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EXTENDED ABSTRACTS OF PAPERS

ASYMPTOTIC NORMALITY OF STOPPING TIMES
IN SEQUENTIAL CHANGE-POINT ANALYSIS

Josef G. Steinebach (University of Cologne)

1. Introduction

In Gut and Steinebach [2002], we constructed some truncated sequential
monitoring procedures for detecting a structural break (“change-point”) in
a series of counting data, e.g., in the number of claims of an insurance
portfolio, which have been observed sequentially at equidistant time-poi-
nts t n=0 1, , , .K Some limiting extreme value asymptotics (as n ®¥)
have been derived there under the null hypothesis of “no change”, which
allow for an asymptotic choice of the critical boundaries in the monitoring
schemes such that the false alarm rate can be kept below a prescribed level
a. Moreover, some limiting properties under the alternative could also be
proved showing that the statistical procedures have asymptotic power 1.
The present note reports on the recent work of Gut and Steinebach [2008],
which is a continuation of the previous one, the main point being that in
[Gut, Steinebach 2008] we look in more detail into the behaviour of the
relevant stopping times, in particular the time it takes from the (unknown)
change-point until one detects that a change actually has occurred, in other
words, asymptotics for stopping times under alternatives are proved.

As in Gut and Steinebach [2002], we observe counting data
N N N n( ), ( ), , ( )0 1 K at time-points t n=0 1, , , ,K where { }N t

t n
( )

0£ £
is a

renewal counting process with drift coefficient q and variance parameter
h2 up to some (unknown) change-point kn

* ,after which it changes to an in-

dependent second renewal counting process with drift coefficient q* and
variance parameter ( )*h 2 . We want to test, e.g., the null hypothesis



H k nn0 : * = (“no change”)

versus the (two-sided) alternative

H k nn1 1: ,* *£ < ¹q q (“change at kn

* ”),

taking sequentially into account the observed counting variables
N N N n( ), ( ), , ( )0 1 K , where n is a truncation point for our procedure. Our
asymptotics below are based on a strong invariance principle (cf. Gut and
Steinebach [2002], Proposition 3.1), which shows that, under an r-th mo-
ment condition (with some r >2), the counting process{ }N t

t n
( )

0£ £
above

can almost surely be approximated (with a rate n r1/ ) by a Gaussian process
{ }V t

t n
( )

0£ £
possessing a similar structure, i.e., also having a drift coeffi-

cient q and variance parameter h2 up to the change-point kn

* , and changing

thereafter to an independent second Gaussian process with drift coeffi-

cient q* and variance parameter ( )h* .
2

In Section 2 we review, for the readers’ convenience, some results un-
der the null hypothesis from Gut and Steinebach [2002], before we state
our main results on the asymptotic normality of stopping times in Section 3.

2. Stopping times and critical values

From the sequential observations{ }N k
k n

( )
, , ,=0 1 K

, we compute the varia-

bles

Y Y
N k N k h h

h
k h n

k k n

n n

n

n= =
- - -

=,

( ) ( )
, , , ,

q

h
K

Z Z
N k k

k
k k n

k k n n= =
-

=,

( )
, , , ,

q

h
K

and the stopping times

{ }t n n k nh k n Y c( ) ( )min :| | ,1 1= £ < >

{ }t n n k nk k n Z c( ) ( )min :| | ,2 2= £ < >

where c cn n

( ) ( ),1 2 are suitable critical values and h kn n, are the lengths of the

respective “training periods”.
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Remark 1. For the sake of simplicity, we assume here that the
“in-control” parameters q h, are known, but they can also be replaced by
sequential estimates (cf. Gut and Steinebach [2002]).

The critical values c cn n

( ) ( ),1 2 are chosen such that the false alarm rates

(asymptotically) attain a prescribed level a, i.e.,

( )P n P Y c
H n H

h k n
k n

n
0 0

1 1t a( ) ( )max | | ,< = >
æ
è
ç

ö
ø
÷»

£ <

and

( )P n P Z c
H n H

k k n
k n

n
0 0

2 2t a( ) ( )max | | ,< = >
æ
è
ç

ö
ø
÷»

£ <

which can be achieved via the following extreme value asymptotics (see
Gut and Steinebach [2002]):

Theorem 1. If hn « n,but hn » n r1/ ,then, under H 0 ,there are normal-

izing sequences{ }an

( )1 and{ }bn

( )1 such that

a Y b En
h k n

k n
n

( ) ( )max | |1 1

£ <
- ® (two-sided Gumbel)

in distribution (as n ®¥), that is, the critical value cn

( )1 can (asymptotical-

ly) be chosen as

( )c
E b

a
n hn

n

n

n

( )

( )

( ) log( / .1 1
1

1 2»
+

»-a

Theorem 2. If kn « n, but kn » n r1/ , then, under H 0 , there are nor-

malizing sequences{ }an

( )2 and{ }bn

( )2 such that

a Z b En
k k n

k n
n

( ) ( )max | |2 2

£ <
- ® (two-sided Gumbel)

in distribution (as n ®¥), that is, the critical value cn

( )2 can (asymptotical-

ly) be chosen as

( )c
E b

a
n kn

n

n

n

( )

( )

( ) log log( / .2 1
2

2 2»
+

»-a

Now, the question is how quickly a possible change-point kn

* can be

detected, that is, what can be said about the behaviour of the stopping
times t tn n

( ) ( ),1 2 or the detection delays t tn n n nk k( ) * ( ) *,1 2- - under the alter-
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native H1 ? In the next section it will turn out that the limiting distributio-
nal behaviour of the stopping times, suitably normalized, is an asymptoti-
cally normal one.

3. Asymptotics of stopping times under the alternative

Similar to Aue et al. [2008], we consider an “early change” scenario here,
that is, we assume that the change-point kn

* does not occur too late com-

pared to the length of the training period in the following technical sense:

( )k O h n hn n n

* log ( / )= g for some g >0. (1)

Theorem 3 (Gut and Steinebach [2008]). Assume Condition (1). If
{ }hn is as in Theorem 1, then, under the alternative H1 ,

t
h

q q

n n

n

n

k

h

c N

( ) *

*

( )

| |

( , )
1

1 0 1
-

-

- ® in distribution (as n ®¥).

For the second stopping time we similarly assume

( )k O k n kn n n

* log ( / )= g for some g >0. (2)

and have
Theorem 4 (Gut and Steinebach [2008]). Assume Condition (2). If

{ }kn is as in Theorem 2, then, under the alternative H1 ,

t
h

q q

n n

n

n

k

k

c N

( ) *

*
*

( )

| |

( , )
2

2 0 1
-

-

- ® in distribution (as n ®¥).

Remark 2. Similar results as in Theorems 3 and 4 can also be obtain-
ed, if the in-control parameters q h, and the drift coefficient q* after the

change-point kn

* are replaced by suitable estimates. For details we refer to

Gut and Steinebach [2008], Theorems 6.2 and 7.2. As an immediate con-
sequence one can construct an asymptotic confidence interval for the un-
known change-point kn

* from the stopping times t n

( )1 and t n

( ) ,2 respectively

(see Gut and Steinebach [2008], Corollaries 7.1-7.2).
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ANALYSIS OF DEPENDENT RISKS

Stanis³aw Heilpern (Wroc³aw University of Economics)

1. Process with dependent claims

We will study the following risk process:

U t u ct X
ii

N t

( ) ,
( )

= + -
=

å
1

whereU t( ) is a surplus of the insurer at time t, u is an initial surplus, c is a
premium rate and N t( ) is a counting Poisson process with intensity l. Let
us assume, that the claims X i

i
, , , ,=1 2 K are independent of N t( ),but the

claims may be dependent. We will investigate the probability of ruin of
such process: y( ) ( | ( ) ),u P T U u= <¥ =0 where T t U t= <inf{ : ( ) }0 is
time of ruin. The symbol y

I
u( ) denotes the ruin probability for indepen-

dent claims X
i

and y
sd

u( ) for the strict dependent case, when X X
i
= is

the same random variable for every i. We obtain the following relations:

y y y y
sd I sd I

( ) ( ) ( ) ( ).0 0£ ¥ ³ ¥

If F
c

l

æ
è
ç

ö
ø
÷<1 then we have strong inequalities.

Now, we assume, that the dependent structure of X
i
Xi is describe by

the Archimedean copula C

F x x C F x F x

g g F x g F

n n n( , , ) ( ( ), , ( ))

( ( ( )) (
1 1 1

1
1 1

K K

L

= =

= + +-
n nx( ))),

where g:[ , ]0 1 ® +R is the decreasing, completely monotonic, g( ) ,0 =¥
g( )1 0= function called generator and F x F x( ) ( )= -1 is survival func-
tion. Then there exists the random variable Q with distribution function
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FQ such, that M s g sQ( ) ( ),= --1 where M sQ( ) is a moment generating

function of Q, [Frees, Valdez 1998]. The claims X
i

are conditional inde-
pendent for q ÎQ in this case. So, we obtain the classical risk process

U t u ct X
ii

N t

q q( ) |

( )
= + -

=
å

1
with independent claims X

i |q for fixed

q ÎQ. The unconditional probability of ruin is the mixture

y y qq( ) ( ) ( )u u dF=
¥ò Q0

in this case, where y q ( )u is the conditional ruin

probability for fixed q.
Let m E X

i
( ) ( )|q q= be the expected value function. Then, y q ( )u =1

for q q£ 0 , where the border value q 0 is a solution of equation m
c

( )q
l0 =

and we obtain, that the unconditional probability of ruin is equal

y y q qqq
( ) ( ) ( ) ( ).u u dF F= +

¥ò Q Q
0

0

Moreover y
l

q q q
q

( ) ( ) ( ) ( )0
0

0= +
¥ò

c
m dF FQ Q and y q( ) ( )¥ = FQ 0 .

Theorem 1. y y( ) ( )0 0£
I

and y y( ) ( )¥ ³ ¥
I

. If FQ( )q 0 0> then we
obtain strong inequalities.

Example 1. Let us assume, that the dependent structure of X
i

is
describe by the Clayton copula C u una ( , , )1 K =

= + + - +- - -
( ) ,u u nn1

1

1a a aL where a l> = =0 24 4, ,c and the claims

X
i

have Pareto distribution F x
x

( ) .=
+

æ
è
ç

ö
ø
÷

3

3

3

The parameter a reflects the

degree of dependence and Kendall-t correlation coefficient is a simple

function of it: t
a

a
=

+2
. The induced random variable Q has the gamma

distribution Ga
1

a
a,

æ
è
ç

ö
ø
÷and conditional survival function of claim is equal

F x
x

a

a

q
q
a

( | ) exp .= -
+æ

è
ç

ö
ø
÷

æ

è
ç
ç

ö

ø
÷
÷

æ

è
ç
ç

ö

ø
÷
÷1

3

3

2

The border value q a is solution of equa-

tion e

q

a
a

a
q
a

a
q

aG
05

4

1

2.
, ,

æ
è
ç

ö
ø
÷
æ
è
ç

ö
ø
÷ = where G( , ) .a b x e dxa x

b
= - -¥ò 1 The values

of ruin probabilities for different á and u are presented in the table 1.
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Table 1. The values of ruin probabilities for different a and u

a
u

0 4 20 60 100 200 400 600

0 0.5000 0.3071 0.1376 0.0546 0.0310 0.0160 0.0070 0.0050

2/3 0.3803 0.2581 0.2033 0.1627 0.1435 0.1204 0.1011 0.0955

2 0.3452 0.2285 0.1980 0.1739 0.1583 0.1329 0.1122 0.1063

¥ 0.3333 0.1778 0.1301 0.1181 0.1160 0.1120 0.1112 0.1111

Source: own calculations.

We see, that for smaller values of initial capital u, the greater degree of
dependence implies the smaller probability of ruin. For the greater values of
u we obtain the reverse relation, but for middle values, e.g. u=100, the
greatest probability of ruin is obtained by the middle degree of dependence.

2. Multidimensional process

Now, we will study the following multidimensional process

U t

U t

u

u

c t

c tn n n

1 1 1( )

( )

M M M

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
+

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
+

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

=

=

å

å

X

X

kk

N t

nkk

N t

11

1

( )

( )
.M

We assume, that the claims X X
i i1 2, ,K are independent with cumulative

distribution function (cdf.) F x
i
( ) for every i n=1, ,K and the random

vectors of claims (X X
k nk1 , , )K have the same distribution for any k with

joint cdf. F x x n( , , )1 K . The claims X X
k nk1 , ,K may be dependent and

N t( ) is a Poisson process with intensity l.
This multidimensional process has the following interpretation. We

have n different types of claims and every claim event (eg. accident in
communication insurance) can induce various types of claims (eg. vehicle
damage, personal injury).

We will investigate the sum of such processes:

U t U t U t u ct Zn kk

N t

( ) ( ) ( ) ,
( )

= + + = + -
=

å1 1
L (1)

where u u
ii

n

=
=

å
1

, c c
ii

n

=
=

å
1

and Z X
k iki

n

=
=

å
1

. So, we obtain the

classical risk process with independent aggregated claims Z
k

,which have
the same distribution.
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Then, we will study the impact of dependence of claims in each claim
event on the probability of ruin. Let, X

k k nk
X X= ( , , )1 K and

Y
k k nk

Y Y= ( , , )1 K be two random vectors with the same marginal distri-
butions but different joint cdf. F FX Y, and y yX Y( ), ( )u u denote the proba-
bility of ruin for suitable risk process (1). We will use the supermodular
order between such random vectors to investigate this impact. The random
vector X is smaller than the random vector Y in the supermodular order-
ing, written X Y£sm , or F FX Y£sm , if E f X E f Y( ( )) ( ( ))£ for all super-
modular functions f R Rn: ,® i.e. f f f f( ) ( ) ( ) ( )x y x y x y+ £ Ú + Ù for
any x, yÎ R n [Shaked, Shanthikumar 1997].

Theorem 2 [Cai, Li 2005]. If X Y£sm then y yX Y( ) ( ).u u£
Let, the dependence structure of random vector X is described by cop-

ula C X .The copula is joint cdf. of uniform random variables, so X Y£sm

Û £C CX Ysm ,because the supermodular order is closed under monotonic
functions.

Now, we will investigate three cases.
a) The dependent structure or random vector X is described by Archime-

dean copula with generator g X . If g g L
YX o
-

¥Î1 * then C CX Y£sm , where

L w w¥ ¥ ® ¥ =* { :[ , ) [ , )| ( ) ,0 0 0 0 w w ti i( ) , ( ) ( ) ,( )¥ =¥ - ³-1 01 i=1 2, , }K

[Wei, Hu 2002]. The families of Archimedean copulas C a , e.g. Clayton,
Frank or Gumbel, characterized by parameter á reflected the degree of de-
pendence, are often used in practice. We often obtain relation, that a b£
impliesC Ca b£sm in this case. So, we have y ya b( ) ( )u u£ from theorem 2.

b) The dependence is described by elliptical copulas, i.e. copulas in-
duced by elliptically contoured distribution (Gauss, t-distribution, logistic).

Theorem 3 [Wei, Hu 2002; Müller 2001]. Let X, Y be elliptically
contoured distribution and s

ij i j
Corr X XX = ( , ). If s s

ij ij

YX £ then X Y£sm .

So, we obtain y yX Y( ) ( ).u u£ We can generalize this fact on the case
of elliptical copulas.

c) Extreme cases. Frechet space Rn nF F( , , )1 K or Rn ( )X , where
F Fn1 , ,K are the marginal cdf. of random vector X= ( , , )X X n1 K is a
class of all joint distribution functions with the same marginal cdf.
F Fn1 , ,K . We assume that X

i
³0. Every member F of this class is boun-

ded by two functions M n andWn called the Frechet lower and upper bound:

M x x F x x W x xn n n n n( , , ) ( , , ) ( , , ).1 1 1K K K£ £

The upper boundWn is cdf. [Dhaene, Denuit 1999]. ThenW x xn n( , , )1 K =
= min{ ( ), , ( )}F x F xn n1 1 K and the marginal random variables X X n1 , ,K

are strict dependent, called comonotonic, in this case.
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The lower Frechet bound is equal M x xn n( , , )1 K =

= - +
=

åmax ( ) ,{ }.F x n
i ii

n

10
1

For n = 2 the lower bound M 2 is a joint

cdf. of random vector XL [Dhaene, Denuit 1999]. The marginal random
variables X X1 2, called countermonotonic are strict dependent too, but
they are reverse dependent. We obtain the following relations:
X X XL U£ £sm sm , where X X XL U, ( )ÎRn in this case, so we have

y y yL X U( ) ( ) ( ).u u u£ £

For n>2, the situation is more complicated. The lower Frechet bound
may not be cdf. in this case [Dhaene, Denuit 1999]. The random vector
X m = ( , , )X X n1 K is mutually exclusive if P X X

i j
( , )> > =0 0 0 for

i j¹ .
Theorem 4 [Dhaene, Denuit 1999; Bäuerle, Müller 1998]. If

X X Xc m, ( ),ÎRn where X c is upper Frechet bound and X m is mutually
exclusive, then X X Xm U£ £sm sm .

So we obtain from theorem 4, that

y y ym X U( ) ( ) ( ).u u u£ £

The mutually exclusive random vector X m may not exist, too. It exists iff
the Frechet family Rn nF F( , , )1 K satisfies condition
n F Fn- £ + +1 0 01 ( ) ( ).K If Frechet family satisfies such conditions,
then the joint cdf. F is mutually exclusive iff it is lower Frechet bound
[Dhaene, Denuit 1999].

Example 2. Let n c c= = = =2 4 11 2, , l and the claims X X
i i1 2, have

the exponential distributions with means m m1 2 1= = .We investigate four
cases:

a) Random vector ( , )X X
i i1 2 is comonotonic. Then the aggregate

claims Z
i

have exponential distribution with mean m=2 and
y c

uu e( ) . ./= -025 3 8

b) The dependence structure ( , )X X
i i1 2 is describe by Clayton copula

with a=2, i.e. t=05. . We must derive probability of ruin using the nume-
rical methods in this case.

c) Random variables ( , )X X
i i1 2 are independent. Then the aggregate

claims Z
i

have gamma distribution G( , )2 1 and y
I

u( )=
= -- -0321 00710 579 1 297. . .. ,e eu u

d) Random vector ( , )X X
i i1 2 is countermonotonic Then the aggregate

claims Z
i

have the following distribution function
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F z
z

e zZ z
i
( )

ln( . )

ln( . )
.=

£-

- >-

ì
í
î -

0 025

1 4 025
We must derive probability of ruin

using the numerical methods in this case.
The values of ruin probabilities for the different cases and different

values of initial capital u are presented in the table 2.

Table 2. The values of ruin probabilities for the different cases and u

u Countermonotonic Independent Clayton t= 0 5. Comonotonic

10 0.25 0.25 0.25 0.25

14 0.0154 0.0313 0.0426 0.0558

18 0.0012 0.0031 0.0071 0.0124

12 0.0003 0.0003 0.0027 0.0028

Source: own calculations.

We obtain the more regular situation than in the example 1. If the de-
pendence increases, then the probability of ruin increases for every value
of initial capital u.
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SOME PROPERTIES CONCERNING MISSING DATA ANALYSIS

Karlheinz Fleischer (Philipp University of Marburg)

1. Introduction

In surveys people don’t answer all questions, usually. There is a variety of
reasons for missing values. Most statistical methods are designed for data
sets without missing values. Especially older software ignores missing
values, but the fact that a value is missing might be informative. Hence, it
is very important to consider techniques for missing data and to explore
properties of such methods.

2. Notations

Let Y Y Ym= ( , , )1 K be a vector of variables of interest with values
( , , )y y m1 K and R a (also vector valued) response variable, i.e. R

i
=1, if

the value of Y
i

is observed, R
i
=0 otherwise ( , , ).i m=1 K

Sometimes we will demonstrate some properties for two univariate
variables, which will be denoted by X and Y and the response variables by
R

X
and R

Y
(resp.).

Usually Y is separated in two subvectors Y
obs

and Y
mis

,where Y
obs

con-
tains the observed variables andY

mis
the unobserved variables for the actu-

al sample.
P

W
denotes the probability distribution of a (univariate or vector

valued) random variableW .

3. Missing data mechanisms

Rubin distinguishes three types of missing data mechanisms [Little, Rubin
2002; Rubin 1976]:

Missing completely at random (MCAR):

P y y P
R Y Y obs mis Robs mis| , ( | , ) ( )1 1= for all possible values y y

obs mis
, of Y Y

obs mis
, .

Missing at random (MAR):

P y y P y
R Y Y obs mis R Y obsobs mis obs| , |( | , ) ( | )1 1= for all possible values y

mis
of Y

mis
.

Missing not at random/Not missing at random (MNAR or NMAR)
if P y y

R Y Y obs misobs mis| , ( | , )1 depends on y
mis

.
Observe: The variables Y

obs
and Y

mis
change from unit to unit (or sam-

ple to sample)!
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4. Some Remarks

According to Rubin, these conditions must only be satisfied for the actual-
ly observed missing data pattern R (see e.g., [Schafer, Graham 2002,
p. 151]).

They argue that if the condition is satisfied for the actual sample one
can make inferences in the same manner as for a sample without missing
values. Otherwise, our interest is not to make inferences for one specific
sample but we want to know how accurate specific methods (imputation
procedures) will work. Hence we have to know what to do for every possi-
ble sample, not only for the actual one. We will assume that both (sets of)
variables X andY may be missing sometimes. In order to derive properties
of certain missing data procedures we need general assumptions on the re-
sponse probability for X and Y .

Inferences are usually based on the distribution P
Y Yk1 , , .

K
But according

to missing values we do not observe this distribution. Hence, we will study
those distributions which are observable. For simplicity we will assume 2
discrete random variables X Y, with response variables R R

X Y
, respec-

tively.

5. Observable Distributions

The term observable distribution shall denote distributions which can be
evaluated by taking samples subsequently. Hence, observable are the fol-
lowing distributions and probabilities:
l P

R RX Y, ( , )1 1 and its marginal and conditional probabilities
(e.g. P

RX
( )1 , P

R RX Y| ( | )11 , P
R RY X| ( | )0 1 , P

R RY X| ( | )1 0 , . . . ),
l P x y

X Y R RX Y, | , ( , | , )1 1 and its marginal and conditional distributions,
(e.g. P x

X R RX Y| , ( | )1 , P x y
X Y R RX Y| , , ( | , , ), ),1 1 K

l P x
X RX| ( | )1 , P y

Y RY| ( | ),1
l P x y P P x y

X Y R R R R X Y R RX Y X Y X Y, , , , , | ,( , , , ) ( , ) ( , | ,1 1 1 1 1 1= × ).

6. Some Properties

If P x y P
R X Y RX X| , ( | , ) ( )1 1= holds for all ( , )x y within the support of

( , )X Y we have

P x P y P x y P
R X R Y R X Y RX X X X| | | ,( | ) ( | ) ( | , ) ( ).1 1 1 1= = = (1)

Sketch of the proof: Since
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Furthermore, it holds according to Bayes formula

P x y P x y
P x y

PX Y R R X Y

R R X Y

R
X Y

X Y

, | , ,

, | ,
( , | , ) ( , )

( , | , )
11

11
=

X YR, ( , )
.

11
(2)

From (2) we can conclude the (well-known) property

P x y P x y
X Y R R X YX Y, | , ,( , | , ) ( , )11 = Û P x y P

R R X Y R RX Y X Y, | , ,( , | , ) ( , ).11 11=

Additionally, it holds:

P x y P x y P x
R R X Y R X Y R X Y RX Y X Y X, | , | , | , ,( , | , ) ( | , ) ( | ,11 1 1= × y , )1 (3)

P x y P x y P x
R R X Y R X Y R X Y RX Y Y X Y, | , | , | , ,( , | , ) ( | , ) ( | ,11 1 1= × y , )1 (4)

Þ Even if P P
R X Y RX X| , ,= we need a model for the response probability on

Y depending on X Y, and on R
X

and not only for the response pro-
bability conditional on X and Y alone.

Furthermore, it holds in general

P x P x r P r P
X R X R R

i

R R X RX Y X Y X X| , | | | ,( | ) ( , | ) ( | )1 1 1
0

1

= = ×
=

å R

i

X R R

Y

X Y

x r

P x

( | , )

( | , ).| ,

1

11
0

1

=

å ¹

¹×
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That means that usually the observable distribution of X (i.e. under the
condition R

X
=1) does not correspond to the observable distribution of X

under the condition that X and Y are both observed.
But since

P x P x
P x

PX R R X

X

R
X X

X

| |( | ) ( | )
( )

( )
1 1

1
=

we observe, that in case of P P
R X Y RX X| , = then P x P x

X R XX| ( | ) ( )1 = (accord-
ing to (1)) but × ¹P x P x

X R R XX Y| , ( | , ) ( )11 in general.
At the end let us have a look at what happens if missing values are imputed
using hot deck imputation?
Let X Y* *, be the values of X Y, after the imputation (i.e. X X* = , if X is

not missing and similar for Y Y* , ). Then it holds for all ( , )x y

P x y P x y P x y
X Y X Y R R X YX Y

* *, , , | ,( , ) ( , ) ( , | , )= × ×11

× + +1
10

11

1 0P x

P x

P x

P

X R R

X R R

Y R RX Y

X Y

X Y, ,

, ,

, ,( , , )

( , , )

( , , )

X R R

R R

R RX Y

X Y

X Y
x

P

P, ,

,

,( , , )

( , )

( , )
.

11

0 0

11
+

æ

è

ç
ç

ö

ø

÷
÷

Assuming different missing data mechanisms leads to certain relations
which may be presented in another talk.
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THE DEMOGRAPHIC CHARACTERISTICS
AND THE RELATIVE ECONOMIC STATUS
OF FAMILIES IN POLAND. EMPIRICAL RESEARCH

Zofia Rusnak (Wroc³aw University of Economics)

The problems of evaluating and comparing the economic status of various
groups of households (especially biological families consisting of child-
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less marriages and marriages with different number of children) have been
the subject of my research for several years.

The main aim of this work is to present the empirical research results re-
lated to determining relative income or expenses needs in given family types.

The explanation of the idea of relative income (or expenses) can be
fond in the basic question: “What income should be at the disposal of a fam-
ily with children in comparison to the income of a marriage without
children so that both of these family types are equally wealthy?” .

The answer is possible when we define and estimate the equivalence
scales, which are the multipliers scaling the incomes and expenses of fam-
ilies of different demographic profile making them liable to comparison.

There are two significantly different approaches used for the estima-
tion of the equivalence scales: objective – embracing the so called norma-
tive and empirical methods of defining scales; and subjective – where the
scales are based on the data collected from the households and related to
the households’ own perspective on various levels of income.

Among the normative scales, the most commonly used – especially in
public statistics in EU countries (mainly in the analyses of income ine-
quality and poverty range) – are the OECD scales with two parameters,
calculated as follows:

m n nca b aa b/ ( ) ,= + - + ×1 1

where na and nc stand for the number of adults and number of children in
the household respectively, while a and b are arbitrarily set parameters.

In the original (standard) OECD scale type 70/50 a=0 7. and b=05. ,
which means that according to this scale the coefficient equals 1 for the
first adult person, 0.7 for the next adult, and 0.5 for every child. In develop-
ed EU countries the so called modified OECD scale type 50/30 is be-
coming more and more often used. Its usage results from the decrease in
the share of food expenses in the budget of households in these countries.

In accordance with recommendation of EUROSTAT in Poland since
2005 in public statistics the modified scale is used in analyses of income
inequality and poverty sphere.

Various methods are used to estimate empirical equivalence scales –
one of the oldest of which while at the same time most often employed is
the Engel’s method. In this method one needs to define the formula of the
Engel’s curve which describes the relationship between the share of
expenses on food in all expenses and various social-economic and demo-
graphic characteristics of a household.
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In this work there were following basic research issues connected with
defining Engel’s curves:
– a choice of variables describing the demographic profile of a family,
– a way of using these variables in Engel’s curve,
– a choice of Engel’s curve which matches the empirical data the best.

The statistical data used for all calculations was:
– aggregate data related to income and expenses (per capita) from Po-

lish CSO publications from 1993 to 2004,
– unit data from household budget research carried out by CSO in Po-

land in 2004.
In case of aggregate data, when the only information available is about

the number of people in the family and the number of children, the follow-
ing formulas for the Engel’s curve have been applied:

w x n r p p

z

t

k

t

k

k

k

t gt= + + + + + +

+ +

a b h g

t e

ln( ) ln ln ln
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( )w x n p p zt

k

t

k

c

k

t gt i i

i

= + + × + + + +
=

åa b h t eln ln ln ,q q1 2
1

4

(3)

where wt

k stands for the share of food expenses in all expenses, x t

k stands for

all income (or expenses) in the household with k children to keep (that is the
k type of household), r k

1 is the quotient of adults and the number of people

in the k type of household, nc

k is the number of children in k type of house-

hold. The variables z z z1 2 3, , and z 4 are dummy variables which equal 1 for
household consisting of a single mother with children (type M+), a marriage
with one child (A1), with two children (A2) and with three children (A3)
respectively and which equal 0 in other types of households. The parame-
ters used in these formulas have been estimated on the basis of data from the
years 1993-2004 by means of the least squares method. While the collected
data is in form of time series, the global consumer price index pgt and food
price index p t have been taken into consideration in the abovementioned
formulas. These indices were originally chain indices and – for the purpose
of comparison – have been transformed into fixed-base indices, for which
the year 1993 has been fixed as the basic period.
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The estimated parameters of all three formulas are shown in table 1.

Table 1. Values of the Engel’s curves’ estimated parameters

Engel’s curve from formula (1)

Parameters a b h q1 q2 t1 g1

R 2 0 997= , 0.92 –0.183 0.346 0.37 –0.234 0.127 0.379

| |t 3.68 5.99 13.45 10.04 3.83 4.55 7.64

Engel’s curve from formula (2)

Parameters a b h q1 q2 t1 t2 t3 t4

R 2 0 992= , 1.57 –0.188 0.088 0.333 –0.19 –0.098 –0.045 –0.482 –0.321

| |t 9.70 7.2 30.10 11.56 3.83 14.22 10.26 11.17 10.79

Engel’s curve from formula (3)

Parameters a b h q1 q2 t1 t2 t3 t4

R 2 0 992= , 1.607 –0.194 0.033 0.333 –0.182 –0.068 –0.016 –0.017 –0.009

| |t 9.97 7.45 30.45 11.66 3.71 11.26 2.88 3.42 2.88

Source: own calculations; the p-value did not exceed 0.006.

The recurring negative values of estimated b parameter and positive
values of estimated h parameter, standing by the variables relating to the
size of the household show that the increase in all expenses results in a de-
crease in the share of food expenses (in ceteris paribus conditions), while
the growth of a household without an increase in expenses implies an in-
crease in this share. The attempts to include variables z z2 3, , and z 4 in the
set of explanatory variables in the first formula have been unsuccessful;
the parameters for these variables were not significantly different from
zero. The equivalence scales have been calculated by employing the esti-
mated parameters in the following formulas:
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The results of the calculations are included in table 2.

Table 2. Equivalence scales calculated by use of Engel’s method

Biological family type
Equivalence scales calculated by use of the formula

(4) (5) (6)

A0- marriage without children 1.000 1.000 1.000

A1- mariage with 1 child 1.042 1.062 1.064

A2- mariage with 2 children 1.326 1.313 1.312

A3- mariage with 3 children 1.749 1.747 1.734

A4+ mariage with 4 or more
children

2.690 2.659 2.643

M+ mother/father with children 0.929 0.938 0.937

Source: own calculations.

The results for the scale calculated by use of formula (4) should be in-
terpreted as follows: the expenses (income) of marriages with one, two,
three and at least four children, enabling them to attain the standard of
living comparable to that of a childless marriage, should be higher by re-
spectively 4.2%, 32.6%, 74.9%, 169%, while lower by 7.1% for a single
mother with children. The interpretation of the scale values obtained by
use of formulas (5) and (6) is analogous.

The results obtained by use of formulas (4), (5), and (6) are very simi-
lar. It is reflected by fig. 1., in which the values of the relative income indi-
cator – a quotient of real income and equivalent income – are shown.

Independently of the used Engel’s curve and obtained equivalence scales,
it is only in marriages with one child that both real income and expenses are
higher than the equivalent ones, which means that the income and expendi-
ture situation in this family type is relatively better than in family type A0. In
other types of families the real income was too low for those families to attain
the material standard of a childless marriage. It is the families with at least
three children that are in relatively the worst situation. In these families the
real income was lower than the equivalent income by 26-66%. Similar results
obtained by use of these scales are the main reason why only the scale
calculated by means of formula (4) has been used for further analysis.
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As far as the data from the household budget survey carried out in
2004 is concerned this formula was modified in two ways.

Firstly, as a result of dividing all the people ascribed to a given
household into three groups – parents, children under 14, children over 14
– the parameters have been calculated for the Engel’s curves defined in the
following formulas:

( )w x n r¿

k k

k

k= + + + +a b h g eln ln 1 1 (7)

( )w x n r r¿

k k

k

k k= + + + + +a b h g g eln ln 1 1 2 2 (8)

r k

2 – the ratio of the number of children under 14 (marked by nc ) to the

number of people in the household; D1 – dummy variable which equals 1
when there are children under 14 in the family, e – random term;
r nk

k1 2= / quotient in case of marriages and1/ n
k

in case of a single par-

ent with children.
The general shape of equivalence scale calculated by use of the Engel’s

method on the basis of formulas (7), (8), and (9) is as follows:
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while the parameters g d2 1, equal 0 if in the given Engel’s curve formula
there are no variables related to these parameters.

The estimated parameters of given Engel’s curves as well as respec-
tive equivalence scales are presented in tab. 3 and 4.

Table 3. Engel’s curves’ parameters estimations

Engel’s curve for formula (7)

Parametry a b h g1

R 2 0 512= ,

| |t

1.488

110.6

–0.188

131.8

0.173

37.27

0.113

16.57

Engel’s curve for formula (8)

Parametry a b h g1 g 2

R 2 0 516= ,

| |t

1.509

111.25

–0.189

132.62

0.182

38.61

0.096

13.67

–0.048

10.51

Source: own calculations.

At the significance level a=001. all estimated parameters in the above-
mentioned formulas were statistically significant.

Table 4. Equivalence scales for given family types in 2004

Biological
family
type

Scales calculated on the basis of Engel’s curves for formulas

(7) (8)

nc= 0 nc= 1 nc= 2 nc= 3 nc= 4

A1 1.189 1.246 1.146

A2 1.403 1.509 1.417 1.331

A3 1.622 1.777 1.690 1.607 1.528

A4 1.844 2.046 1.962 1.881 1.804 1.731

A4+ 1.979 2.210 2.128 2.048 1.972 1.899

M+1 0.740 0.776 0.685

Source: own calculations.
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In every calculated scale the higher number of children is matched by
a higher equivalence scale value, which means that for such families the
relative income needs which would allow the attainment of the economic
status of a childless marriage are higher.

When only the r1 variable is used in the Engel’s curve formula, the
calculated scale is the most similar to the modified OECD scale 50/30.
The increments in the scale show that the income of the families with a lar-
ger number of children should be higher than the income of a childless
marriage by 19-22% (20% in the modified OECD scale).

Introduction of other variables, which define the demographic profile
of a family in greater detail results in the flattening of the scale especially
for families with one child (type A1 and M+1). Relative income needs re-
sulting from the use of formula (8) amount to 14.6-20.3% of a marriage
without children income, when all the children in the family are under 14.
In the case when all the children are over 14, the highest values of the scale
have been calculated. The relative income needs for every next child
amount to over 25% for a family with one child and almost 28% for a fam-
ily with four children (29.4% in the original OECD scale).

These results show that the equivalence scale’s values depend a lot on
the variables which describe the demographic structure of the family and
on the character of statistical data used in calculations.

The largest differences can be found in family types A1 and A4+ espe-
cially when children are under 14.
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HOW ECONOMIC MODELING MAY HELP WITH MNAR DATA

Christian Westphal (University of Marburg)

1. Motivation

Reviewing current literature a few things can be found out about missing data:
Missing data is a present problem. There is very recent literature (namely
[McKnight et al. 2007]) trying to spread the word to applied researchers. Com-
bining this with the knowledge of increasing amounts of missing data in all
sorts of surveys (see e.g. [de Leeuw, de Herr 2002; Vehovar et al. 2002, p. 233])
one can conclude, that missing data will be an increasing problem of the near
future. A recent discussion with a good friend of mine, working in applied mar-
ket research, has shown how flawed views on missing data can be. I was
presented with the elimination of incomplete survey responses by not allowing
them to be committed to the data base1. Obviously solutions like that are worse
than accepting missingness. In this case it might have led to flawed responses or
to unit nonresponse where item nonresponse could have been had.

Therefore we need easy to understand and easy to apply models for
dealing with missing data. Dismissing the need for MNAR modeling
[Schafer, Graham 2002, p. 20] contradicts my knowledge from the eco-
nomics of information (see e.g. [Stiglitz 2000]).

2. Developing the Model

I started talking about the economics of information and I will use it now
to develop a model for missingness in micro data. Most surveys ask for
micro data, defined here as data revealing detailed information about sur-
vey/market participants. Data is information and information does hold a
value [Allen 1990, esp. p. 271]. Now let us say data does hold a value for
the surveyist but the revealing of the data may also hold a value for the par-
ticipant. As an extreme example let us use your tax forms: The surveyed
item shall be your yearly income and your deductibles. Now the lower
your income and the higher your deductibles the higher your tax refund
will be and vice versa (simplified of course). Given a low income and high
deductibles you do have a severe incentive to respond (not responding
might also be punishable, but even if it were not your incentive would still
be there). No deductibles and a high income are not so favorable for the in-
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centive; this is where the punishment is needed to make people respond.
Lying is not an option for the same reason.

When dealing with your common microeconomic survey the incen-
tives for the participant are not as clear. Responding or not responding
may lie very close together in terms of incentives. It will most likely be
impossible for the participant to exactly know his value of responding to
the survey. This can be seen as a direct extension to the decision model
leading to response or nonresponse by [Beatty, Hermann 2002]. This mo-
del (with my extension) is illustrated in figure 1. A short explanation of the
figure is as follows: On the first stage of the decision process the partici-
pant evaluates whether or not he can provide an answer. Data is either re-
adily available (cost-free) or accessible (costs c go up) or generatable
(costs go up even more) or not generatable (costs are infinite). On the next
stage an adequacy judgment (“Do I find it adequate2 to give the answer I
have found in the earlier stage?”) occurs. The last stage finally yields the
latent variable binary choice model I am talking about: Based on some
latent value of disclosing the surveyed item’s value the participant makes
his response decision3. Deviating from Beatty & Hermann’s model I re-
gard communicative intent as the outcome of the decision process and not
as a decision stage as can be seen in figure 1. This outcome is either posi-
tive (the subject reveals its item value) or negative (the subject does not
reveal its item value). Having talked of a value of responding earlier, I will
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now use this value to explain the binary outcome of each individual’s
response decision. In case the participant expects his personal value of
responding to be non-negative he will reply; else he will not reply.

So far this is a deterministic model. Your value of responding is
non-negative, you reply; the value is negative, you do not. If this were
true, for a group homogeneous in socioeconomic properties and utility
function this meant, everyone would have to decide in the same way. This
is not the case in reality. I can imagine several reasons:
l We simply ignore some random, unobserved differences between people.
l People are not capable of always correctly estimating their value of re-

sponding. Therefore among homogeneous people this estimated value
differs randomly.
This randomness leads to a binary choice model known from econo-

metrics [Greene 2008, chapter 23]. v from figure 1 is the latent variable.
We shall regard it as a random utility level as used in random utility mo-
dels. An outline of random utility models fitting my research idea very
well can be found in [Boxall, Adamowicz 2002, p. 421-427].

With [Philipson 2001] there is an interesting article yielding evidence
for my point of view and illustrating a way to learn about the missingness
of data. Philipson used data of a survey among physicians asking for their
annual income. To a randomly selected subsample an incentive of USD
50.00 was offered, should they complete the questionnaire. Basically this
split the original sample (n total =541) into two samples, one being offered
an incentive (n incentive =243)4. There were differences in the outcome of the
survey. The response rate as well as the average income reported was
significantly higher among the physicians being offered (and paid) an
incentive. From my perspective developed earlier, this leads to conclu-
sions about v among physicians:
l v can be shifted to the right5.
l v is most likely negatively correlated with income.

I shall call the shift (or more generally: transformation) of v v, * =

= n n* ( , )m where m is the incentive offered to the participant.

3. First Results

As a first result I can show how unlikely it is for any missing data to be
missing completely at random in the case of the model outlined above
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when we can distinguish between several heterogeneous groups of survey
participants6. For MCAR to be fulfilled it has to hold

f v dv f v dv i j
V Vi j

( ) ( ) ( , ).
-¥ -¥

ò ò= "
0 0

(1)

Illustrated for groups i :1® n with normally distributedV
i

this condi-
tion can be simplified to:

s m s m
i i j j

i j= "/ ( , ). (2)

Figure 2 illustrates how
strong an assumption this would
be. All cumulative distribution
functions would have to meet in
F v

V i
( ). As there is no reason to

believe that distribution’s param-
eters would behave as described
in (1) and (2) we have to dismiss
MCAR in general when dealing
with micro data of socioecono-
mic distinguishable groups.

A more general result is the
fundamental development of a
model describing non-random
missingness for a wide variety of
data. From its design the model
will help modeling the miss-
ingness in microeconomic data
in a standardized way. Hereby
the drawback in missing data research mentioned by [Rubin 1976, p. 589],
that models for missingness “have not received much attention in the
statistical literature” may be overcome instead of being swept aside as in
e.g. [Schafer, Graham 2002, p. 154]7 and [Schafer 2003, p. 20]8.
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Fig. 2. Illustration for condition (2)

Source: own elaboration.

6 Distinguishing upon socioeconomic variables will be possible in most cases by sensible
use of cluster analysis (see also [Boxall, Adamowicz 2002]).

7 “ . . . because in many psychological research settings the departures from MAR are prob-
ably not serious”.

8 “As a general principle, I believe that an analyst’s time and effort are better spent building
an intelligent model for the data rather than modelling the missingness, unless departures from
MAR are suspected to be very serious”.



4. Outlook

What still has to be done is to write down the model in a formal way in the
best case reusing the notation of known random utility model literature
and missing data literature.

Hopefully more theoretical results can be derived from the model. Of
course extracting information from surveys is the main goal of the model
formulation. I will have to see what information can be extracted. Recom-
mendations for the design of surveys where MNAR data is expected may
also be found.

Empirical studies have to show if my time used “modelling the miss-
ingness” [Schafer 2003, p. 20] will have been time well spent. The infor-
mation gained by paying incentives may easily be used to verify/reject as-
sumptions about the missingness.

Grouping (clustering) as in [Boxall, Adamowicz 2002] will hopefully
tell us more about who is prone to nonresponse.
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TESTS FOR NORMALITY OF ERROR VARIABLES
IN ARMA MODELS

Heiko Grönitz (University of Marburg)

A well-known Goodness-of-fit test is the Cramer-von-Mises test. This test
is suitable for the test problem

H F F0 0: = against H F F1 0: ,¹

whereas F is assumed to be the continuous distribution function of indepen-
dent and identically distributed random variables and F0 denotes a given con-
tinuous distribution function. As test statistic the quantity

n F F dFn× -
-¥

¥ò 0 0 with the empirical distribution function Fn is used. The

simple test problem above is usually of marginal relevance. It is more in-
teresting to test

H F0 : ÎF against H F1 : .ÏF

Here F denotes a whole parametric class of distribution functions.

We are interested in the class F = × =
×æ

è
ç

ö
ø
÷ Î ¥{ ( , ) : ( , )}.F s

s
sF 0 That is

we test the hypothesis “F is a centered normal distribution”. For this test
problem the well-known statistic

T n F F dFn n n= × - × ×
-¥

¥ò ( , $ ) ( , $ ),s s
2

whereas $s n is the maximum likelihood estimator for the standard devia-
tion of normal distributed variables can be used. Suppose that the hypothe-
sis H 0 is true. Then F F= ×( , )s 0 for one s 0 0Î ¥( , ) holds. The estimator
$s n is consistent for s 0 and F x( , )× is continuous for every x Î R . Then for
every x Î R the difference between F xn ( ) and F x n( , $ )s is “small” at least
for “large” sample size n. Hence T attains smaller values under H 0 than
under the alternative H1 .Note under the hypothesis T converges in distri-
bution to a limit variable Z. To proof it a result by Durbin [Durbin 1973] is
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decisive, whereas we confine ourselves to the special class F as above.
He considered the sequence of empirical processes

( )n F x F xn n x
( ( ) ( , $ )) .-

Î
s

R

Note that these stochastic processes have paths in the Skorohod space
D , that is the paths are right continuous and have left limits. For such sto-
chastic processes there is a theory of convergence in distribution, see Bil-
lingsley [Billingsley 1968]. Durbin has shown that the sequence of empi-
rical processes converges in distribution. This convergence is to
comprehend as convergence in the Skorohod space. Primarily by a contin-
uous mapping theorem the convergence of T to Z follows and asymptotic
critical values for the test could be calculated in the literature, compare
with Hoermann [Hoermann 2007].

Let us now regard the independent and identically distributed error
variables et in the famous ARMA time series models. Such error variables
are always assumed as centered, that is they have expectation zero. Denote
the distribution function of the et with F.We would like to test the norma-
lity of the errors. Formally we study the test problem

H F0 0: : ( , )Î =
×æ

è
ç

ö

ø
÷ Î ¥

ì
í
î

ü
ý
þ

F F
s

s against H F1 0: : ( , ) .Ï =
×æ

è
ç

ö

ø
÷ Î ¥

ì
í
î

ü
ý
þ

F F
s

s

Of course we can not use the previously mentioned test statistic. The
reason is that we would have to compute the empirical distribution func-
tion and the estimator $s n from data e en1 , , .K However we are not able to
observe the error variables. One can solve this problem by using suitable
residuals e en1 , ,K , see Kreiss [Kreiss 1991]. These residuals are func-
tions of the observed time series values and depend on the time series co-
efficients. If the coefficients are unknown they can be estimated with stan-
dard concepts, e.g. with the Yule-Walker method. Then one can calculate
an empirical distribution function Fn Fn and a maximum likelihood esti-
mator $s n which both base on the residuals instead of e en1 , , .K The idea is
now to use

T n F x F x dF xn n n1
2= × -

-¥

¥ò ( ( ) ( , $ )) ( , $ )s s

as test statistic. To realize this idea one has to deal with the distribution of
T1 under the hypothesis. We have fully proofed that T1 also converges in
distribution to Z – the limit variable of the statistic T. To obtain this own
result we have considered the sequence of stochastic processes
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( )( )a sn n n x
n F x F x: ( ) ( , $ ) .= -

ÎR

We have shown that an converges in distribution to a certain Gaussian
Process in the Skorohod space. Mainly by a continuous mapping theorem
we can conclude that T1 converges in distribution to the limit random var-
iable Z. Quantiles of the distribution of Z can be calculated numerically
and are tabled in [Hoermann 2007]. We can use these quantiles qa as criti-
cal values for the test statistic T1 . This leads to the decision rule for the
level a Î ( , )0 1 :

Reject H 0 iff T1 exceeds the quantile q1-a .

Remember that the error variables et are centered. However we have to
emphasize this additional information is not used in the statistic T1 . We
expect a greater power of the test by using a statistic containing the further
information.

As starting point for the construction of such an statistic we use the
empirical likelihood concept introduced by Owen [1988; 1990] and contin-
ued by Qin/Lawless [Qin, Lawless 1994] as well as Zhang [Zhang 1997].
Suppose that we have observed realizations of independent and identically
distributed centered variables X X n1 , ,K (with finite variance). The em-
pirical likelihood method delivers an estimator

~
Fn for the distribution

function of X
i
. Note that every random variable with distribution function

~
Fn has expectation zero – a property that does not hold in general for the

Empirical distribution function.
In this situation of observable variables X

i
Genz [Genz 2004] has

proofed a functional limit theorem for the processes

( )( )n F x F xn n x

~
( ) ( , $ ) .-

Î
s

R

This means that he has shown the processes’ convergence in distribution
in the Skorohod space. One can conclude by a continuous mapping theo-
rem that

( )S n F x F x dF xn n n= × -
-¥

¥ò ~
( ) ( , $ ) ( , $ )s s

2

has a limit in distribution, denoted withW . The distribution of W is treated
in [Hoermann 2007] again.
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For our unobservable error variables we must use a version of
~
Fn bas-

ing on the times series residuals. Denote this version with
~
Fn . Have a look

at T1 again and replace Fn by
~
Fn . Then define

T n F x F x dF xn n n= × -
-¥

¥ò (
~

( ) ( , $ )) ( , $ ).s s
2

Another own result is that T2 converges in distribution to W , too. Al-
though one must use residuals which are not independent the distribution
limit stays unchanged. To obtain the result we proofed a functional limit
theorem for the residual processes

( (
~

( ) ( , $ )) .n F x F xn n x
-

Î
s

R

Again by a continuous mapping theorem and some calculations the de-
sired convergence of T2 follows. Let q1-a be the ( )1- a -quantile of the
distribution of W . These quantities can be used as critical values and are
charted in [Hoermann 2007] again. Then we have the decision rule for the
level a Î ( , )0 1 :

Reject H 0 iff T2 exceeds the quantile q1-a .

Hence we are able to test the normality of the errors with T1 and T2 . The
calculation of these statistics requires determining integrals with respect
to normal distributions. However one can show with a transformation
theorem from measure theory and some manipulations that T1 and T2 both
simplify to finite sum which can be computed easily.

Finally we compare the power of T1 and T2 within a small simulation
study. First we consider Laplace distributed errors. We choose different
levels a and different lengths n of the time series. For every a/n-combina-
tion we make 1000 tests with T1 and afterwards 1000 tests with T2 . As
measure for the power the frequency of rejecting the wrong hypothesis is
used. For each test we generate an ARMA(1,1) series, estimate the time
series coefficients with the Yule-Walker technique and compare the statis-
tic with the critical value.

In an analog way we examine the power of T1 and T2 in the situation of
t-distributed errors.

The results are impressive. For Laplace distributed errors the power of
T2 is up to 40% greater than the power of T1 . For t-distributed error varia-
bles the power of T2 is even up to 45% greater than the power of T1 . Sum-
marizing we can obtain a manifestly greater power by applying the statis-
tic T2 which makes use of the errors’ expectation zero.
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ESTIMATION OF THE RUIN PROBABILITY

Anna Nikodem (Wroc³aw University of Economics)

The ruin probability is an important parameter in the actuarial risk theory.
In the paper there will be shown the estimators of this parameter in the
classical risk theory in various scenarios with regard to what is assumed
known and what is to be estimated. Let consider the risk process

U t u ct X
i

i

N t

( ) ,
( )

= + -
=

å
1

where u is the initial capital, c is the premium rate. The X represent the
sizes of claim, which are assumed to be independent identically distribu-
ted with mean m. The process N t( )N(t) is the Poisson process with intensi-
ty l.

When all parameter are known, we can determine the ruin probability,
which is defined as

( )y( ) ( ) ,u P U t t= < >0 0for some
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and the survival probability over an infinite time horizon as

F( ) ( ) (inf ( ) ).u u P U t
t

= - = >
>

1 0
0

y

To calculate the ruin probability, we can use the asymptotic approxi-
mation. In the classical risk model the ruin probability satisfies

y
lm

lm
( ) ~

( )
u

c

R c
e Ru

-

¢ -
- for u ®¥,

where R is the adjustment coefficient, which is a positive solution of

1+ =
cR

m R
Xl

( ),

where m R
X

( ) is a moment generating function of r.v. X.
In practice one or more parameters are unknown and need to be esti-

mated from the available data. In the first case, let m and l are known, data
X X X n1 2, , ,K are available. The ruin probability is estimated by [Csör-
gõ, Teugels 1990]

$ ( ) ~
$ ( $ )

.
$

y
lm

l
u

c

m R c
e

n n

R un
-

× -
-

Estimator of R is calculated from

1+ =
cr

m rnl
$ ( ),

where

$ ( ) exp( ).m r
n

rXn i

i

n

=
=

å1

1

If the insurer can’t determine l and m, but has only data from observa-
tion over time period [0, T], the ruin probability is estimated by [Grandell
1991]

$ ( ) ~
$ $

$ $ ( $ )
,

$

y
l m

lT

T T

T T T

R uu
c

m R c
e T

-

× ¢ -
-

where $R
T

is a positive solution of1+ =
cr

m r
T

T$
$ ( )

l
. The empirical moment

generating function, the intensity of the claim process and the mean of X

are estimated respectively by
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If the insurer can determine the intensity l and the data
X X X n1 2, , ,K are available, we can use the formula for discrete claim
amounts. When we assume that all observation have the same probability
p P X x

j i n= = =( ) ,1 the ruin probability can be estimated by

$ ( ) ( )
!
,

, ,

y
q

q
u z e

p

k

k k z

k k

j

k

jj

n

n

n

j

= -
+

- + +

=

å Õ1
1

1

1 1

K

K

where z is expressed by z
c

u k x k xn n= - - - +

l
( ) ,1 1 K k kn1 0 1 2, , , , ,K K=

This method of calculating the ruin probability is difficult when the sam-
ple is large. Due to this fact it is better to estimate the claim distribution by
the diatom distribution. The locations of the two atoms are

z x x z x y1 2= - = +, .

Comparing the moment of diatomic distribution with the sample mo-
ment we get this probability

p P Z z
s

s x
1 1

2

2 2= = =
+

( ) , p P Z z
x

s x
2 2

2

2 2= = =
+

( ) ,

where

x
s

s
=

+ -k k6 6 3

2

4

2
, y

s

s
=

+ +k k6 6 3

2

4

2
.

In the next method, the ruin probability is estimated by plugging the
estimator of unknown parameter to the Pollaczeck-Khinchine formula.
This formula is as follows

( )F( ) ( ) ( ),
*

u u
c c

F u

n

X

s
n

n

= - = -
æ
è
ç

ö
ø
÷
æ
è
ç

ö
ø
÷

=

¥

å1 1
0

y
lm lm

where F u F y dy
X

s

u

( ) ( ( ))= -ò1
1

0m
is the equilibrium distribution.
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It is assumed that lm is known, F is unknown, and the data
X X X n1 2, , ,K are available. Then the equilibrium distribution is esti-
mated by

$ ( ) ( $ ( )) ,F u
x

F y dy
X

s

n

n= -
¥

ò1
1

0

where x n is a sample mean $Fn and is the empirical distribution of claim.

Plugging $ ( ),F u
X n

s into the Pollaczeck-Khinchine formula, we get the esti-

mator for the survival probability [Hipp 1989]

$ ( ) $ ( ).,

*
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= -
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÷

=

¥

å 1
0

lm lm

If we assumed that l, m are known, F is unknown, and the data
X X X n1 2, , ,K are available, then the survival probability is estimated by
[Hipp 1989]

( )$ ( ) $ ( ),
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where F is estimated by a discrete signed measure
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When parameter l and distribution F are unknown, and the observa-
tions from a risk process in a time interval ( , )0 T are available, then the esti-
mator of the survival probability is given by [Hipp 1989]
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where
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The intensity l is estimated by $
( )

,l
T

N T

T
= and F is estimated by

$ ( )
( )

( ).
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T i

i
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= £
=
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1

1

The estimators of the ruin probability found by using the Cra-
mer-Lundberg approximation and the Pollaczeck-Khinchine formula are
asymptotically normal. In the paper there will be shown examples illustra-
ting the finite sample behaviour of estimators presented above.
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CAUSAL INFERENCE USING THE PROPENSITY SCORE

Karl-Heinz Schild, Helmut Sitter
(Department of Business Administration and Economics University
of Marburg)

The term ’propensity score’ refers to a generic approach for causal infer-
ence in observational studies, which was introduced by Rosenbaum and Ru-
bin in [Rosenbaum, Rubin 1983] and has since then been widely used. The
basic framework for an application of the propensity score can be described
as follows: Given a random sample from a certain population, the following
data are observed for each individual i in the sample: A set of (pre-treat-
ment) covariates X

i
, the treatment (assignment) Z

i
and the outcome Y

i
,

which is the variable of primary interest. In their genuine form, propensity
score applications require Z

i
to be a binary variable ( { , }),Z

i
Î 0 1 where

Z
i
=1 indicates that the individual received treatment, while Z

i
=0 indi-
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cates that the individual was in the control group. In the binary treatment
case, the propensity score is defined as the probability of receiving treat-
ment given the covariates:

p x P Z X x
i i

( ) ( | ).= = =1

It is, of course, possible to generalize the propensity score to situations
where Z

i
is a random variable taking values in an arbitrary space Z, for

example as r z x P Z z x( , ) ( | ),= = =X see e.g. [Imbens 2000; Imai, Van
Dyke 2004].

The framework for causal interpretations is the potential outcome mo-

del. The idea is to stipulate existence of an outcome Y
i

z for all z ZÎ . The
observed (factual) outcome is Y Y

i i

Z i= ,while Y
i

z for z Z
i

¹ is understood

to be the (counterfactual) outcome, had the individual received treatment z
instead. For a binary treatment, the causal effect of the treatment on indi-
vidual i isY Y

i i

1 0- , and the average treatment effect is ATE = E[Y Y1 0- ].

The key assumption underlying the propensity score based treatment
evaluation is the conditional unconfoundedness assumption (CUA) (also
termed “ignorability of treatment assignment”): Conditional on the cova-
riates X

i
, the treatment assignment Z

i
and the potential outcomes Y

i

z are
independent:

Y Z
i

z

i i
^ | X for all z ÎZ .

This condition means that the pre-treatment covariates must be infor-
mative enough to resolve the “confoundedness” or “selectivity” in the treat-
ment assignment process up to the situation of a randomized experiment.

If the CUA holds, it also holds that the Y z are independent from treat-
ment Z given p Y Z Y Z pz z( ): | | ( ).X X X^ Þ ^ In conjunction with the
“balancing property” of p( ),X namely X X^ Z p| ( ) (which holds irre-
spective of the CUA), the propensity score is seen to be an ideal tool for
matching and stratification: On the strata of constant propensity score, all
covariates have the same distribution in the treated and untreated group,
while the difference in the average outcome between the groups represents
the causal effect of the treatment on the stratum.

Besides the application as a matching tool, one can also make use of
the propensity score as a control function in the linear regression ofY on Z.
Assume Y Uk k k k= + ¢ +m bX ( , ),k =0 1 where E U k[ | ]X =0 and (for

simplicity)U U0 1= , so that ATE= - + - ¢m m b b1 0 1 0( ) [ ].E X Writing

Y Y Z Y Y= + -0 1 0( ), we have (provided the CUA holds):
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E Y Z E Y Z E Z Y Y Z

E Y Z E Y

[ | , ] [ | , ] [ ( )| , ]

[ | ] [

X X X

X

= + - =

= + ×

0 1 0

0 1 -Y 0 | ].X

Thus, the linear regression ofY on 1, Z and X will yield the ATE as the co-
efficient of Z. Using the unconfoundedness w.r.t. p( ),X the same result
obtains, if instead of X we condition on p( ):X

E Y p Z E Y p Z E Z Y Y p Z

E Y

[ | ( ), ] [ | ( ), ] [ ( )| ( ), ]

[ |

X X X= + - =

=

0 1 0

0 p Z E Y Y p( )] [ | ( )].X X+ × -1 0

Thus, provided E Y pk[ | ( ]X) is linear in p( ),X the regression of Y on 1, Z

and p( )X will also yield the causal ATE. Analogous results are obtained if
a subset of (functions of) the covariates is added to the regressors, as long
as the propensity score is included as a control function.

Application: Survival analysis with varying treatment initiation
The objective now is to apply the propensity score to the following

problem arising in survival analysis: For a random sample of individuals
with covariates X

i
, the survival time T

i
of each individual is observed, if

not right-censored by an independent censoring mechanism, in which case
the censoring time is observed. Each individual has the chance to begin a
treatment at any time s³0.. The treatment can be initiated only once, and
at most one treatment initiation time s S

i
= is observed for each individual i.

Once received, the treatment has an immediate and persisting effect: It re-
duces (or enlarges) the individual’s hazard rate by the factor ea for the re-
minder of its life. To model this, a proportional hazard rate model is stip-
ulated that describes the hazard rate h

i
of individual i, if treatment starts at

time s:

h t s h t s e h
e h

i i

t s

t

t
i

i

( | ) ( , | )
,

[ ]
( )

( )= = × =¢ + ³

¢

X
X

X

b

b

a1
0

0 if

if

t s

e e h t si

t

<

³

ì
í
î

¢a b X

0( ) ,
, (1)

where h t0 ( ) is the baseline hazard. Replacing s with the observed initiation
time S

i
, it is a popular device to estimate such a model with a Cox (partial

likelihood) regression [Cox 1972], which involves the time-dependent
covariate x t t S

i i
( ) [ ].= ³1

Note that eqn. (1) represents the potential outcome model. The ob-
served “treatment assignment” is S

i
, and the factual outcome with this

treatment assigned is T
i
, but eqn. (1) also describes the potential outcome

T
i

S , in terms of its hazard rate h t s
i
( , ), if the assigned treatment were s. The

conditional unconfoundedness assumption in the present application is:
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S T s
i i

S

i
^ "| .X This excludes, for example, the situation that comparable

individuals that tend to have an early treatment initiation will have syste-
matically longer survival times anyway, even if they were never treated.

Replicating the argument for the linear regression, the Cox regression
for (1) – with s replaced by S

i
– can be expected to provide a reliable (con-

sistent) estimate of the causal treatment effect a. This, however, only
holds, if the covariates X are exactly those under which the CUA holds; if
a component of X is omitted, or is included in the wrong functional form,
the estimate of aas the causal treatment effect may become unreliable. We
therefore attempt to include the propensity score as a control function in
eqn. (1).

To do so, a model for the treatment initiation times S
i

is required.
Since S

i
, like T

i
, is a duration, it appears sensible to stipulate a proportio-

nal model for the “hazard”-rate h t
i

S ( ) of S
i
:

h t h t e h t
i

S S

i

Si( ) ( , ) ( ).= = ¢
X

Xg
0 (2)

Again, the intention is to estimate this model by Cox partial likelihood
regression. Note, however, that the observation of S

i
can be right-censor-

ed by T
i
(or the censoring time of T

i
); this occurs if the individual dies or is

censored before treatment is initiated. Since T
i
, as opposed to T

i

S , can not

be assumed to be independent of S
i
, a bias is supposed to occur if the esti-

mation of the Cox model (2) implicitly assumes independence of its cen-
soring. This bias will be ignored in the sequel. Also note that it is possible
in (2) (and also in (1)) to have a probability mass at t=¥– neither the mo-
dels nor the estimation procedure, the Cox regression, exclude this possi-
bility.

In order to get a clue of how to define the propensity score, we first re-
formulate the Cox regression (1), (2) by dividing the time axis into epi-
sodes I t t

j j j
= -[ , )1 and using the binary variables

l Y
i j, to indicate the event that individual i was dead at t

j
given that it

was alive at t
j-1 .

l

~
,Z

i j
to indicate the event that individual i was treated at t

j
given that it

was untreated at t
j-1 .

We also use the binary variable Z
i j, to indicate treatment in I

j
(uncondi-

tionally). The main result is: The estimation of the Cox partial likelihood
regressions produces approximately the same results as estimating the bi-
nary response models (by ML assuming independent observations)

P Y Z G Z
i j i i j j i i j

( | , ) ( ),, , ,= = + ¢ +1 X Xt ab (3)
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P Z G
i j i j i

(
~

| ) ( ),, = = + ¢1 X Xh g (4)

where G is a cdf. and t h
j j
, are interval-specific constants that capture the

effect of the baseline hazards h tT

0 ( ),h tS

0 ( ).(The precise formulas, although

not relevant for the sequel, are: G z z( ) exp(exp( )),= - -1

t
i

T

t

t

h u du
j

j

=
-

òln ( ) ,0
1

h
i

S

t

t

h u du
j

j

=
-

òln ( ) ,0
1

see e.g. [D’Agostino et al.

1990] for details.
An important point about these equations is that the Y

i j, and Y
i j¢ ¢, as

well as the
~

,
~

, ,Z Z
i j i j¢ ¢ , can be assumed to be independent from each other

except for ¢= ¢=i i j j, .The treatment indicator Z
i j, can be expressed as a

function of the past $ , .,Z k j
i j

£

Consider the models (3), (4) for a fixed j, i.e. on the fixed time-interval
I

j
.Keeping j fixed and letting i run through the risk set for I

j
,we are in a

standard propensity score setting with Z
i j, as the binary treatment variable

andY
i j, as the outcome variable (which happens to be binary, too). Denote

by p
j

the propensity score for the j-th submodel:

p P Z P S t
j i i j i i j i
( ) ) | ) ( | ).,X X X= = = <1

Using the the “treatment initiation function” of (2),
F t F t P S t

i

S S

i i i
( ) ( , ) ( | ),= = ³X X we obtain a propensity score in the

variable X at each fixed point in time t:

p t F tS( , ) ( , ).X X= -1 (5)

Under the proportional hazard assumption, we have

( )F t F tS S( , ) ( ) .
exp( )

X
X

=
¢

0

g

This function is readily estimated as a by-pro-

duct of the Cox-Regression for (2) by most survival analysis software
packages. Thus, we obtain the estimated propensity score $ ( , )p t X

i
for (3)

at any time t (=tj) at almost no cost.
Having obtained the estimated propensity score for each t, we can use

it as a control function in the model for Y
i j, in the outcome model (3). Set-

ting P p t
i j j, : $ ( , ),= X

i
we can expect a reliable estimation of the treatment

effect a from using only the constant (which is here the time dummy t
j
),

the treatment indicator Z
i j, and the propensity score P

i j, as covariates in
the the binary response model

P Y G Z P
i j i j i j i j

( | ) ( )., , ,= = + +1 X t a d (6)
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However, we do not really need to estimate this binary response mo-
del for the Y

i j, ,because we can retranslate it into a Cox model for the pro-
portional hazard rates h t S

i i
( | , )X of the survival times Ti, yielding

h t S e h t
i i

t s p ti i( | ) ( ).[ ] $ ( , )
, X

X= ×³ +a d1
0 (7)

The preceeding considerations suggest that the Cox regression for this
model will produce a reliable estimate of the treatment effect a.

To summarize, the whole procedure consists of two steps:
(1) Estimate a Cox regression for the treatment initiation model (2)

using the full set of covariates X. Obtain the propensity score $ ( , ),p t X as
1- F tS ( , ),X where F S is the “treatment initiation function” (the “sur-

vival” function of the treatment initiation model).
(2) Run a Cox regression for the outcome model using (at a minimum)

the treatment indicator 1[ ]t S
i

³ and the estimated propensity score
$ ( , )p t X

i
, as time-dependent regressors.

Note that the Cox regression in the second step involves two time-de-

pendent covariates.
Some of the flexibility of the two-step procedure arises from the fact

that we do not have to confine ourselves to just the two time-dependent
covariates in the outcome model. The same reliability concerning the esti-
mation of the causal treatment effect a is expected to occur in any model
of the form

h t s e h t
i

t s p ti i( , | ) ( ),
~ ~

[ ] $ ( , )
X

X X= ×¢ + ³ +b a d1
0 (8)

where
~
X consists of a subset and/or functions of the variables in X. The cru-

cial requirement is that, in addition to the treatment indicator 1[ ]t S
i

³ , the
propensity score $ ( , )p t X

i
, is included in the regression. One can, for exam-

ple, use this feature to check the validity of the propensity score estimate
and/or the assumptions (for example CUA): If a variation of the regressors
~
X in (8) produces very different estimates of a, then presumably either one
of the (general or parametric) assumptions is violated or the propensity
score estimate is not valid. In the ladder case the most likely reason is that
the “false covariates” X are included in the treatment initialization model.

Remark: The whole derivation crucially hinges on the assumed inde-
pendence of the Y

i j, (and
~

,Z
i j

). The argument for this is the same sort of

approximation that is performed in going from full to partial likelihood in
the Cox regression. The main idea behind the Cox partial likelihood re-
gression is to consider – at certain times t

j-1 – the risk set{ }T t
i j
³ -1 con-
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sisting of individuals alive at that time. The partial likelihood for the inter-
val I

j
is then formed as if the risk set were a random draw from the

population. Therefore, treating theY
i j, as independent variables in (3) cor-

responds to using the Cox partial likelihood method in (1). It is also for
this reason that estimating the Cox regression produces approximately the
same results as estimating the binary response model (3) by maximum
likelihood assuming independent observations.

Results of a simulation: We generate N independent realizations of
l covariates X = ( , , , )X X X X1 2 3 4 where X 1 is binary with

P X( ) . ,1 1 05= = X 2 is binary with P X( ) . ,2 1 0 75= = X 3 is uniformally
distributed on [–1, 1] and X 4 has a standard normal distribution.

l Weibull-distributed (potential) survival times T0 with shape parame-
ter k=3and scale parameter ( / ) /1 1l k where l b b b= + + +0 1 1 2 2X X

+ +b b3 3 4 4X X , and

b b b b b0 1 2 3 412 05 05 05 05=- = =- = =, . , . , . , . .

l Weibull-distributed treatment initiation times S with shape parameter
k=2 and scale parameter ( / ) /1 1l k where l g g g= + + +

0 1 1 2 2
X X

+ +g g
3 3 4 4
X X and

g g g g g0 1 2 3 485 03 03 0 4 08=- = =- =- =-. , . , . , . , . .

If S T
i i
> 0 , then Ti is set to T

i

0 and S
i
is censored at T

i

0 . Otherwise the

observed survival time Ti is set to

T e T e S
i i i
= + -- -a k a kk ( ) ( )( ) ,0 1

with a=05. and k=3. The resulting duration times T
i

and S
i

are conform
to the proportional hazards models (1), (2).

The following diagram displays the distribution of the estimated a
resulting from of a series of 1000 simulations each using N =200 inde-
pendent observations.

The first model M0, specifies the outcome equation with a time-inde-
pendent treatment dummy (and all four covariates). Each of the following
five outcome models contain the time-dependent treatment dummy; each of
these models is estimated in two variants: without (“-”) and with (“+”) the
estimated propensity score from the initiation model as a control variable.
Model M1: No other covariates, Model M2: Only X 3 ,Model M3: X 1 and X 3

Model M4: X X X X1 2 3
2

4
2, , , , Model M5: All covariates in correct func-

tional form.
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The diagram shows that a false specification of the outcome model
may lead to very biased estimates of the treatment effect a. Including the
propensity score as a time-dependent covariate largely alleviates this pro-
blem, resulting in estimates which are at least approximately correct. The
bias still existing in these estimates is partly due to the non-random cen-
soring of S

i
in (2).
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ON THE DETECTION OF CHANGES
IN LINEAR MODELS WITH DEPENDENT ERRORS

Alexander Schmitz (University of Cologne)

1. The monitoring procedure

One of the most central questions in time series analysis is structural sta-
bility of the data generating process: How long is a model, previously esti-
mated from a historical period, relevant for steadily arriving data? The
sequential test by Chu et al. [1996] yields a procedure to monitor the pa-
rameter stability of a linear regression model:

y x tt t

T

t t= + =b e , , , ,0 1 K (1)

where x x xt t pt

T= ( , , , )1 2 K is the normed p-dimensional regressor array

and b b bt t pt

T= ( , , )1 K is the regression parameter. It is assumed that the

parameter is fixed to a certain initial value b 0 on the historical period of
length m, the so-called “noncontamination” assumption:

b bt t m= =0 0 1, , , ,K (2)

After the arrival of each new data from time m+1onwards, we are in-
terested in the “no change” null hypothesis H : b b0 t t m= = +0 1, , ,K

versus the “one-time parameter shift” alternative H
A

that the parameter
shifts from b 0 to b* at some time m k+ * . In this setting the change-point

k * , the initial value b 0 and the parameter shift b b* - 0 are assumed to be

unknown. The monitoring procedure of Chu et al. [1996] is designed to
stop monitoring and reject the null hypothesis at time t( )m , according to
the first excess of a detector $ ( )Qm × over a boundary function g m

* ( )× , i.e.

{ }t s a( ) inf : $ ( ) ( ) ( )*m k Q k c g km m= > , where s is a positive constant and

c( )a is a critical constant. Moreover, we set Æ=¥, if the path of the de-
tector never exits the boundary.

The task is to determine the detector, the boundary function and the
critical constant, such that the false alarm rate is asymptotically fixed to a
prescribed level and that the power of the testing procedure is asymptoti-
cally one, i.e.

( )lim ( ) |
m

P m H
®¥

<¥ =t a0 and ( )lim ( ) | .
m

A
P m H

®¥
<¥ =t 1

Consider first the detector. Denote
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å å
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1

1

and $ $e b
i i i

T

m

Ty x= -

the least squares estimator for b 0 , relying only on the historical period,
and the i-th empirical residual. Following Chu et al. [1996], we employ a
cumulated sum type detector (CUSUM):

$ ( ) $ , , ,Q k km i

i m

m k

= =
= +

+

åe
1

1 2 K (3)

Horváth et al. [2004] introduced a class of boundary functions being ana-
lytical convenient for the CUSUM monitoring. Therefore we choose

g k m
k

m

k

m km

* /( ) , / .= +
æ
è
ç

ö
ø
÷

+

æ
è
ç

ö
ø
÷ £ £1 2 1 0 1 2

g

g (4)

The parameter g is a so-called tuning constant influencing the detec-
tion ability.

2. Model assumptions and results

In contrast to Horváth et al. [2004] who assumed independent errors, we
allow a certain dependency among the error sequence instead. This is a
common approach within the econometric change-point literature, cf. Per-
ron and Qu [2007]. Following the a-mixing concept, the measure of de-
pendence between two s-fields G and H is given by

{ }a( , ) sup ( ) ( ) ( ) : , .G H P A B P A P B A G B H= Ç - Î Î

Let F
k

l denote the s-field generated by the set of errors { , , }e e
k l

K ,

where k and l are consecutive integers. We assume a strong mixing error
sequence, i.e.

a a( ) sup { , } ( ).n F F n
p

p

p n= ® ®¥
£ £¥

+
¥

1
1 0 (5)

This property indicates that the present innovations are asymptotical
independent from the far distant future innovations.

Next, we assume that the error sequence obeys a uniform weak invar-

iance principle. Let s and d be positive constants and let{ }W t
i m

t
, ( )

0£ <¥

denote a standard Wiener process, for each i=0 1, , and for all m=1 2, , ,K

such that a weighted approximation on the historical period and on the
monitoring sequence holds:
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sup ( ) ( ) ( )./ ( )
,

1

1 2
0

1

1
£ £

- +

=

- = ®¥å
k m

i m

i

k

pk W k O md e s (6)

sup ( ) ( ) ( )./ ( )
,

1

1 2
1

1

1
£ £

- +

= +

+

- = ®¥å
k m

i m

i m

m k

pk W k O md e s (7)

This kind of approximations can be derived by imposing certain mo-
ment conditions and a accurate rate of decay of the mixing coefficient
a( )n , cf. e.g. assumption A5 in Perron and Qu [2007].

We also need some regularity conditions on the stochastic regressor
sequence. The Euclidean norm of vectors and matrices are denoted by × .
We assume that:

1

1m
x x C O m m

i i

T

i

m

a s- = ®¥
=

-å . . ( ) ( )t (8)

holds for some t>0 and for some positive definite matrix C. Basically,
this assumption rules out trending regressors. And we assume further:

x O m m
i i

i

m

P
e

=

å = ®¥
1

1 2( ) ( )./ (9)

The last assumption is a technical condition in order to permit regres-
sors not necessarily independent of the errors.

We state our main result: Under the null hypothesis, suppose (1)-(9)
hold, then we have:

lim sup
$ ( )

( )*
m k

m

m

P
Q k

g k
c

®¥ £ <¥
>

æ

è

ç
ç

ö

ø

÷
÷=

1

1s
P

W t

t
c

t

sup
( )

.
0 1< £

>
æ

è
ç
ç

ö

ø
÷
÷g

The limit distribution is a functional of the Wiener process. Selected
quantiles are given in Horváth et al. [2004]. An application of the monito-
ring procedure in practice requires a consistent estimation of the unknown
parameter s. As a consequence of using invariance principles for depen-
dent random variables s 2 is the long run variance, i.e.

0 22
1
2

1
2

< = + <¥
=

¥

ås e e eE E
k

k

.

Consistent estimators are available using a “non-overlapping block-
ing” approach. Moreover, under the alternative, asymptotic power one of
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the monitoring procedure can be shown, if the mean regressor is not ortho-
gonal to the parameter shift b b* - 0 . For details and proofs we confer to
Schmitz and Steinebach [2008].

3. Remarks

For an adequate monitoring of econometric data, it seems reasonable to
choose time series model in order to form the errors of the linear re-
gression model. The crucial step in our framework is to ensure the strong
mixing property. The simplest model but still useful in the macroecono-
mic context is the AR(1) (autoregressive of order one) model, cf. e.g. Han-
sen [2001]. It is given by the recurrence equation: X X Zt t t= +-f 1 ,
where f Î ( , )01 and{ } , ,Zt t=1 2 K

are uncorrelated noise variables. We point
out that in the case of discrete noise variables the mixing property can be
violated, cf. Andrews [1984]. In the case of independent and identically
distributed noise variables with an absolute continuous probability distri-
bution, Athreya and Pantula [1986] provide conditions on the probability
density to ensure the strong mixing property. The classical ARCH(p) (au-
toregressive conditionally heteroskedastic of order p) model of Engle
[1982] is defined by the equations

X Zt t t= s and s t i t i

i

p

c b X2
0

2

1

= + -
=

å ,

where all constants are positive. This model and its generalisations play a
central role in finance and econometrics, cf. e.g. Aue et al. [2006]. We
confer to Carrasco and Chen [2000] for conditions to ensure the strong
mixing property of ARCH(p) models and its generalisations.
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ON HEALTH-ORIENTED LIFESTYLE RESEARCH

Cyprian Kozyra (Wroclaw University of Economics)

Student Scientific Circle on Survey Research conducted under supervi-
sion of author of this paper research on health-oriented lifestyle in year
2007. Main aims of the survey research were: investigating of respon-
dents’ awareness of influence of lifestyle on health and assessment of life-
style practiced by respondents. Population of concern were students of
Wroclaw University of Economics. We defined lifestyle as all behaviors
chosen by respondents in aim to mould their own life. The main limitation
of such survey is investigating only respondents’ perceptions without ac-
cess to real data about their health and lifestyle.

These detailed questions were investigated in research: What do re-
spondents mean about healthy lifestyle? Are they aware of influence of li-
festyle on health? How do they assess their lifestyle and why? Do they
feel, that their lifestyle should change and how to do it? What is the main
respondents’ goal of practicing healthy lifestyle? These questions were
employed in wording questionnaire consisting twelve (some of them were
very complex) items, on which answers are presented in paper.

Research sample was designed by means of random cluster sampling,
because lack of available list of all units of population of concern. Addition-
ally during random selection we decided to apply two-way stratification
according to faculty (3 Wroclaw faculties of university) and year of study
(5 years). Only one cluster from all fifteen strata was selected, but we did
not collected data from six student groups, so, because of these missing
data, only stratification according to faculties was applied in analysis.
Using complex samples methodology is more difficult than simple ran-
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dom sampling, because computation of unbiased estimates and their va-
riances is not available in standard statistical programs. For instance un-
biased estimates of frequency in case of stratified cluster sampling is (see

[Miszczak 2004, p. 95]): $ $ ,p
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estimation for equal-numerous cluster could be accomplished in standard
statistical software by means of special weighting units according to strata.

Additionally for complex samples methods of statistical inference
should be modified, e.g. test to verify independence in contingency table
should be (see [Bracha 1998, p. 149]) conducted not only using

well-known Pearson statistics c
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calculate modified chi-square statistics c
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. Variances of estimators are not calculated in

standard statistical software and in this research their calculations are
questionable because of missing data.

Main result from survey are as follows: almost all respondents agree
(76% strongly agree and 23% rather agree) that generally lifestyle has in-
fluence on health, almost all respondents (young students) perceive their
health as good (21% very good and 73% rather good), almost all respon-
dents agree that their lifestyle has influence on their own health (49%
strongly agree and 45% agree, notice difference with answers on ques-
tions about general influence of lifestyle on health). Self-assessment of
own lifestyle is not so unambiguous – most of respondents assess their
lifestyle as rather good for health (65%), but many (23%) assess as neither
good nor bad, only 6% asses as very good for health. Most of respondents
(54%) report that they did not change their lifestyle during last year, 28%
changed rather for the better and 12% changed rather for the worse. Most
of respondents (31% strongly agree and 50% rather agree) are willing to
change their lifestyle for the better.

Main reasons for improving lifestyle are: will to improve mental and
physical state (73% respondents agree with it), influence of close people
(47%) and deteriorating health condition (41%). These items were not
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often selected by respondents as reasons for improving lifestyle: healthy
oriented campaign (only 4%) and fashion (18%). Main reasons for not im-
proving lifestyle are: lack of time (64%) and laziness (58%), but lack of
money is not the reason (19%). Respondents assess some aspects of their
lifestyle on scale 1-5 (1 is the worst for health, 5 is the best) and average
answers are as follows: practicing sport – 3.00, healthy eating – 3.16, suit-
able clothing – 3.38, fighting against addictions – 3.26, medical control
tests – 2.44, taking medication – 2.99, vitamin supplements – 2.92, avoid-
ing risky sexual behavior – 3.54. The best assessments are thus for avoid-
ing risky sexual behavior and the worst for medical control tests.

Dependencies between all response categories regarding main ques-
tions were tested by means of chi-square statistics. Significant dependenc-
ies are as follow: there is dependence between general influence of
lifestyle on health and influence of own lifestyle on health, dependence
between overall influence of lifestyle and change of lifestyle in last year,
dependence between self-assessment of health and of lifestyle, depen-
dence between influence of own lifestyle on health and change of lifestyle
in last year, dependence between influence of own lifestyle and willing-
ness to change, and dependence between self-assessment of lifestyle and
change of lifestyle in last year. All these significant dependencies are posi-
tive in the sense, that better answers (from health point of view) of one
questions correspond to better answers of second questions.

In conclusion we can say that results of research give positive image,
but rather nobody knows whether it is the sign of reality or the sign of re-
spondents’ expectations of their life. Complex sample methodology used
in this research could be useful in some cases, but more difficult in calcu-
lation.
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