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Summary: In the article the author  checked the properties of coherent  measures of  risk for 
Expected Value, Expected Shortfall, Maximum Loss (for losses weighted with probability), 
Median, Median Absolute Deviation, “Arithmetic Mean of Absolute Deviations from Medi-
an”, Quantiles, Cumulative Distribution Function and Mid-Range in connection with the last 
financial crisis. Methodology of the research – mathematical proving and theoretical analy-
sis. Results. The survey shows that the above functions are not coherent measures of risk 
with some definition of stochastic order and in many cases not measures of risk in terms of 
the axiomatic definition. The paper shows also that the lemma used in the literature to prove 
monotonicity of Expected Shortfall is not truth and we will  prove  the lemma with the op-
posite relation. Value of the paper – Mathematical proofs in  the field of risk measurement. 
Showing some problems with monotonicity of risk measures. Contradicting the lemma of 
monotonicity of Expected Shortfall. Own definition of first degree stochastic order. 

Keywords: measures of risk, Expected Shortfall, Expected Value, Maximum Loss, coherence. 

Streszczenie: W artykule autorka sprawdziła właściwości koherentnych miar ryzyka dla 
wartości oczekiwanej, oczekiwanego niedoboru, maksymalnej straty (dla  straty ważonej  
prawdopodobieństwem), mediany,  absolutnego odchylenia medianowego, ,,średniej aryt-
metycznej odchyleń bezwzględnych od wartości średniej”, kwantyla, skumulowanej dystry-
buanty  i średniego rozstępu – w związku z ostatnim kryzysem finansowym. Przyjętą meto-
dologią badań było matematyczne dowodzenie i analiza teoretyczna. Badanie pokazało, że 
powyższe funkcje nie są koherentnymi miarami ryzyka z niektórych definicji porządku sto-
chastycznego oraz w wielu przypadkach nie są miarami ryzyka w kategoriach definicji ak-
sjomatycznej. Pokazano  również, że lemat stosowany w literaturze do udowodnienia  mo-
notoniczności oczekiwanego niedoboru nie jest prawdziwy,  jest inaczej jedynie z przeciw-
nym znakiem nierówności. Wartość dodaną pracy stanowią:  matematyczne  dowody  w za-
kresie pomiaru ryzyka,  pewne problemy dotyczące monotoniczności miary ryzyka, zmie-
niony  lemat o monotoniczności miary ryzyka, a także własna definicja porządku stocha-
stycznego pierwszego rzędu. 

Słowa kluczowe:  miary ryzyka, oczekiwany niedobór, wartość oczekiwana, maksymalna 
strata, miary koherentne. 
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1. Introduction 

Risk measurement is an important issue in economics and especially in finance. The 
role of risk management in the economy is increasing especially since in 2007-2009 
there occurred an important financial crisis connected with irresponsible financial 
risk management [Ferguson  2010]. We understand the necessity of  risk analysis 
which may be conducted with the application of risk measures. The process of risk 
management may be defined as decision making and actions realization which lead  
to the achievement of  an  acceptable level of risk (see [Jajuga 2007]). The need of 
risk measuring came into existence in the  1990s when many bankruptcies took place 
on the world financial markets. One of the most important and well-known was the 
bankruptcy of the English Barings Bank in 1995. [Staniec, Zawiła-Niedźwiedzki 
2008].  Risk measurement is one of the  few stages  in the risk management process 
based on qualitative methods and statistical and mathematical functions. In this arti-
cle the author will recall  the unconditional functions of volatility and the measures 
based on quantile of statistical distribution. She will try to prove that Expected Value, 
Expected Shorftall, Median, Maximum Loss (with losses weighted with probability), 
Median Absolute Deviation, Arithmetic Mean of “Absolute Deviations from Medi-
an”, Quantiles,  Cumulative  Distribution  Function and Mid-Range, fulfill the axi-
oms of coherent risk measure of Artzner et al. (see [Uniejewski 2004;  Buszkowska 
2015]). Furthermore the author will justify that the important lemma, applied in the 
paper of Uniejewski  (see  [Uniejewski 2004]), used in the proof of monotonicity of 
Expected Shortfall, is good in its opposite form and she will prove the opposite theo-
rem to the lemma. 

2. Basic theorems and definitions 

Expected Shortfall – (see two papers [Trzpiot 2008; Acerbi, Tasche 2002]),  may be 
interpreted as the mean   of the   worst (1− α) % loss cases  on condition that these 
losses  are bigger than Value of Risk. 

Now we will present and comment on the definition of measure of Risk 
 
Definition (Measure of Risk) 
Measure of risk is a function which maps the elements of some linear subspace V 

of some space of random variables specified on the random space ( R, F, P), which 
contains the  constants  in a set of real variables  space 

ρ : V → R. 
It fulfills the following axioms: 
1) monotonicity: 

for every X ,Y ∈V , if X ≤ Y then, ρ( X ) ≤ ρ(Y ). 
 

http://pl.wikipedia.org/w/index.php?title=Expected_Shortfall&amp;amp%3Baction=edit&amp;amp%3Bredlink=1
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This implication may denote that smaller capital is combined with smaller  risk in 
negative understanding of a risk. 

2) invariance:   for every a ∈R and every X ∈V 

ρ(X + a ) = ρ(X) − a. 

The second axiom may be interpreted such that when we add some money to  the 
portfolio, the risk connected with this portfolio falls  if the risk is defined neutrally as 
a possible profit from owning this portfolio. This definition does not include the in-
terest rate from the paper of Artzner et. al. [1998], but is similar to the  definition: 
ρ(X + a ) = ρ(X ) + a [Artzner et  al. 1997; Trzpiot 2008]. In this case,  risk should be 
interpreted as a possible profit, so it is  positive.  Since the values taken by measures 
of risk are real, we can easily order and compare the risk variables in respect of the 
quantity of risk. A measure of risk is coherent when it fulfils conditions: 

1) positive homogenousness 
For every λ ≥ 0 and for every X ∈V . it occurs ρ(λX )= λρ(X ). 
This axiom may denote that the multiplication of the invested wherewithal makes 

risk increase proportionally, for example when we analyze catastrophes or playing on 
a stock market.  

2) subadditivity: for every X ,Y ∈Y  there is a relation 

ρ(X +Y )≤ ρ(X )+ ρ(Y). 

In a well diversified portfolio, risk of total loss of the portfolio is not bigger than 
the risk of the loss of its individual components. The well- known example of no 
coherent measure is Value at Risk. The famous example of coherent measure of risk 
according to the literature is Expected Shortfall. The conditions of coherence in 
[Artzner et al. 1997], allow for the consequence in risk evaluation (see [Uniejewski 
2004]). We can define the first order stochastic dominance in the following way: 

Definition (stochastic dominance of the first order) 
If  variable X dominates  stochastically variable Y it can be written 

X ≤ Y then F1(x) ≤ F2 (y). 

So the distribution function F2 (y) dominates the distribution function F1(x). 
This definition is not the same as the definition in the literature, but also seems  

to be rational as the domination may denote superiority and privileged position. We 
will now present the lemma concerning the monotonicity of a coherent risk measure, 
used for defining monotonicity in the article of Acerbi and Tasche (see [2002]), and 
then  in  the Master dissertation  of  Uniejewski  (see [2004]). This theorem is the 
following: 

Lemma 2.1 

For variables of risk X and Y and the measure of risk ρ the truth is the equivalence 
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( ) ( ) ( )( )0 0 .X Y X Y X Xρ ρ ρ≤ ⇒ ≤ ⇔ ≥ ⇒ ≤  

We will show that this equivalence is not true, while the truth is the following 
opposite relation written in lemma  2.2. 

Lemma 2.2 

For variables  X   and Y   and the measure of risk ρ 

( ) ( ) ( )( )0 0 .X Y X Y X Xρ ρ ρ≤ ⇒ ≤ ⇔ ≥ ⇒ ≥  

This axiom ensures that risk is detected [Artzner 1998].  
To measure risk we can use volatility measures. The easiest and less accurate 

measure of risk is mid-range. It is a half of the difference between the biggest and the 
smallest value of random return for data from a particular time interval. The formula 
for the mid-range is the following: 

 ( )max min0,5 .R Rσ = −   (1) 

Another measure mentioned in the literature, but not coherent in reality, is also 
the median absolute deviation described by the following formula: 

 ( ) ( ) ,X Median X Median Xρ = −  (2) 

where the median denotes the value in the middle in the ordered series. A similar 
function is the arithmetic mean of absolute deviations of possible values of random 
variable from the median, which in the empirical version has the following form and 
will be named as the arithmetic mean of the absolute deviations of values of the ran-
dom variable from the median. The last measure of risk taken into account is quan-
tile, defined as follows: 

 

 ( ) ,P R Rα α≤ =  (3) 

where  R is a  risk variable, αR  is a quantile, P is  a measure of probability and α  is  
a probability value. In the calculations we will use its estimator called empirical 
quantile. 

Definition   

Let nXX ,...1 be the sample from the distribution with a probability distribution func-
tion F, then the empirical probability distribution function  

( )^
nF x : [ ]0,1R × Ω →  

is defined as follows: 
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( )
{ }

^
:

.
i

i
n

i X x
F x

n

≤
=


 
x p   is called empirical quantile of rank p if 

( )^ .n pF x p≤  

Source: own definition on the basis of literature.  

Theorem (Gliwienka – Cantelle: The Fundamental Theorem of Statistics)  

Let ( ) ( )xFxFD nxn −= +∞<<∞−sup .  comes from the distribution with prob-
ability distribution function  F , ,∞→n then 0→nD with the probability equals 1. 

The theorem states that the empirical distribution is convergent with the probabi-
lity to the theoretical distribution. This means that in practical applications one can 
substitute the theoretical probability distribution function, which is often impossible 
to set down, by the empirical probability distribution function. We will try to prove 
the theoretical properties of the above  functions. The property which allows us to 
use them in every case is coherence [Uniejewski  2004]. First we will check whether 
the considered functions fulfill the postulates of measure, i.e. if they are a measure of 
risk in the sense of the assumed definition  [Trzpiot   2008]. 

3. Theoretical results 

First we will show that the Expected Value and its particular case Expected  Shortfall 
(ES), are not measures of risk in the sense of Artzner et.al. axioms, with the assumed 
definition of stochastic order, because the monotonicity axiom is not true for them 

• monotonicity (counterexample). 
Assume that X ≤ Y, so from the definition of comparing random variables (see 

[Uniejewski 2004]) 

( ) ( ).F X F Y≤  

We define the variable  X as follows: 

( ) ( ).P X x P Y y≤ ≤ ≤  

.
i i

i i
x x y y

p p
< <

≤∑ ∑  

Assumptions:  x VaR> , y VaR>   

nXX ,...1
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( ) ( )
1 1

.
n n

i i i i
i i

X x p y p Yρ ρ
= =

= ≥ =∑ ∑
 

( ) ≥> VaRxXE /  ( ),/ VaRyYE >  

( ) ( ).Y Xρ ρ≤  

• invariance: 

( ) ( )
1 1 1 1 1

n n n n n

i i i i i i i i
i i i i i

X x p p x p p x pρ α α α α
= = = = =

+ = + = + = + =∑ ∑ ∑ ∑ ∑  

( ) ( ).E X Xα α ρ+ = +  

The sum of the probabilities of probability distribution of a random variable from 
the definition of random variable equals one, but should be ( )Xρ α−  
• positive  homogeneousness,  for every  0≥λ  

( ) ( )
1 1

,
n n

i i i i
i i

X x p x p Xρ λ λ λ λρ
= =

= = =∑ ∑  

• subadditivity 

( ) ( ) ( ) ( )
1 1 1

.
n n n

i i ii i i i i
i i i

X Y x y p x p y p X Yρ ρ ρ
= = =

+ = + = + = +∑ ∑ ∑  

We used the distributive law  for a series of numbers. 
 

We will conduct the mathematical proofs of properties of measures of risk for 
cases when the random variable is continuous. 
• monotonicity (counterexample)  

We take 3=x 2=y . xy <  It means that   

( ) ( )yf y dy xf x dx
∞ ∞

−∞ −∞

<∫ ∫  

(from the low of monotonicity of integral). 
So ( ) ( )E Y E X<  so ( ) ( ).Y Xρ ρ<  

• Invariance 

( ) ( ) ( ) ( ) ( ) ( ) .X x f x dx xf x dx f x dx Xρ α α α ρ α
∞ ∞ ∞

−∞ −∞ −∞

+ = + = + = +∫ ∫ ∫  

We used the definition of Expected Value for continuous random variable and 
the properties of integrals. 
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• positive homogenousness: for every λ ≥ 0 

( ) ( ) ( ) ( ).X xf x dx xf x dx Xρ λ λ λ λρ
∞ ∞

−∞ −∞

= = =∫ ∫  

A constant may be put before the integral, which follows from the properties of 
integral 
• strong subadditivity 

   
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

.

X Y E X Y x y f x y dxdy xf x yf y dy

E X E Y X Y

ρ

ρ ρ

+ = + = + + = + =

+ = +
∫ ∫ ∫  

Where  ( )2 ,f y  ( )1f x  denote marginal densities. The proof follows from the 
properties of Expected Value. Another function of risk for a discrete random varia-
ble may be 

ρ(X ) = max xi pi. 

This is maximum loss when taking into account probability (see [Czernik 2003]). 
The proofs of conditions of coherent measures of risk are presented below  
• monotonicity (counterexample) 

Table 1. Random distribution  

Yi 1 2 3 4 

Pi 
4
1

 4
1

 4
1

 4
1

 

Source: own computations. 

and the distribution of  X as: 

Table 2. Random distribution 

Xi 1 2 3 4 

Pi 
8
1

 8
1

 4
1

 2
1

 

Source: own computations. 

We see that 

( ) ( ) ,F x F y<  but max 2.i i ix p =  max 1.i i iy p =  So ( ) ( ).Y Xρ ρ<  
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• Invariance 

( ) ( ) ( )max max .i i i iX x p x p Xρ α α α ρ α+ = + = + = +   

• Positive homogeneousness: for every 0≥λ  

( ) ( )max max .i i i iX x p x p Xρ λ λ λ λρ= = =  

• Strong subadditivity 

( ) ( ) ( ) ( )max max max .
i ii x y i i i iX Y x p yp x p y p X Yρ ρ ρ+ = + = + = +  

We will conduct proofs for the function of Median.  
• monotonicity (counterexample). 

Suppose that random variable X is found in the table 3. 

Table 3. Random distribution 

Xi 1 2 3 

Pi 
8
1

 8
1

 

3
4

 

Source: own computations. 

What is more, the random variable Y has probability distribution in the frames of  
the table below. 

Table 4. Random distribution 

Yi 1 2 3 

Pi 
4
1

 4
1

 2
1

 

Source: own computations. 

We assume  that variable Y  dominates over X in the sense of domination of the 
new first  order 

( ) ( ).F x F y≤  

So 
( ) ( ).Mediana Y Mediana X≤                           

And   ( ) ( ).Y Xρ ρ≤  
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Since the stochastic dominance makes sense only for the same space of elemen-
tary events, the median which does not depend on the probability, will  be the same 
for both the variables compared. 
• Assumption: 0≥λ . 

We number the observations from 1 to n and we sort them from the least to the 
largest.  We take into consideration only two cases 
− The natural number n is  odd 

( ) ( ) ( ) ( )1
2

.nX Median X x Median X Xρ λ λ λ λ λρ+= = = =  

− Τhe natural  number n is even 

( ) ( ) ( )
1 1

2 2 2 2 .
2 2

n n n nx x x x
X Median X Median X

λ λ
ρ λ λ λ λ λρ

+ ++ +

= = = = =  

• Strong subadditivity. 
 

− The natural number n is odd 

( ) 1
2

( ) ( )

( ) ( ) ( ) ( ).

n

Median X Median

X Y Media

Y

Y

X

X

Y

n X Yρ

ρ ρ

+ =

+ = +

+ = + = +
 

− The natural number n is even 

1
2 2( ) ( )

2

n n

X Y Median X Yρ
+ +

+ = + = =  

( ) ( ) ( )
1 1

2 2 2 2( )
2 2

n n n n

Median X Median Y X Yρ ρ
+ + + +

+ = + . 

 
We will check if the other functions are coherent risk functions  in the sense of 

the definition of the author. For this purpose we will perform mathematical proofs of 
the Artzner et al. properties. The first proof concerns Median Absolute Deviation. 
• Monotonicity.    For  VYX ∈, . If  YX ≤  , then )()( YX ρρ ≤  
 

Assumption: ( ) ( ).21 yFxF ≤  
So for all  x and y  

( ) ( )( ) ( )X MEDIAN X MEDIAN X MEDIAN Y MEDIAN Y Yρ ρ= − ≤ − =  

So  ( ) ( ).Y Xρ ρ≤  

 



Problems of monotonicity of some popular risk measures  117 
 

MONOTONICITY DOESN’T EXIST 

• Invariance 
 Counterexample 

{ } ( )1,2,3,4 1 / 4iX P X x= = =  

( 1) 1 ( 1) 1,X Median X Median Xρ + = + − + =  

( ) 1 ( ) 1 0.X Median X Median Xρ − = − − =  

• Strong  subadditivity for cases of series of equal  length 

( ) ( )X Y Median X Y Median X Yρ + = + − + =  

( ) ( )Median X Y Median X Median Y+ − − =  

( ) ( )( )Median X Median X Y Median Y− + − =  

( ) ( ) ( ) ( ).Median X Median X Median Y Median Y X Yρ ρ− + − = +  

 

• Positive Homogeneousness 

( ) ( ) ( )X Median X Median X Median X Median Xρ λ λ λ λ λ= − = −  

( ) ( ).Median X Median X Xλ λρ− ≥  

LACK OF HOMOGENOUSNESS 
 

The next proofs will be conducted for Mid-Range 
• Monotonicity for 

VYX ∈, for VYX ∈, ,  If  YX ≤  then ( ) ( )YX ρρ ≤ . 

Counterexample 
 

Suppose that random variable X is found in the following table. 
 

Table 5. Random distribution 

xi 1 2 3 

pi 
1 

 

4 
1 

 

4 
1 

 

2 

Source: own computations. 
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We notice that variable Y dominates over X in the sense of domination of the first  
order 

( ) ( ) ,F x F y≤  

( ) ( ) ( ) ( )0.5 3 1 1 0.5 0.5 2 1 .X Yρ ρ= − = > = − =   

LACK OF MONOTONICITY 
 

• Invariance  

 ( ) ( ) ( )( ) max minmax min0.5  X 0.5( )X X X Xρ α α α+ = + − + = −  

   max min max min0.5( ) 0.5( ) .X X X X α− ≥ − −  
 

LACK OF INVARIANCE 

• Subadditivity 
  

( ) ( ) ( )( ) ( )minminmaxmaxminmax 5.05.0 YXYXYXYXYX −−+=+−+=+ρ  

( ) ( ) ( ) ( )max min max min0.5 0.5 .X X Y Y X Yρ ρ− + − = +  

 
SUBADDITIVITY EXISTS 

 
• Positive Homogeneousness 

( ) ( ) ( )( ) ( ) ( )( ) ( )max min max min0.5 0.5 .X X X X X Xρ λ λ λ λ λρ= − = − =  

HOMOGENOUSNESS EXISTS 
 

The proposed measure was also Quantile. For this function the mathematical 
proofs of the basic properties are the following: 

 
• Monotonicity Counterexample 

 

{ } { }1 , 3 ,X Y= − =  

( ) 11 == xXP , 

( ) 11 == yYP , 
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( ) ( ) ( ) ( )1 1 .X P x P y Yρ ρ= ≤ ≥ ≤ =  

• Invariance Counterexample 

{ }2,3 ,X =  ( )12 0.5,R P x xα = = = 4,a =  

( ) ( ) ( )0.5 2 6 4 6 4 1 4 3.P x P x P x= ≤ = ≤ − ≠ ≤ − = − = −  

LACK OF INVARIANCE 

• Subadditivity 
 

( ) ( ) ( ) ( ) ( ) ≤≤≤≤===≤+ ∑∑
≤+≤+ αα

α
RyxRyx

yYPxXPyYPxXPRYXP  

( ) ( )( )
( ) ( )( )∑

∑

≤+

≤+ ≤+≤≤
≤+≤

α

α

Ryx

Ryx yYPxXP
yYPxXP

2

22

 

( ) ( ).P X R P Y Rα α≤ ≤ + ≤   

 
SUBADDITIVITY EXISTS 

• Positive Homogeneousness. 
Counterexample 

{ } ( )1 , 3 , 1, 3,
2 iX P X x Rαλ = = = = =  

( ) ( ) ( )1 11 3 1 3 3 3 .
3 3

P X P P= = = ≤ ≠ ≤ =  

 

LACK OF  HOMOGENOUSNESS 
 

At this stage of the survey we will research the properties of  “Arithmetic Mean 
of Absolute Deviations from Median”. 

• Monotonicity. 

Counterexample  

Suppose that random variable X is found in the following table 
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Table 6. Random distribution 

ix
 

1 2 3 

ip
 

1 
 

8 
1 

 

8 
3 

 

4 

Source: own computations. 

What is more the random variable Y has probability distribution in the frames of 
the table below. 

Table 7. Random distribution 

iy  1 2 3 

ip  
1 

 

4 
1 

 

4 
1 

 

2 

Source: own computations. 

We notice that variable Y dominates over X in the sense of domination of the first 
order. 

( ) ( )yFxF ≤  

( ) ,
3
1

3
1 3

1
=−= ∑

=i
yiyY µρ            ( )

3
2

3
1 3

1
=−= ∑

=i
xixX µρ  ,   

so ρ (Y) < ρ (X). 
. 
 

LACK OF MONOTONICITY 
 

• Invariance. 

Counterexample 

{ }4,3,2,1=X      ( ) 1 ,
4iP X x= =  

( )
4

1

11 1 ( 1) 1,
4 i

i

X x Median Xρ
=

+ = + − + =∑

( )
4

1

11 ( ) 1 0.
4 i

i

X x Median Xρ
=

− = − − =∑  
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LACK OF INVARIANCE 
 

( ) ∑
=

+−+=+
4

1
)(

4
1

i
ii YXMedianyxYXρ

 

( ) ( ) ( )
4 4

1 1

1 1( ) .
4 4i i

i i

x Median X y Median Y X Yρ ρ
= =

≤ − + − = +∑ ∑  

SUBADDITIVITY EXIS 
 

• Homogeneousness. 
 

( ) ( )

( ) ( )

4

1
4 4

1 1

1
4

1 1
4 4

i
i

i
i i

X x Median X

x Median X X Median X

ρ λ λ λ

λ λ

=

− =

= − =

− ≥ −

∑

∑ ∑
 

LACK OF HOMOGENOUSNESS 

We will prove the opposite  lemma 2.2. 
( )⇐  
The author assumes that    ( ) ( )YX ρρ ≤  for YX ≤  and  0≥X . From the posi-

tive homogeneousness property: ( ) ( ) ( ) 00000 =⋅=⋅= ρρρ X .  

So ρ (X) ≥ 0. 
( )⇒  
The author assumes that   ( ) 0≥Xρ for 0≥X  and .YX ≤  
Using the monotonicity axiom the author  receive:  

 
( ) ( ).X Yρ ρ≤  

4. Conclusions 

1. With the opposite definition of stochastic order, the classical Expected Value and 
its special case Conditional Expected Value – Expected Shortfall, are not coherent 
measures of  risk because they do not fulfill one of the axioms of Artzner both in 
discrete and in continuous cases. 

2. The function – Maximum Loss for losses weighted with probability – is not  
a coherent measure of risk in the sense of its definition in this paper. 

3. Median is not   a coherent measure of risk in a sense of new the  definition. 
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4. The other functions of risk considered in this article often did not fulfill the 
conditions of measure which is new in this article and what is known also as the co-
herence properties. Some axioms of Artzner [Artzner et al. 1997] fulfill only the mid-
range and arithmetic mean of “absolute deviations from median” 

5. We contradicted the lemma of monotonicity (lemma 2.1). This lemma was 
used in the proofs of monotonicity of Expected Shortfall in the literature. Then we 
proved  the opposite theorem. 

The functions researched in this article are in the sense of axioms of  Artzner et 
al.  not  good measures of risk when we change the definition  of stochastic order. 
What is more, the opposite order defining the monotonicity of risk measures in rela-
tion to the literature is true. 
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