.79 1.79 1.99 1.99
Δ𝐸𝜅64

CAMM → Δ𝐸𝜅65
CAMM 2.44 2.44 2.48 2.48 2.10 2.10 5.81 5.81

Δ𝐸𝜅65
CAMM → Δ𝐸𝜅66

CAMM 0.62 0.62 0.70 0.70 0.74 0.74 2.01 2.01
Δ𝐸𝜅66

CAMM → Δ𝐸𝜅67
CAMM 0.52 0.52 0.53 0.53 0.57 0.57 0.98 0.98

Δ𝐸𝜅67
CAMM → Δ𝐸𝜅68

CAMM 0.43 0.43 0.33 0.33 0.29 0.29 0.47 0.47
Δ𝐸𝜅68

CAMM → Δ𝐸𝜅69
CAMM 0.16 0.16 0.21 0.21 0.26 0.26 0.41 0.41

Average change [kcal/mol]
Δ𝐸𝜅60

CAMM → Δ𝐸𝜅61
CAMM 1.51 3.44 1.50 2.67 1.47 1.90 0.72 2.58

Δ𝐸𝜅61
CAMM → Δ𝐸𝜅62

CAMM 0.78 2.36 0.84 2.48 0.97 2.69 0.75 3.24
Δ𝐸𝜅62

CAMM → Δ𝐸𝜅63
CAMM 0.37 1.41 0.36 1.49 0.47 2.20 0.39 1.57

Δ𝐸𝜅63
CAMM → Δ𝐸𝜅64

CAMM 0.23 0.84 0.21 0.66 0.21 0.77 0.23 0.87
Δ𝐸𝜅64

CAMM → Δ𝐸𝜅65
CAMM 0.17 0.81 0.14 0.68 0.14 0.72 0.29 1.03

Δ𝐸𝜅65
CAMM → Δ𝐸𝜅66

CAMM 0.05 0.21 0.05 0.19 0.05 0.19 0.21 0.55
Δ𝐸𝜅66

CAMM → Δ𝐸𝜅67
CAMM 0.03 0.14 0.03 0.13 0.03 0.12 0.13 0.20

Δ𝐸𝜅67
CAMM → Δ𝐸𝜅68

CAMM 0.01 0.06 0.01 0.05 0.01 0.06 0.05 0.13
Δ𝐸𝜅68

CAMM → Δ𝐸𝜅69
CAMM 0.01 0.03 0.01 0.04 0.01 0.04 0.04 0.09

Table 4.2: Maximal and average changes in the multipole electrostatic interaction on the intercalation plane when increasing the
interaction rank by one. Columns labeled 100x100 consider the entire intercalation plane probed, while 33x33 denotes a central
part containing only the vicinity of the binding site. All values are given in kcal/mol.

The fact that these values do not largely differ hints that base pair polarization, while influ-
encing the properties of the bases themselves, does not qualitatively change their interactions
with the intercalator.

Finally, an attempt can be made to compare the CAMM interaction energy for the complex
Eth(+1)-GC/CG to the multipole electrostatic binding energy obtained by Medhi et al.339,
which was based on the same structure and obtained from a distributed multipole analysis
(DMA). The quite large discrepancy between the value in that study (around -7 kcal/mol) and
our values (-16.8 kcal/mol from DMA analysis and -13.0 kcal/mol for the converged CAMM
interaction) probably originates from the fact that Medhi et al. used a differently constructed,
idealized model and from the differences in the electron density source (our multipole moments
were calculated from RHF density matrices, while the former partly from MP2 wave functions).

To illustrate the convergence of the CAMM interaction on the whole intercalation plane
(Fig. 4.9 the convergence at the crystallographic alignment of the chromophore), differences
between consecutive ∆𝐸𝜅6L

CAMM surfaces (𝐿 = 0...9) are presented in Table 4.2. Both maximal
and average absolute changes are presented, for the entire 100x100 grid used and for a 33x33
central part. While this gives an overview about how drastically the potential energy surface
changes with the interaction rank, the basic conclusion remains the same as with Fig. 4.9 – a
significant drop in both the maximal and average values occur for rank 𝐿 > 5.

339Medhi, C., Mitchell, J. B. O., Price, S. L., Tabor, A. B. Biopolymers 1999, 52, 84–93.

http://dx.doi.org/10.1002/1097-0282(1999)52:2<84::AID-BIP2>3.0.CO;2-S
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4.5 Conclusions

The focus of this chapter was on analyzing ab initio interaction energies between cationic
intercalators and their hosts, based on the crystallographic structures. Two of the chosen
structures involved ethidium, the third contained proflavine.

First, a few important assumptions were confirmed by performing interaction energy de-
composition (using the HVPT method discussed in Chapter 2) for the original crystallographic
geometry of the Eth(+1)-UA/AU for models with different sizes and fragmentation schemes. It
is acceptable to dissect the system along chemically intuitive lines – separating nucleobases in
the AC model and cutting apart the nucleic acid strand at the linkage between the nucleosides
and phosphate groups – since this does not introduce relevant errors to the interaction energy
and makes the computational task significantly smaller.

The absolute influence of the side chain is shown to be large, increasing the interaction
energy from slightly over 30 kcal/mol for model AB to almost 60 kcal/mol for model B.
The charge on the phosphate group here is key, and cannot be left unmatched as it almost
doubles the interaction energy again. Compensating with a single hydrating water or single
counterions diminishes this difference by around 5 kcal/mol, therefore the actual range of
possible interactions can be expected to be narrower in solution.

On the other hand, interactions between the intercalating ethidium and its nearest four
nucleobases were found to sufficiently reproduce chromophore alignment in the intercalation
plane of the Eth(+1)-UA/AU complex. The minimum of the total MP2 interaction energy
precisely reproduces the crystallographic position of the ethidium chromophore in the between
UA/AU bases.

Furthermore, the electrostatic component constitutes the same fraction of the total energy
for all three studied structures. However, the multipole electrostatic interaction energy, cal-
culated from Cumulative Atomic Multipole Moments (CAMMs), was found to converge only
after including components above the fifth order. CAMM interaction surfaces, calculated on
grids in the intercalation planes of these structures, reasonably reproduce the alignment of
intercalators in crystal structures; they exhibit additional minima in the direction of the DNA
grooves, however, which also need to be examined at higher theory levels if no crystallographic
data are given.



5 Summary & outlook

5.1 Summary

In forty thousand words, this dissertation discusses the key aspects of the current literature on
non-empirical electrostatic interactions and provides examples where they can be successfully
applied. Two methods are central to the presented work – the first (HVPT) decomposes the
interaction energy into physically meaningful components at reduced cost compared to the
state-of-the-art SAPT approach, and the second (CAMM) allows for a mobile approximate
description of charge density distributions. An interrelated series of studies illustrate how
electrostatic effects derived from first principles can be used to reproduce specific structural and
energetic features. Stress is placed on pinpointing the limits to which electrostatic interactions
can be utilized for such tasks, and non-parametric statistical tools are employed in order to
explore these limits.

The majority of conclusions address objectives outlined in Purpose & overview, therefore
the main points are summarized here in the same sequence.

1. Electrostatic interactions at the Hartree-Fock level are capable of reproducing relative
CCSD(T) stabilities of over 90% percent of all pairs of dimers in the S22 training set,
which contains various interaction motifs typical for biological systems. This favorable
correlation is persistent at shorter intermolecular separations (𝑑COM < −0.2

∘
A) where, in

contrast, MP2 and CCSD(T) interaction energies fail to correlate with the equilibrium
reference value. This enforces an earlier observation in the literature, of unexpected
correlation between electrostatic interactions and experimental stabilization energies for
inhibitors optimized to artifact geometries in an enzyme active site using force fields.

2. The same analysis shows that at larger distances (𝑑COM > 1.5
∘
A) both the total interac-

tion energy (at the MP2 or CCSD(T) level) and its first-order, uncorrelated electrostatic
component successfully reproduce the CCSD(T) equilibrium stabilization energy. Not
surprisingly, the CCSD(T) energies do this with the best rating, succeeding over 90% of
the time even for distances up to 10

∘
A from equilibrium, where the interaction is dom-

inated by electrostatic effects. From this and the substantially worse correlation and
success rate of first-order electrostatics (around 80%), it follows that the contribution of
intramolecular correlation to the electrostatic interaction cannot be neglected. There-
fore, using multipole moments generated from correlated densities is recommended.
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3. A statistical survey of all 16 pairs of stacked nucleic acid bases in B-DNA conformation
shows that the electrostatic component correlates well with the total MP2 interaction.
For a series of basis sets, the correlation coefficient is always above 0.85, with a linear
prediction interval of about 1.5 kcal/mol. An additional strong correlation was revealed
between the exchange and dispersion components, amounting to at least -0.95 for all the
basis sets studied, with a prediction interval of 1.4 kcal/mol. Further examination for
A-DNA and other sets of structures points to the limitations of these correlations, which
are highly dependent on the geometrical homogeneity of structures.

4. The MP2 interaction energy – between the ethidium chromophore and its nearest bases
in the Eth(+1)-UA/AU complex – reproduces within 0.1 Å the crystallographic binding
site in the intercalation plane. This demonstrates that local interactions alone may
decide about the alignment of the chromophore between base pairs, or at least amount
to a good model for this system. Two other intercalation complexes were studied, and
in all three the electrostatic term comprises the same percentage of the total interaction
energy, around 82%. Less than half originates from multipole moments based on Hartree-
Fock densities, illustrating the magnitude of electrostatic penetration effects. It should
be kept in mind that these values will be smaller for larger basis sets, but can be expected
to correlate with the total energy. The binding site on the intercalation plane can also be
reasonably reproduced at a lower computational cost than the MP2 level, by examining
the interaction energy surface of the chromophore between nucleotides with CAMM
multipoles. The accuracy is worse and in the studied systems was no less than about
1.3 Å.

5. An analysis of the position of the ethidium chromophore in the Eth(+1)-UA/AU complex
shows that the ethidium side chain and even steric constraints with the nucleic acid
backbone are of minor importance. However, the latter almost doubles the absolute
interaction energy when the phosphate groups are capped with hydrogen and neutral.
Replacing the capping hydrogen with a monovalent ion strengthens the interaction by
about 10 kcal/mol. On the other hand, releasing the charge on the phosphate groups
boosts the total interaction strength to over 130 kcal/mol, while hydration with a single
water on each group decreases it by only 10 kcal/mol. Since the solvent molecules
and counterions around nucleic acid are highly mobile, the range of interactions can be
expected to be somewhere in between these extremes.

Besides the five major points above, the original results presented in the introductory
section have yielded methodological conclusions that are worth mentioning. The first addresses
the efficiency and basis set stability of interaction energy components in various decomposition
schemes. Using small dimers as examples, a comparison is presented between HVPT and other
methods. In particular, the HVPT values correspond very closely to state-of-the-art SAPT
numbers, while requiring significantly less computational effort. On the other hand, basis set
stability is much more favorable compared to various variational EDA schemes.
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In practice, a reasonable approach to sizable molecular problems is to choose the largest
model possible and the smallest reasonable basis set set. In this regard, the hybrid method
used reduces the entry level and is a strategic choice considering the relatively large molecular
systems targeted in this dissertation.

Some conclusive observations are also made while discussing the origins and convergence
properties of interactions between sets of atomic multipole moments. Several examples are
given – notably 𝜋-𝜋 stacking complexes of nucleobases and intercalated nucleic acids – where
higher multipole moments than normally used (rank five or six) are necessary in order to obtain
converged interaction energies. This can be an issue, for instance, if an accurate estimate of
electrostatic penetration effects is desired.

Coincidentally, an analysis of the MEP on the Connolly surface around reactants gives
an estimate of the penetration part – about 1% of the ab initio expected value. Multipole
analysis along the reaction path also provides insight into charge redistribution near the transi-
tion state. Substantial contributions from higher multipoles indicates that approximate point
charge models used in conventional force fields are not adequate for representing such changes
in reacting systems.

5.2 Future work

While many directions for prospective research could be based on the work presented here, two
stand out as the most appealing. It seems especially valuable to enlarge the S22 test set used to
study statistical relationships between interaction energy components at various intermolecular
distances. With a larger number of dimers the results will naturally be more significant, but
could also be analyzed from additional angles, for example separately for hydrogen bonded
dimers and other types of complexes. Another feature already mentioned is that MP2 and
coupled cluster interaction energies correlate better with the equilibrium stabilization than
Hartree-Fock-based electrostatics, hinting that intramolecular electron correlation can play a
significant role. For this reason, it would be worthwhile to reevaluate these statistics using
electrostatic interactions based on correlated densities.

Extensions can be formulated from the last chapter, which evaluates the influence of the
surroundings of nucleic acid strands on its interaction with intercalating ethidium. The charge
state of the phosphate groups predictably has a large effect, changing the interaction energy
by about 100% when comparing neutral and charged states. After adding a single counterion
or water molecule, this difference is compensated only by about 10%. Sampling additional
counterion positions and more hydrated systems could give a clearer picture of the possible
dynamic range of interaction strengths.





A Cartesian cumulative atomic
multipole moments

Generating atomic moments

The algorithm for generating cumulative atomic multipole moments (CAMM) in Cartesian
coordinates is a paraphrase of the equations (2.50) and (2.51), the pseudo-code of which is
shown in Algorithm 1. Proceeded by an electronic structure calculation, the computational
cost of this algorithm is almost always insignificant.

Algorithm 1 Pseudo-code for generating CAMM atomic moments.

for each moment 𝑀𝑘𝑚𝑙 of rank 𝜅 < 𝐿 do
for all pairs of atomic orbitals 𝐼 and 𝐽 do

find atoms 𝑖 and 𝑗 such that 𝐼 ∈ 𝑖 and 𝐽 ∈ 𝑗
calculate the contribution from this orbital pair, 𝑥 = 𝑃𝐼𝐽

⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀
add half of 𝑥 to moment 𝑀𝑘𝑚𝑙,𝑖

add half of 𝑥 to moment 𝑀𝑘𝑚𝑙,𝑗

end for
end for
for each atom 𝑖 do

add contribution from nuclear charge, 𝑍𝑖𝑥
𝑘
𝑖 𝑦

𝑙
𝑖𝑧

𝑚
𝑖

for all moments with rank lower than 𝜅 do
add cumulative contributions according to (2.51)

end for
end for

The algorithm has been implemented by others in the past. Sokalski and Poirier published
the original formulation of CAMM340 and Sawaryn and Sokalski later provide a description of
the implementation341. Reimplemented by Strasburger and Sokalski, the approach was ued to
study intramolecular interactions for molecules with extended single bonds.342

Also, the approach proposed by Stone in the DMA method343 is conceptually the same,
differing in the way the charge density contributions are distributed among atoms (see Section
2.5.1 for details). Therefore, results from CAMM and DMA calculations should yield approx-
imately equivalent results at moderate intermolecular distances, which has been pointed out
by Scheiner in his early quantitative hydrogen bonding model.344

For this dissertation, Algorithm 1 was coded in a compact form within the quantum chem-
istry program GAMESS-US, by modifying already existing code for molecular electric mo-

340Sokalski, W. A., Poirier, R. A. Chem. Phys. Lett. 1983, 98, 86–92.
341Sawaryn, A., Sokalski, W. A. Comput. Phys. Commun. 1989, 52, 397–408.
342Strasburger, K., Sokalski, W. A. Chem. Phys. Lett. 1994, 221, 129–135.
343Stone, A. J., Alderton, M. Mol. Phys. 1985, 56, 1047–1064.
344Spackman, M. A. J. Chem. Phys. 1986, 85, 6587–6601.

http://dx.doi.org/10.1016/0009-2614(83)80208-5
http://dx.doi.org/10.1016/0010-4655(89)90114-8
http://dx.doi.org/10.1016/0009-2614(94)87028-4
http://dx.doi.org/10.1080/00268978500102891
http://dx.doi.org/10.1063/1.451441
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ments. Generalization of subroutines that calculate multipole integrals has additionally al-
lowed for the evaluation of moments up to a rank of 𝐿 = 16. In the context of GAMESS-US,
summing orbital product contributions into a two dimensional array A of atomic moments can
be summarized by the following code fragment,

K=0
do 100 IA=1,NAT
do 100 IO=LIMLOW(IA ) ,LIMSUP( IA)
do 100 JO=1,IO

IB = ITAB(JO)
K = K+1
X = P(K) * AMI(K)
A(M, IA) = A(M, IA) − X
i f ( IO .NE.JO) then

A(M, IB ) = A(M, IB ) − X
endif

100 enddo

where NAT is the number of atoms, LIMLOW and LIMSUP index the lower and upper atomic
orbital indexes for an atom, and ITAB assigns the atom index an atomic orbital belongs to.
Arrays P and AMI contain the respective density matrix elements and multipole integrals345

in the order defined by the code (iteration over atoms, atomic orbitals on the atom, and all
atomic orbitals with lower indexes). When I and J belong to different atoms, each contribution
in P is divided evenly between them; the off-diagonal elements are halved beforehand. The
fragment is embedded in an external loop over multipole moments, indexed by M.

Another part in the loop iterated by M sums the nuclear charge contributions into appro-
priate elements in A. Here, the auxiliary array INTCOOR is used to map the multipole moment
index M into the appropriate powers over all three coordinates, C contains atom coordinates,
XP, YP and ZP are the molecule’s center of mass, and ZAN contains nuclear charges,

do IA=1,NAT
COOR(1) = C(1 , IA) − XP
COOR(2) = C(2 , IA) − YP
COOR(3) = C(3 , IA) − ZP
x=ZAN(IA)
do I =1,3

X = X * (COOR( I )**INTCOOR( I ,M) )
enddo
A(M, IA) = A(M, IA)+X

enddo

After these two fragments, the array A contains atomic moments as defined by (2.50),
which are additive in the sense that they sum up to the appropriate molecular moments.
A transformation is normally (but optionally) performed that moves the moment to their
local atomic coordinates according to the recombination expression in (2.51). Writing it
out explicitly, one needs to subtract all products of lower rank moments and appropriate
coordinates. Following the notation used by and Sokalski and Poirier340 and adopted here in

345The atomic orbitals are gaussian functions and the multipole integrals held in X (𝑃𝐼𝐽

⟨︀
𝐼|𝑥𝑘𝑦𝑙𝑧𝑚|𝐽

⟩︀
in

Algorithm 1) are equivalent to overlap integrals for functions of appropriately higher symmetry.
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(2.38), the expressions for the first few moments are,

𝜇CAMM
𝛼 = (𝑀CAMM

100 ,𝑀CAMM
010 ,𝑀CAMM

001 ) = 𝜇𝛼 − 𝑞𝛼 (𝛼 = 𝑥, 𝑦, 𝑧),

ΩCAMM
𝛼𝛽 = Ω𝛼𝛽 − 𝑞𝛼𝛽 − 𝜇𝛼𝛽 − 𝜇𝛽𝛼 (𝛼, 𝛽 = 𝑥, 𝑦, 𝑧),

ΘCAMM
𝑠𝑡𝑢,𝑖 = Θ𝑠𝑡𝑢,𝑖 − 𝑞𝑠𝑖𝑡𝑖𝑢𝑖 − 𝜇𝑠,𝑖𝑡𝑖𝑢𝑖 − 𝜇𝑡,𝑖𝑢𝑖𝑠𝑖 − 𝜇𝑢,𝑖𝑠𝑖𝑡𝑖

− Ω𝑠𝑡,𝑖𝑢𝑖 − Ω𝑡𝑢,𝑖𝑠𝑖 − Ω𝑢𝑠𝑡𝑖 (𝑠, 𝑡, 𝑢 = 𝑥, 𝑦, 𝑧),

ΨCAMM
𝑠𝑡𝑢𝑣,𝑖 = Ψ𝑠𝑡𝑢𝑣,𝑖 − 𝑞𝑠𝑖𝑡𝑖𝑢𝑖𝑣𝑖 − 𝜇𝑠,𝑖𝑡𝑖𝑢𝑖𝑣𝑖 − 𝜇𝑡,𝑖𝑢𝑖𝑣𝑖𝑠𝑖 − 𝜇𝑢,𝑖𝑣𝑖𝑠𝑖𝑡𝑖 − 𝜇𝑣,𝑖𝑠𝑖𝑡𝑖𝑢𝑖

− Ω𝑠𝑡,𝑖𝑢𝑖𝑣𝑖 − Ω𝑠𝑢,𝑖𝑡𝑖𝑣𝑖 − Ω𝑠𝑣,𝑖𝑡𝑖𝑢𝑖 − Ω𝑡𝑢,𝑖𝑠𝑖𝑣𝑖 − Ω𝑡𝑣,𝑖𝑠𝑖𝑢𝑖 − Ω𝑢𝑣,𝑖𝑠𝑖𝑡𝑖

−Θ𝑠𝑡𝑢,𝑖𝑣𝑖 −Θ𝑡𝑢𝑣,𝑖𝑠𝑖 −Θ𝑢𝑣𝑠,𝑖𝑡𝑖 −Θ𝑣𝑠𝑡,𝑖𝑢𝑖 (𝑠, 𝑡, 𝑢, 𝑣 = 𝑥, 𝑦, 𝑧),

where 𝜇 denotes a dipole moment and Ω an octupole moment, and Θ and Ψ are octupoles and
hexadecapoles, respectively. This transformation can be performed generically for any rank
in-place on the array A,

do IA=1,NAT
X = 0.0
IK = INTCOOR(1 ,M)
IL = INTCOOR(2 ,M)
IM = INTCOOR(3 ,M)
do 100 IKK = 0 , IK
do 100 ILL = 0 , IL
do 100 IMM = 0 ,IM

Y = 1.0
N = MAPINT(IKK+1,ILL+1,IMM+1)
i f (N. ne .M)then

Y = Y * A(N, IA)
Y = Y * IBC(IK , IKK)
Y = Y * IBC( IL , ILL )
Y = Y * IBC(IM,IMM)
Y = Y * COOR(1)** ( IK−IKK)
Y = Y * COOR(2)** ( IL−ILL )
Y = Y * COOR(3)** ( IM−IMM)
X = X − Y
endif

100 enddo
A(M, IA) = A(M, IA) + x
enddo

In the above code fragment, subroutine IBC returns the binomial coefficient and INTCOOR is
the same as before (maps the multipole moment index M to the appropriate powers over all
three coordinates). Another auxiliary array (MAPINT) provides the inverse mapping – iit gives
the index of a moment, M, given the coordinate ranks 𝑘𝑙𝑚 in 𝑀CAMM

𝑘𝑙𝑚,𝑖 . This code need to be
iterated over increasing values of the index M in order to agree with (2.51). The triple loop
performed for each atom in this code corresponds to the triple sum in that equation, while
the condition N.ne.M allows the case when 𝑘′𝑙′𝑚′ = 𝑘𝑙𝑚 to be skipped.
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Evaluating interaction energies

Operating on the entire traceless multipole tensors in Cartesian coordinates, it is possible
to derive explicit symbolic expressions for their interactions based on (2.46). Performing
full contractions with the symmetric interaction tensor T

(𝜅𝑎+𝜅𝑏)
|r𝑖𝑗 | = −∇𝜅𝑎+𝜅𝑏

(︁
1

|r𝑖𝑗 |

)︁
yields the

interactions between multipoles of the few first lowest ranks,

∆𝐸
(00)
el,mtp =

𝑞𝑖𝑞𝑗
|r𝑖𝑗|

∆𝐸
(10)
el,mtp = 𝜇j[1]T

(1)
|rij|qi = qir

−3
ij (rij · 𝜇j)

∆𝐸
(11)
el,mtp = 𝜇j[1]T

(1)
|rij|[1]𝜇i = (𝜇i · 𝜇j) r−3

ij − 3 (𝜇i · rij) (rij · 𝜇j) r−5
ij

∆𝐸
(20)
el,mtp = Ωj[2]T

(1)
|rij|qi = (rij ·Ωi · rij) qjr

−5
ij

∆𝐸
(21)
el,mtp = Ωj[2]T

(1)
|rij|[1]𝜇i = 2 (𝜇j ·Ωi · rij) r−5

ij − 5 (rij ·Ωi · rij) (𝜇jrij) r−7.

One needs only define appropriate scalar products and tensor contractions and these equa-
tions can in principle be programmed recursively. It is easier and more efficient, however,
to implement the terms of (2.36), using only unique elements of the multipole tensors and
different prefactors depending on the frequency of their occurrence as expressed by (2.35).

A straightforward way to do this is the following fragment, although it is not efficient,
especially for small values of 𝑘, 𝑙,𝑚. In practice, it eeds to be optimized by using helper arrays
(the one here, F, holds factorials) and reorganizing the triple loop.

subroutine T(K, L ,M,DR)
dimension DR(3)
integer F(11)
data F /1 .0 , 1 . 0 , 2 . 0 , 6 . 0 , 24 . 0 , 120 .0 ,

* 720 .0 , 5040 .0 , 40320 .0 , 362880 .0 , 3628800.0 /
R = s q r t (DR(1)*DR(1) + DR(2)*DR(2) + DR(3)*DR( 3 ) )
XR = DR(1) / R
YR = DR(2) / R
ZR = DR(3) / R
N = K + L + M
T = 0.0
do 100 KK = 0 , i n t (K/2)

KKK = K − 2*KK
do 100 LL = 0 , i n t (L/2)

LLL = L − 2*LL
do 100 MM = 0 , i n t (M/2)

MMM = M − 2*MM
NN = KK + LL + MM
X = ( −1.0)**NN * F(2*N−2*NN+1) / F(N−NN+1)
X = X / (F(KK+1)*F(LL+1)*F(MM+1))
X = X / (F(KKK+1)*F(LLL+1)*F(MMM+1))
T = T + X * (XR)** (KKK) * (YR)** (LLL) * (ZR)** (MMM)

100 enddo
X = ( −1.0)**N * F(K+1) * F(L+1) * F(M+1) / (2 . 0**N)
T = T * X / (R**(N+1))
end subroutine T
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Forces acting between multipole moments

Following (2.36), a derivative of the multipole interaction energy between two molecules with
respect to moving the 𝑖th atom in molecule A by an infinitesimal distance 𝑥𝑖 has the form,

𝜕

𝜕𝑥𝑖
∆𝐸el,mtp =

∑︁
𝑗∈𝐵

∑︁
𝑘𝑙𝑚

∑︁
𝑘′𝑙′𝑚′

𝜕

𝜕𝑥𝑖

[︀
𝑀𝑖,𝑘𝑙𝑚𝑇(𝑘+𝑘′)(𝑙+𝑙′)(𝑚+𝑚′)(|r𝑖𝑗|)𝑀𝑗,𝑘′𝑙′𝑚′

]︀
=
∑︁
𝑖′∈𝐴

∑︁
𝑗∈𝐵

∑︁
𝑘𝑙𝑚

∑︁
𝑘′𝑙′𝑚′

𝜕

𝜕𝑥𝑖
(𝑀𝑖′,𝑘𝑙𝑚)𝑇(𝑘+𝑘′)(𝑙+𝑙′)(𝑚+𝑚′)(|r𝑖𝑗|)𝑀𝑗,𝑘′𝑚′𝑙′ (A.1)

+
∑︁
𝑗∈𝐵

∑︁
𝑘𝑙𝑚

∑︁
𝑘′𝑙′𝑚′

𝑀𝑖,𝑘𝑙𝑚
𝜕

𝜕𝑥𝑖

(︀
𝑇(𝑘+𝑘′)(𝑙+𝑙′)(𝑚+𝑚′)(|r𝑖𝑗|)

)︀
𝑀𝑗,𝑘′𝑚′𝑙′ .

The derivatives of multipole moments – 𝜕
𝜕𝑥𝑖

(𝑀𝑖,𝑘𝑙𝑚) – can be expressed in terms of polar-
izabilities, that is linear combinations of multipole moments and multipole integrals of lower
ranks. Assuming in a first approximation that all moments in the molecule are constant,
the first contribution becomes zero and the derivative of the interaction energy is reduced to
calculating the derivative of the interaction tensor,

𝜕

𝜕𝑥𝑖
∆𝐸el,mtp ≃

∑︁
𝑗∈𝐵

∑︁
𝑘𝑙𝑚

∑︁
𝑘′𝑙′𝑚′

𝑀𝑖,𝑘𝑙𝑚
𝜕

𝜕𝑥𝑖

[︀
𝑇(𝑘+𝑘′)(𝑙+𝑙′)(𝑚+𝑚′)(|r𝑖𝑗|)

]︀
𝑀𝑗,𝑘′𝑙′𝑚′ .

Any partial derivative of an action tensor element can be easily evaluated using the relations
𝜕𝑥𝑖 = 𝜕𝑟𝑥 and 𝜕𝑥𝑗 = −𝜕𝑟𝑥, where 𝑟𝑥 = 𝑥𝑖 − 𝑥𝑗. Using the general definition in (2.34), it can
be seen that the derivatives of its elements are equal to the elements of the tensor of one rank
higher, with a minus sign depending on the molecule the derivative is calculated for,

𝜕

𝜕𝑥𝑖
𝑇𝑘𝑙𝑚(|r|) =

𝜕

𝜕𝑥𝑖

𝜕𝜅

𝜕𝑟𝑘𝑥𝜕𝑟
𝑙
𝑦𝜕𝑟

𝑚
𝑧

1

|r|
=

𝜕𝜅+1

𝜕𝑟𝑘+1
𝑥 𝜕𝑟𝑙𝑦𝜕𝑟

𝑚
𝑧

1

|r|
= 𝑇(𝑘+1)𝑙𝑚(|r|), (A.2)

𝜕

𝜕𝑥𝑗
𝑇𝑘𝑙𝑚(|r|) =

𝜕

𝜕𝑥𝑗

𝜕𝜅

𝜕𝑟𝑘𝑥𝜕𝑟
𝑙
𝑦𝜕𝑟

𝑚
𝑧

1

|r|
= − 𝜕𝜅+1

𝜕𝑟𝑘+1
𝑥 𝜕𝑟𝑙𝑦𝜕𝑟

𝑚
𝑧

1

|r|
= −𝑇(𝑘+1)𝑙𝑚(|r|), (A.3)

and analogically for the other two derivatives 𝜕
𝜕𝑦

and 𝜕
𝜕𝑧

. These interaction and tensor
element derivatives will only be useful in conjunction with the interaction energy itself. There-
fore, the tensor elements used to calculate derivatives should be stored between consecutive
multipole ranks for each atom pair and used to calculate interaction energies one rank higher.

In practice, this means that the analytical gradient of the electrostatic multipole interaction
can be approximated with little extra cost compared to calculating the interactions alone. For
example, the gradient of a dipole-dipole interaction in Cartesian form involves the interaction
tensor element from quadrupole-dipole interactions. Evaluating derivatives this way introduces
only one extra rank of tensor elements that needs to be computed, along with a few auxiliary
basic arithmetic operations, as showed in Algorithms 5 and 6.



110 Appendix A: Cartesian cumulative atomic multipole moments

Prospects for molecular dynamics

The recurrent character of the Cartesian interaction tensor and of relations (A.2) and (A.3)
would benefit applications such as molecular dynamics. As discussed in Section 2.5.4 alongside
atomic moment transferability, there have been efforts to correct electrostatic interactions
during simulations by including multipole interactions. However, most do not change the
values of moments during simulations, or rely on a parametrization performed beforehand.
Obviously, these are reasonable approaches only for the smallest molecules.

Even the most flexible molecules, however, repeatedly visit the same conformations, there-
fore some form of library of moments is indispensable. General ideas are presented and dis-
cussed in the following paragraphs, and Fig. A.1 presents a schematic protocol for including
multipole effects in simulations. Pseudo-code is listed in Algorithms 2-6 for subroutines titled
there in upper case, based on CAMM moments and existing code by Plattner and Meuwly
that interfaces with CHARMm.346

Besides initializing arrays (MTPINIT in Algorithm 3) and reading atomic moments from an
input file, the implementation needs to be fed the simulation coordinates and influence the
next increment by adding corrections to the energy and derivatives. Fig. A.1 illustrates these
relations with arrows between nodes.

The additional operations that need to be performed in each time step can be divided into
two kinds, the first dedicated to updating atomic moments, the second to evaluating improved
electrostatic interactions. These parts are separated into two green clusters in the diagram.

The first green cluster embodies a loop over all the molecules equipped with atomic mo-
ments. At this stage a decision is made, by comparing the simulated conformation with those
available in the library, whether the deviation from any known conformation is acceptable.
If not, then an external program needs to be called that calculates the atomic moments for
the new conformation and adds them to the library. If it is acceptable, however, the program
can proceed to approximate the atomic moments. This can be done in at least two ways – by
treating the conformational changes as internal rotations of atoms as per (2.52), or by inter-
polating from two or three nearby library conformations. Whatever is chosen, the new atomic
moments for each molecule can be finally rotated to their orientation within the simulation.

If the molecules are rigid or the moments are assumed to be constant, then most of these
steps can be skipped, and only small internal rotations of atoms (if any) and molecular ro-
tations need to be performed. The most problematic aspect in the described procedure is
the reference frame in which conformational changes are evaluated. It is unclear, for exam-
ple, if it is practical to use natural internal coordinates with constant connectivity definitions
or whether some kind of alignment routine would be more useful and efficient. The central
question is how an arbitrary change in atomic coordinates should be expressed in terms of
the internal molecule conformation. Once this is resolved, the technical means to build up a
library and use it to interpolate moments for new conformations remains to be implemented.

The second green cluster shown in Fig. A.1 symbolizes the the evaluation of multipole

346Plattner, N., Meuwly, M. Biophys. J. 2008, 94, 2505–2515; Plattner, N., Meuwly, M. ChemPhysChem
2008, 9, 1271–1277; Plattner, N., Meuwly, M. J. Mol. Model. 2009, 15, 687–694.

http://dx.doi.org/10.1529/biophysj.107.120519
http://dx.doi.org/10.1002/cphc.200800030
http://dx.doi.org/10.1002/cphc.200800030
http://dx.doi.org/10.1007/s00894-009-0465-6
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Figure A.1: Schematic for the proposed use of electrostatic atomic multipole moments instead of only charges during atomistic
simulations. Arrows denote the sequence of chronological events, while the clusters represent loops and their labels (near top)
describe the nature of the loop. Pink is used to highlight the most computationally intensive elements. The upper case titles in
several nodes are the names of the procedures listed and discussed in the text.
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contributions to the energy and derivatives, given that all the new coordinates and atomic
moments are now known. It is a beneficial feature of Cartesian multipole moments and their
interactions that they are expressed in the same coordinates as are normally used during
simulations. Also, as shown in the previous section, the derivative of (2.37) in any direction
can be expressed using an interaction tensor element of a larger rank in that coordinate. That
is why the nodes representing both the energy and derivative calculation in the diagram are
undersigned with the procedure CAMMENERG, which is used in both cases (see Algorithm 5).

A comment should be made about the additional computational cost ensued by including
these procedures. While the general equation used for the Cartesian interaction tensor element
(2.35) is lengthy, its implementation CAMMTENSOR (Algorithm 6) is straightforward and much
of the prefactors involved do not change between elements.

By far the most expensive procedure is CAMMROTATE (Algorithm 4), which contains trigono-
metric functions. The rotation matrix 𝑅𝑂→�̃� in (2.52) can be parametrized with Euler angles,

�̃�(𝛾𝑥, 𝛾𝑦, 𝛾𝑧)M
𝜅 =

(︀
𝑅𝛾𝑥,𝛾𝑦 ,𝛾𝑧

)︀𝜅
M𝜅. (A.4)

Euler angles 𝛾𝑥, 𝛾𝑦, 𝛾𝑧 for the rotation can be obtained from the quaternions of a given
rotation axis and angle. The choice of this axis and angle is in fact a choice of the local
reference system for each atom, and in principle should be arbitrary for small changes in
coordinates or small time steps.

Since CAMM multipoles are defined in the context of an entire molecular fragment, a
change in the orientation of an atom 𝑖 between time steps should be expressed relative to a
dynamic center of mass. Namely, the axis angle 𝛼𝑖,𝑛 for time step 𝑛 is spanned between the
atom vector in the current and previous time steps,

𝛼𝑖,𝑛 = arccos

(︂
r𝑖,𝑛 · r𝑖,𝑛−1

|r𝑖,𝑛||r𝑖,𝑛−1|

)︂
, (A.5)

where the the atom vector r is relative to the center of mass in the current time step,

r𝑖,𝑛 = R𝑖,𝑛 −
∑︁
𝑖

𝑚𝑖R𝑖,𝑛 ·

(︃∑︁
𝑖

𝑚𝑖

)︃−1

, (A.6)

and R𝑖,𝑛 is the position in the global coordinate system and 𝑚𝑖 is the atomic mass of atom 𝑖.
While the external step, in which multipole moments are calculated, possibly using a very

expensive and accurate ab initio method, is in itself a bottleneck that will probably block
the simulation, it is a rare event. In practice, the moments would be generated mostly at
the beginning of the simulation, every time a conformation is found that is judged to be too
far from any other conformation in the library. In this case, too, it remains to be seen what
criteria for recalculation would be acceptable and how many library instances would be needed
to populate a reasonably large portion of a flexible molecule’s conformational space.
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Algorithm 2 Pseudo-code of a simulation loop that includes CAMM atomic multipole inter-
actions by calling subroutine MTPX. Here, 𝑁𝐴 denotes the total number of atoms.

Initialize common blocks and multipole moments. subroutine MTPINIT
for each time step in simulation (subroutine MTPX ) do

Increment internal MTP counter. 1 sum.
Rotate Cartesian multipole moments. subroutine CAMMROTATE
Update stored coordinates with new values. 𝑁𝐴 div.
Evaluate interactions and derivatives. subroutine CAMMENERG
Add interactions to simulation energies. 1 mult., 1 sum.
Add derivatives to simulation forces. 3𝑁𝐴 mult., 3𝑁𝐴 sum.
Calculate RMS of interactions and derivative. 2 sqrt., 2 div., 6𝑁𝐴 mult., 6𝑁𝐴+2 sum.

end for

Algorithm 3 Pseudo-code for MTPINIT – subroutine that initializes common blocks related
to CAMM atomic moments. Here, 𝑁𝐴 denotes the total number of atoms, 𝑁𝐹 the number of
fragments described by atomic moments and 𝐿 is the maximum interaction rank considered.

Initialize array of factorials up to 2L+2. 2L+1 mult., 2L+1 sum.
Initialize binomial coefficients up to L. ∼ 𝐿3 div., ∼ 𝐿3 mult., ∼ 𝐿3 sum.
Initialize array of (2N!)/N! and powers of -1 and 2 up to L+1. L+2 pow., L+2 div., L+2 mult.
Initialize array of moment indexes. L div., L mult., 6L sum.
Initialize array of fragment masses. 𝑁𝐹 mult., 𝑁𝐴 sum.
Initialize atom coordinates in bohrs. 𝑁𝐴 div.
Initialize centers of mass of all fragments. 3𝑁𝐹 div., 3𝑁𝐴 mult., 3𝑁𝐴 sum.

Algorithm 4 Pseudo-code for CAMMROTATE – subroutine that rotates CAMM atomic moments.
for all fragments described by multipole moments do

Update center of mass based on new coordinates 3𝑁𝐹 div., 3𝑁𝐴 mult., 3𝑁𝐴 sum.
for all atoms in the fragment do

Find displacement of atom relative to previous time step 2 sqrt., 5 div., 12 mult., 12 sum.
Express the change in direction in quaternions 1 sqrt., 1 div., 15 mult., 6 sum.
Express the change in direction in Euler angles 3 trig., 10 mult., 5 sum.
Save the angles in array ANGLES.

end for
for three axes X,Y,Z do

Set indices of axes. 3 sum.
for all atoms in the fragment do

Recover angle and evaluate sine and cosine. 2 trig., 1 sum.
for all multipole moments on atom do

Operations extracted before loop. 4 sum.
for partial exponents over coordinates do

Calculate contribution to new multipole moment. 2 pow., 4 mult., 13 sum.
end for

end for
for all multipole moments on atom do

Copy moments from temporary array to common block. 2 sum.
end for

end for
end for

end for
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Algorithm 5 Pseudo-code for CAMMENERG – subroutine that evaluates CAMM atomic moment
interactions and derivatives for all atoms in the simulation.

Zero interaction and derivative arrays.
for all pairs of atoms IAT and IAT2 do
if IAT and IAT2 are in different fragments then

Find distance between the two atoms. 1 sqrt., 3 mult., 5 sum.
if The atoms IAT and IAT2 are closer than cut-off distance then

Operations extracted before loop. 1 div., 3 mult.
Zero array of calculated interaction tensor elements.
for all pairs of ranks L1,L2 for atoms IAT and IAT do
for all unique moments NM1 of rank L1 do

Operations extracted before loop. 4 mult.
for all unique moments NM2 of rank L2 do

Intermediate variables. 1 div., 3 mult., 7 sum.
if L1+L2 = 0 then

Calculate interaction tensor element. subroutine CAMMTENSOR
else

Restore interaction tensor element from array TTMP.
end if
Sum contribution to total interaction energy. 1 mult., 1 sum.
for three axes X,Y,Z do

Find coordinate exponents for this axis. 6 sum.
if interaction tensor element has already been calculated then

Restore tensor element from array TTMP.
else

Calculate interaction tensor element. subroutine CAMMTENSOR
Save tensor element in array TTMP for later use.

end if
Add contribution to atomic derivatives of IAT and IAT2. 1 mult., 2 sum.

end for
end for

end for
end for

end if
end if

end for

Algorithm 6 Pseudo-code for CAMMTENSOR – subroutine that calculates the Cartesian inter-
action tensor of rank LMN.

Calculate prefactor of tensor element. 1 pow., 1 div., 4 mult., 3 sum.
T ← 0.
for partial exponents on three axes do

Evaluate powers of distances 𝑟𝑥, 𝑟𝑦, 𝑟𝑧. 3 pow.
Sum contribution into T. 1 div., 12 mult., 7 sum.

end for
Evaluate final value of interaction tensor element. 1 mult.



B cclib: interoperability in
computational chemistry

In view of the ongoing rapid dissemination of open source software and scripting languages
such as Python347, this outlook aims to give a feeling of their present condition in the field of
computational chemistry. In particular, tools facilitating interoperability and the automation
of routine tasks are discussed, with primary focus on the parsing library cclib.348

Barriers to interoperability

Computational chemists carrying out ab initio, density functional or semi-empirical calcula-
tions choose from a variety of software packages. Each program is characterized by a range of
available methods and theory levels, as well as by how they are implemented.

Due to design differences, the lack of a programming interface (API) in most cases, and
the proprietary nature of some codes, most of the packages used in modern computational
chemistry are in no way interoperable. This often leads to the uncomfortable situation where
results obtained from one program may not be reproducible by or even comparable to another
within some assumed limits. Furthermore, a particular analysis method may only be available
to the users of one program, even though the method is in principle applicable to any.

How do then researchers ensure that analyses apply to output from any program? Typi-
cally, they choose several packages that they are interested in, and write routines to extract
the necessary information from the text file containing the results (log file) or from a binary
file produced during calculations (checkpoint file). The former is often easier since the log file
may be readily viewed and it is the output file with which users are most familiar, while the
checkpoint files tend to be quite large are are not normally retained.

However, log files can vary, are usually quite free-format, the units may disagree or not
be reported, and the same data may be present under different names. On top of this, the
specifics of a log file from a particular package may depend on the nature of the calculation,
on the version of the software, even on the operating system. As a result, it is unlikely that a
parser will be sufficiently robust to deal with the log files of all users. Even if it were, as new
versions of the package become available, the author must constantly update the parser or it
will become obsolete.

347Rossum, G., Drake, F. Python Reference Manual ; 2001, http://www.python.org.
348O’Boyle, N. M., Tenderholt, A. L., Langner, K. M. J. Comp. Chem. 2008, 29, 839–845; cclib: A library

for package-independent computational chemistry algorithms; http://cclib.sourceforge.net.

http://www.python.org
http://dx.doi.org/{10.1002/jcc.20823}
http://cclib.sourceforge.net
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Introducing cclib

The programming library cclib348 is intended to overcome these difficulties by providing one
standard interface to calculation results, independent of the program used. This means that
developers do not have to worry about writing a parser, and can concentrate on the analyses
or algorithm being implemented. Code based on cclib will work equally well for users of any of
the supported computational chemistry packages, and will continue to work with new versions
and output file formats as long as cclib is regularly updated to handle new releases.

Two distinct target audiences can be identified. The first consists of chemists who need
to repeatedly extract information from log files, who traditionally used a combination of
command-line tools such as grep and cut, or copied text directly to a spreadsheet and edited
it by hand or macro. Using cclib, in just a couple of lines of code they can extract information
from the log file. The second group are developers of software that, as a necessary first step,
parse computational chemistry output files. This could be for molecular visualization software,
post-processing code, or an algorithm based on calculation results.

As a collaborative project, cclib is developed using an open source development model349

and takes full advantage of development resources such as mailing lists, wiki and versioning
systems. An open source license, the Lesser GNU Public License (LGPL),350 was chosen in
order to encourage contributions from outside developers and to maximize impact by allowing
incorporation into other open and closed source programs.

From the technical point of view, cclib is a library written in Python347 composed of
four modules: parser, bridge, method and progress. At the core are the parser classes,
of which there are seven in cclib 1.0: for the programs ADF, GAMESS (both GAMESS-US
and PC-GAMESS/Firefly), GAMESS-UK, Gaussian, Jaguar, Molpro and ORCA. They can
be instantiated directly or by a ccopen() function, which detects which package a log file
corresponds to. Calling the parse() method parses the file and extracts any information
found, which is made available through attributes of the resultant data object (ccData).

A simple example demonstrates how cclib can be used in practice to calculate a HOMO-
LUMO gap (in eV), given the output file of a single point Gaussian energy calculation:

>>> from c c l i b . pa r s e r import ccopen
>>> m y l o g f i l e = ccopen ( ”methane . l og ” )
>>> print m y l o g f i l e
Gaussian log f i l e methane . l og
>>> mydata = m y l o g f i l e . parse ( )
>>> homo = mydata . homos [ 0 ]
>>> e n e r g i e s = mydata . moenergies [ 0 ]
>>> homolumogap = e n e r g i e s [ homo+1] − e n e r g i e s [ homo ]

The unified interface to calculation output extends to the data itself. For example, molec-
ular coordinates are always provided in ångström, and vibrational frequencies in cm−1, no
matter what units are used in the source log file. In addition to unit conversions, cclib stan-
dardizes conventions such as those used for orbital symmetries. For the symmetry labeled BU
by GAMESS and Gaussian, ADF uses B.u, GAMESS-UK uses bu and Jaguar uses Bu; cclib

349Fogel, K. Producing Open Source Software; O’Reilly, 2005.
350GNU Lesser General Public License; http://www.gnu.org/copyleft/lesser.html.

http://www.gnu.org/copyleft/lesser.html
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normalizes all of these to Bu. This issue highlights a general difficultly encountered when
parsing log files, namely a lack of detailed documentation. Of these four programs, only ADF
provides a manual describing the possible labels. Since many programs do not provide source
code, the only way to obtain the full list of labels is to run calculations for all symmetries.

Another notable feature of cclib development is the extensive use of unit tests, short pieces
of code designed to test a single functionality. There are two unit test frameworks in the
standard Python library, unittest and doctest, and both are used by cclib. Tests embedded
in the documentation strings of modules and functions (docstrings) are processed by doctest,
and are best suited when a correct behavior can be verified by examining a small number of
outputs. For example, the symmetry labels produced by ADF are standardized by a function
with tests for every possible symmetry that can be found in an ADF log file.
Unittest is a more general purpose framework, which cclib uses to ensure consistency

between parsers and internal consistency between various data from the same file. For every
computational package handled by cclib, a set of standard calculations are performed on
the same molecule, including a geometry optimization, single point energy and vibrational
frequency calculation. Unit tests ensure that each parser is extracting the correct data –
for example, if atom coordinates are in ångström (not bohr), or compare the minimum C-C
distance in a molecule to a known value.

All log files used to develop the parsers are stored in source code tree. If, after release,
a log file is found that the current parser cannot parse then a test for the bug is added to a
regression test suite, and the bug is fixed. The regression test suite ensures that a bug, once
fixed, will stay fixed. Periodically, a release is made of all log files that have historically broken
any parser. In effect, these log files define the behavior and ability of the current parsers, and
may be useful to others as a test set for developing similar software.

Several basic computational chemistry algorithms are implemented with cclib, in the
methods module. After molecular orbital coefficients and the overlap matrix are extracted
from a log file, a number of orbital-based population methods can be performed. These include
the CSPA method which disregards any overlap between basis set functions and the standard
Mulliken population analysis. The density matrix can be calculated, as well as Mayer’s bond
orders between atoms. The following five lines parse an output file and calculate Mulliken
electron populations on atoms (partitioning can be done differently):

>>> from c c l i b . pa r s e r import ccopen
>>> from c c l i b . method import MPA
>>> mydata = ccopen ( ”methane . l og ” ) . parse ( )
>>> charges = MPA( mydata )
>>> charges . c a l c u l a t e ( )

Another implemented method is charge decomposition analysis (CDA) developed by Dap-
prich and Frenking,351 which describes the interaction between two molecular fragments. In-
teraction energies are calculated in terms of the mixing between occupied and empty orbitals
or occupied orbitals of two fragments. Also included in the methods are functions to calculate
the magnitude of the wave function and electron density at grid points in a volume. These

351Dapprich, S., Frenking, G. J. Phys. Chem. 1995, 99, 9352–9362.

http://dx.doi.org/10.1021/j100023a009
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functions use the open source quantum chemistry package, PyQuante,352 to handle the actual
calculation, and the resulting volume object can be written to disk in Gaussian cube format
or as a Visualization Tool Kit (VTK) file.

Relation to other software

Since one of the goals of cclib is to bring chemical computations and subsequent analysis closer,
it promotes interoperability with other open source software, especially written in Python. To
this end, the bridge module can use the molecular information parsed by cclib to create a
Biopython PDB object, OpenBabel OBMol object or a PyQuante Molecule object.

Biopython353 contains many algorithms of interest in structural biology, such as Super-
imposer which aligns two molecular conformations by minimizing the root mean squared de-
viation between the atoms. Of more general interest is the OpenBabel library,354 a C++
cheminformatics library which provides Python bindings. OpenBabel allows conversion of
molecular data between over 60 different file formats, including input file formats for several
computational programs. In addition, it contains many algorithms to deal with molecular
structures such as ring perception, detection of aromaticity and chirality.

The following shows how to create a PDB file containing the final step of a geometry
optimization parsed by cclib,

>>> from c c l i b . pa r s e r import ccopen
>>> from c c l i b . br idge import makeopenbabel
>>> import pybel
>>> data = ccopen ( ” m y l o g f i l e . out” ) . parse ( )
>>> OBmol = makeopenbabel ( data . atomcoords [ −1] , data . atomnos )
>>> pybel . Molecule (OBmol ) . wr i t e ( ”pdb” , ” f i n a l s t e p . pdb” )

PyQuante352 is a suite of programs for developing quantum chemistry methods. It is
written in Python with speed-critical code in C. Since cclib extracts Gaussian basis set in
PyQuante format, it is possible to easily create a PyQuante object and carry out an electronic
structure calculation with it. The cclib functions for calculating electron density and the wave
function magnitude at grid points in a volume interface with PyQuante in this way.

It is prudent to mention other projects that facilitate communication between monolithic
computational chemistry codes – they usually rely on converting output, either the binary or
associated log file, to a format which can then be used to create an input file for the next
program in a workflow. Borini et al.355 have developed a standardized binary file format based
on HDF5 files, a format designed for storing scientific data. Their Q5Cost library provides an
API to the contents of the HDF5 file, the scope of which is currently limited to atomic orbital,
molecular orbital and wave function data.
352Muller, R. P. PyQuante, Version 1.6.3 ; http://pyquante.sourceforge.net/.
353Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck,

T., Kauff, F., Wilczyński, B., Hoon, M. Bioinformatics 2009, 25, 1422–1423.
354The Open Babel Package, version 2.0.1 ; http://openbabel.sourceforge.net; Guha, R., Howard, M. T.,

Hutchison, G. R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J., Willighagen, E. L. J. Chem. Inf.
Model. 2006, 46, 991–998.
355Borini, S., Monari, A., Rossi, E., Tajti, A., Angeli, C., Bendazzoli, G., Cimiraglia, R., Emerson, A.,

Evangelisti, S., Maynau, D., Sanchez-Marin, J., Szalay, P. J. Chem. Inf. Model. 2007, 47, 1271–1277.

http://pyquante.sourceforge.net/
http://dx.doi.org/10.1093/bioinformatics/btp163
http://openbabel.sourceforge.net
http://dx.doi.org/10.1021/ci050400b
http://dx.doi.org/10.1021/ci050400b
http://dx.doi.org/10.1021/ci7000567


Appendix B: interoperability in computational chemistry 119

There are also parallel efforts to convert log files into a more easily parsed format, prin-
cipally XML, and to manage data from calculations using databases; for details refer to the
references given in the article describing cclib.348

cclib differs from these projects in that it does not rely on an additional file format or
database, and is aimed at users who are developing algorithms or simply need to extract
data from log files, although enabling workflows is a possible application. In addition, cclib
does not require any changes to be made to the underlying code which, in a field where most
computational chemistry codes are proprietary, would be of limited use.

As a final note, it should be stressed that the task of parsing information from output files
would be made much easier if information were written using a standard machine-readable
format, one that adheres to agreed conventions by means of dictionaries and ontologies so
that information and units would be trivial to extract. This is an approach that is gaining
momentum in the area of computational materials science, where XML output is in devel-
opment for packages such as GULP and CRYSTAL. However, until this approach becomes
widespread in the computational chemistry community, libraries such as cclib insulate users
from the differences between the output files of various packages.





Glossary

Key nomenclature

electrostatic related to the static distribution of electron charge density around a molecule
interaction the mutual influence of two molecules, compared to their isolated states
intercalation insertion of aromatic molecules or their chromophores between nucleic acid bases
multipole moment approximate point representation of a surrounding charge density distribution
noncovalent pertaining to a stable complex without the formation of a chemical bond
nonempirical derived from first principles without assuming arbitrary numerical parameters
stacking parallel alignment of two aromatic molecules, with significant 𝜋 orbital overlap
transferability the process of reusing an atom or fragment in a different molecule or setting

Abbreviations used

AFM atomic force microscopy

AIM (quantum theory of) atoms in molecules

AMM atomic multipole moment

API application programming interface

BSSE basis set superposition error

CAMM cumulative atomic multipole moment

CBS complete basis set (limit)

CCD coupled cluster with doubles

CCSD coupled cluster with singles and doubles

CCSD(T) coupled cluster with singles, doubles and
perturbative triple excitations

CHA chemical Hamiltonian approach

CNDO complete neglect of differential overlap

COM center of mass

CP counterpoise (correction)

DCBS dimer centered basis set

DFT density functional theory

DMA distributed multipole moment

DMPF O,O-dimethylphosphorofluoridate

DNA deoxyribonucleic acid

EDA (variational) energy decomposition analysis

EHT extended Hückel theory

FCI full configuration interaction

HF Hartree-Fock

HVPT hybrid variation perturbation theory

KM Kitaura-Morokuma

LCAO linear combination of atomic orbitals

MCBS monomer centered basis set

MD molecular dynamics (simulations)

MEP molecular electrostatic potential

MP2 second-order Möller-Plesset theory

NAC near attack conformer

PES potential energy surface

QM/MM quantum mechanics/molecular mechanics

RHF restricted Hartree-Fock

RMS root mean square (deviation)

RNA ribonucleic acid

SAPT symmetry-adapted perturbation theory

SCF self-consistent field
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Software used

ADF Amsterdam Density Functional356

Avogadro An advanced molecular editor357

BSE Basis Set Exchange358

EDS Energy Decomposition Scheme, an implementation of HVPT by Góra359

GAMESS General Atomic and Molecular Electronic Structure System360

Gaussian03 General program for electronic structure modeling361

Molden General purpose program for molecular structure362

NumPy Numerical Python package363

Python A general-purpose high-level programming language347

Reduce Program used for adding missing hydrogen atoms to crystal structures364

SAPT Symmetry-Adapted Perturbation Theory365

VMD Visual Molecular Dynamics366

356Velde, G., Bickelhaupt, F. M., Baerends, E. J., Guerra, C. F., Gisbergen, S., Snijders, J. G., Ziegler, T.
J. Comp. Chem. 2001, 22, 931–967.
357Avogadro, an advanced molecular editor ; http://avogadro.openmolecules.net.
358EMSL Basis Set Exchange, see Schuchardt, K. L., Didier, B. T., Elsethagen, T., Sun, L., Gurumoorthi,

V., Chase, J., Li, J., Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045–1052.
359Góra, R. W. EDS: Energy Decomposition Scheme, Wrocław, Poland, Jackson, MS; 1998-2009.
360GAMESS-US, see Schmidt, M. W. et al. J. Comp. Chem. 1993, 14, 1347–1363.
361Frisch, M. J. et al. Gaussian 03, Revisions C.02, D.01 and E.01 ; 2004, http://www.gaussian.com.
362Schaftenaar, G., Noordik, J. J. Comput.-Aided Mol. Des. 2000, 14, 123–134.
363Oliphant, T. E. Comput. Sci. Eng. 2007, 9, 10–20.
364Word, J. M., Lovell, S. C., Richardson, J. S., Richardson, D. C. J. Mol. Biol. 1999, 285, 1735–1747.
365Bukowski, R. et al. SAPT2008: Many-Body Symmetry-Adapted Perturbation Theory Calculations of In-

termolecular Interaction Energies; 2008, http://www.physics.udel.edu/˜szalewic/SAPT.
366Humphrey, W., Dalke, A., Schulten, K. J. Mol. Graph. 1996, 14, 33–38.

http://dx.doi.org/10.1002/jcc.1056
http://dx.doi.org/10.1002/jcc.1056
http://avogadro.openmolecules.net
http://bse.pnl.gov
http://dx.doi.org/10.1021/ci600510j
http://www.msg.ameslab.gov/GAMESS
http://www.gaussian.com
http://www.physics.udel.edu/~szalewic/SAPT
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Černý, Jǐŕı, 2, 61
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Rubeš, Miroslav, 71, 72

Rudnicki, Witold R., 90
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