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Abstract. In the ratemaking process, the ranking which takes into account the number of 

claims generated by a policy in a given period of insurance, may be helpful. For example, 

such a ranking allows to classify the newly concluded insurance policy to the appropriate 

tariff groups and to differentiate policies with no claims observed in the insurance history. 

For this purpose, in this paper we analyze models applicable to the modeling of count 

variables. In the first part of the paper, we present the classical Poisson regression and 

a modified regression model for data, where there is a large number of zeros in the values 

of the counter variable, which is a common situation in the insurance data. In the second 

part, we expand the classical Poisson regression by adding the random effect. The goal is to 

avoid an unrealistic assumption that in every class all insurance policies are characterized 

by the same expected number of claims. In the last part of the paper, we propose to use      

k-fold cross-validation to identify the factors which influence the number of insurance 

claims the most. Then, setting the parameters of the Poisson distribution, we create the 

ranking of policies using the estimated parameters of the model, which give the smallest 

cross-validation mean squared error. In the paper we use a real-world data set taken from 

literature. For all computations we used the free software environment R. 
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1. Introduction 

Every person, when applying for an insurance policy, is assigned to 

a class that is homogeneous in terms of the system of tariffs. One of the 

criteria used for assigning an individual to a certain class is the number      

of claims observed in a certain period of time. Thus, it is the insurance 

companies’ very important task to model the number of claims in a given 

insurance portfolio. In the paper we propose a simple procedure for creating 
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a ranking of insurance policies and also for classifying them according to 

the number of claims. This allows a preliminary classification of a new 

policy to a group with an adequate premium level.  

A very common choice of method for modeling the number of claims is 

a regression model using the Poisson distribution (Poisson regression), 

which is a special case of the Generalized Linear Model (GLM). However, 

the insurance portfolios have a very specific characteristic, i.e. for many 

policies there are no claims observed in the insurance history for a given 

period. This means that the data contains lots of zeros and, as a conse-

quence, the Poisson regression may not give satisfactory results. Therefore, 

when creating the ranking, the GLM model and ZIP model (zero-inflated 

Poisson) and the model with a random effect were considered. The ranking 

creation procedure used a k-fold cross-validation and furthermore the rank-

ing was discretized due to a parameter  . We built many different models 

and then we useda 10-fold cross-validation in order to recognize which 

rating variables have an impact on the presence of zeros in the policies’ 

portfolios. The data for the illustrative example was taken from the literature 

(Ohlsson, Johansson, 2010). All the computations were conducted in R – the 

free software environment. The procedure for building a model with random 

effect and a cross-validation technique was written in R language. 

2. Modeling the number of claims  

The linear regression models are used for creating a ranking of insur-

ance policies due to the number of claims. 

Generalized Linear Models (GLM): In these models we assume that 

the number of claims is a dependent variable Y  that follows a Poisson distribu-

tion and it depends on a certain system of predictors (Denuit et al., 2007): 

( )
!

i iy

i
i i

i

e
P Y y

y

 

  , 1,...,i n , 

where Yi is the number of claims for the i-th insured person, Y1, ..., Yn are 

independent and have equal variances, and the average number of claims is 

equal to the variance. The i parameter is the expected number of claims 

and it depends on k predictors Xj (risk factors),  j = 1, ..., k which describe 

the insured individual or vehicle, e.g. sex, age, engine capacity. These pre-

dictors are categorical variables. The logarithm is used as a link function: 

Xβiln , 
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where X  is the design matrix and β  is the vector of regression coefficients. 

We can see that for every linear combination of predictors the expected 

value of the number of claims is always positive. The i  parameter is   

adjusted with the use of di – exposition to risk factor for the i-th policy. This 

factor expresses what part of the analyzed period of time was covered by 

a given policy: 
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When creating the ranking, the goal is to minimize the number of claims, so 

we used 
i

~
min  as a criterion. 

The independence assumption in the above model may not be fulfilled 

(Hall, 2000). In that case the solution is to use a mixed model and introduce 

a random effect v. 

Hierarchical Generalized Linear Models (HGLM): In the case of 

automobile insurance data, the region or the vehicle model can be treated as 

a random effect v . Hierarchical generalized linear model (HGLM) with 

variable |y u  following the Poisson distribution, has a form (Lee, Nelder, 

Pawitan, 2006): 

( | ) ,X vE y u e     

( | ) ( ),Var y u V   

uv log , 

where ],...,[ 1 I  , ],...,[ 1 Kuuu   and X is the model matrix. The distri-

bution of the random effect may belong to the exponential dispersion family 

of distributions, e.g. the gamma distribution with parameter  : 

)(uE  

)()( VuVar  . 

The structural parameters of a model have the following interpretation: 

 parameter i , Ii ,...,1 , measures the influence of the i-th predictor 

on the number of claims; 

 parameter ku , Kk ,...,1 , measures the risk level for every category 

(which is different for every category). 

Zero-inflated Poisson model: Another model used for estimating the 

number of claims is the ZIP model, where the counting response variable 
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has a lot of zero values (Lambert, 1992). This is exactly the case when 

modeling the number of counts. On analyzing different risk portfolios, one 

can notice that for many policies there is no claim observed and if the 

claims occur their number is one, two or three and very rarely more. In the 

ZIP model the independent variables iY  take zero values ~ 0iY  with the 

probability i  or values from Poisson distribution ~ ( )i iY Pois   with prob-

ability 1– i . This can be written in the following form: 
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Thus, in the ZIP model we have two parameters: i  and i . Both parame-

ters, as in the case of the Poisson regression, are linked with predictor vari-

ables with the following link functions:  
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where Z1, ..., Zl are the dependent variables for the first equation and 

X1, ..., Xk for the second one. The expected value and variance of the number 

of claims for the i-th policy in the ZIP model are, respectively: 

)1()( iiiYE   ,
 

))(1()( 22

iiiiiYD   . 

Similarly to the Poisson regression case, in the ZIP model we assume that 

the average number of claims equals the variance. The solution to a problem 

when over-dispersion occurs, is the use of negative binomial distribution 

(Lambert, 1992). 

3. Cross-validation procedure 

In order to meaningfully compare the presented models, the choice of 

the model for the number of claims and the choice of the combination of 

predictor variables that generate zero counts in the claims for policies, were 

supported by statistical learning methods (Picard, Cook, 1984). In general, 
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in these methods we assume we are given a training data set 

D = {(x
i
, y

i 
), i = 1, ..., N}, where x

i
, y

i
  R. Moreover, we assume that data 

is i.i.d. (independent and identically distributed) and has been taken from 

the population with a multidimensional distribution defined by an unknown 

density function: 

)|()(),( xypxpyxp  . 

The task is to search a given set of functions }:),({  xfH , 

where   is a model parameters vector, and find the best element. Using the 

model f(x, )  H, which is always a simplified equivalent of the analyzed 

phenomenon, we accept some errors that are just the consequence of taking 

theoretical values instead of real values for the response variable. These 

errors (for a given observation) are measured by the so-called loss functions 

)),(,( yfyL . In the concept of statistical learning, the risk functional is 

considered which measures the overall loss, i.e. the sum of errors for all 

possible observations. One of the methods of estimating the value of the risk 

functional is the cross-validation method (CV) (Gatnar, 2008; Picard, Cook, 

1984). This paper uses 10-fold cross-validation algorithm, i.e.: 

a) randomly dividing the portfolio of policies (training set) into k = 10 

approximately equally sized parts, where n is the training set size, ml – the 

size of the l-th subset, 1,...,10l  ; 

b) building 10 times a model using 9 of 10 parts ( ln m  observations), 

treating excluded observations as validation set; 

c)  calculating 10 times the value of the mean squared error lMSE  using 

the validation set; 

d) estimating the cross–validation error: 
10

1

l
l
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The model with the smallest cv  value is selected.  

4. Procedure of creating ranking of property insurance policies 

and classification of these policies 

The procedure of building a ranking of policies using the linear models 

presented in the previous part of the paper may be formulated in a few steps: 

Step 1. Estimating i
~

, ni ,...,1  parameter for every policy in the port-

folio using three different models: generalized linear model, hierarchical 

generalized linear model and zero-inflated generalized linear model. 

Step 2. Applying cross-validation procedure to every model from Step 1. 
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Step 3. Choosing the model with the smallest cv  error. 

Step 4. Creating the ranking of insurance policies using as a criterion: 

i
~

min
 

Step 5. Discretizing the ranking according to the values of parameters 

i
~

 and thus obtaining insurance risk classification, which allows to classify 

a new policy to a group with an adequate premium level. 

Based on the estimated parameter 
i

~
 for a chosen model, we have cre-

ated ranking and conducted discretization in order to obtain different classes 

of insurance risk. Discretization means dividing the ordered set of values of 

a given continuous variable onto a finite number of disjoint intervals. Labels 

can be assigned to these intervals, e.g. high insurance risk level, neutral to 

risk, etc. The problem is how to determine the cut points. These cut points 

should separate the objects from different risk classes in the best possible 

way. There are two main approaches in discretization: agglomerative and 

divisive. The first one starts with every single empirical value of the con-

tinuous variable belonging to a different interval, and then neighbouring 

intervals are merged iteratively until the maximum value of a homogeneity 

of subsets measure is reached. The second approach starts with one big 

interval covering all empirical values of the continuous variable, and then it 

is iteratively divided using previously determined cut points. 

5. Empirical example 

In order to illustrate the process of creating the ranking and discretizing 

it, the necessary procedures were implemented in R environment. The 

automobile insurance data set, including information about the number of 

claims, was used for computations (Ohlsson, Johansson, 2010). The follo-

wing variables from the data set were considered in the model: 

1. Driver_age – age of the insured person (driver); 

2. Region: classes from 1 to 7; 

3. MC_class: classes from 1 to 7. 

These classes were created based on the EV coefficient defined as: 

75  kgin  weight vehicle

100kW x in capacity  engine


EV ,  

where 75 kg is the average weight of a driver: 

4. Veh_age – age of the vehicle; 

5. Num_claims – number of claims – the sum within the class. 
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Procedure for creating the ranking 

Step 1. We model the number of claims with the use of three types of 

models presented above. 

Model 1. GLM for the variable Num_claims assuming Poisson distribution 

R Code 
data(dataset) 

glm.formula=Num_claims~Driver_age+Region+MC_class+Veh_age 

glm.model1=glm(glm.formula, family=Poisson(link="log"), 

data=dataset) 

summary(glm.model1) 

Table 1. Parameters for Model 1 

 i  Standard error ie


 

Intercept – 2.362 0.235 0.0942 

Driver_ageA    0 – 1 

Driver_ageB – 0.256 0.182 0.7741 

Driver_ageC – 0.5 0.182 0.6065 

Driver_ageD – 1.273 0.196 0.28 

Driver_ageE – 1.298 0.181 0.2731 

Driver_ageF – 1.435 0.192 0.2381 

Driver_ageG – 1.961 0.291 0.1407 

RegionA    0 – 1 

RegionB – 0.396 0.108 0.673 

RegionC – 0.817 0.118 0.4418 

RegionD – 0.909 0.104 0.4029 

RegionE – 1.843 0.342 0.1583 

RegionF – 1.455 0.248 0.2334 

RegionG – 2.065 1.002 0.1268 

MC_classA    0 – 1 

MC_classB    0.307  0.2 1.3593 

MC_classC    0.081 0.168 1.0844 

MC_classD – 0.011 0.181 0.9891 

MC_classE    0.554 0.171 1.7402 

MC_classF    1.035 0.168 2.8151 

MC_classG – 0.499 0.437 0.6071 

Veh_ageA    0 – 1 

Veh_ageB – 0.456 0.122 0.6338 

Veh_ageC – 0.769 0.125 0.4635 

Veh_ageD – 1.239 0.108 0.2897 

Source: own elaboration. 
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The following combination has been chosen as reference categories: 

Driver_ageA, RegionA, MC_classA, Veh_ageA.  

Model 2. HGLM of a type POISSON-GAMMA for the variable 

Num_claims assuming Poisson distribution and treating variable Region as 

a random effect with gamma distribution  

R Code 
Model.Poisson.gamma=function(X=X, Z=Z, Y=Y, data-

set.letters= dataset.letters, 

glm.formula=Num_claims~Driver_age+Region+MC_class+Veh_age) 

Table 2. Parameters for Model 2 – fixed effects 

 i  Standard error ie


 

Intercept – 2.520 0.565 0.080 

Driver_ageA 0.000 – 1.000 

Driver_ageB 1.215 0.164 3.371 

Driver_ageC 1.221 0.164 3.390 

Driver_ageD 0.590 0.178 1.804 

Driver_ageE 1.195 0.164 3.303 

Driver_ageF 0.693 0.175 2.000 

Driver_ageG – 0.988 0.268 0.372 

MC_classA 0.000 – 1.000 

MC_classB 0.207 0.184 1.229 

MC_classC 1.276 0.154 3.582 

MC_classD 0.752 0.165 2.122 

MC_classE 1.190 0.156 3.289 

MC_classF 1.339 0.153 3.816 

MC_classG – 1.929 0.401 0.145 

Veh_ageA 0.000 – 1.000 

Veh_ageB 0.124 0.113 1.132 

Veh_ageC 0.062 0.114 1.064 

Veh_ageD 0.787 0.099 2.197 

Source: own elaboration. 
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Table 3. Parameters for Model 2 – random effect Region 

 i  Standard error ie


 

RegionA 0.618 0.527 1.855 

RegionB 0.508 0.528 1.663 

RegionC 0.197 0.530 1.218 

RegionD 0.670 0.527 1.954 

RegionE –
 
2.304 0.603 0.100 

RegionF –
 
1.670 0.565 0.188 

RegionG –
 
3.795 0.908 0.022 

Source: own elaboration. 

Table 4. Parameters for Model 3 

 i  Standard error ie
  

[1] Intercept –1.179 0.303 0.308 

Driver_ageA 0.000  – 1.000 

Driver_ageB – 0.269 0.189 0.764 

Driver_ageC – 0.514 0.189 0.598 

Driver_ageD – 1.281 0.202 0.278 

Driver_ageE – 1.305 0.187 0.271 

Driver_ageF – 1.447 0.198 0.235 

Driver_ageG – 1.976 0.296 0.139 

RegionA 0.000  – 1.000 

RegionB – 0.385 0.112 0.681 

RegionC – 0.807 0.121 0.446 

RegionD – 0.898 0.108 0.407 

RegionE – 1.831 0.345 0.160 

RegionF – 1.446 0.251 0.235 

RegionG – 2.048 1.011 0.129 

MC_classA 0.000  – 1.000 

MC_classB 0.320 0.204 1.377 

MC_classC 0.081 0.171 1.084 

MC_classD – 0.007 0.183 0.993 

MC_classE 0.560 0.174 1.751 

MC_classF 1.046 0.172 2.846 

MC_classG – 0.479 0.444 0.619 

Veh_ageA 0.000 – 1.000 

Veh_ageB – 0.459 0.127 0.632 

Veh_ageC – 0.771 0.129 0.463 

Veh_ageD – 1.241 0.112 0.289 

Source: own elaboration. 
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The probability that variable Num_claims takes zero value equals 82%. 

Model 3. Model ZIP takes into account a large number of zero values 

for variable Num_claims. 

R Code 
data(dataset) 

ZIP.model3=zeroinfl(formula=Num_claims~Driver_age+Region+ 

MC_class+Veh_age|1, data=dataset) 

summary(ZIP.model3) 

Function zeroinfl is from the library {pscl} 

 

Step 2.Ten fold cross-validation procedure was applied to every model 

from Step 1, obtaining corresponding cv  errors. 
 

Model1 

[1] MSE on one of 10 validation parts in CV method:  9,86491 

[1] MSE on one of 10 validation parts in CV method:  6,05339 

[1] MSE on one of 10 validation parts in CV method:  5,91436 

[1] MSE on one of 10 validation parts in CV method:  8,99081 

[1] MSE on one of 10 validation parts in CV method:  40,3884 

[1] MSE on one of 10 validation parts in CV method:  6,60433 

[1] MSE on one of 10 validation parts in CV method:  6,80834 

[1] MSE on one of 10 validation parts in CV method:  6,98802 

[1] MSE on one of 10 validation parts in CV method:  9,73839 

[1] MSE on one of 10 validation parts in CV method:  6,33045 

[1] MSE_CV for the model of the form:  

Num_claims ~ Driver_age + Region + MC_class + Veh_age 

[1] 

************************************************************* 

[1] MSE_CV for the model equals: 10,7681 

 

Model2 

[1] MSE on one of 10 validation parts in CV method:  2,13794 

[1] MSE on one of 10 validation parts in CV method:  1,67301 

[1] MSE on one of 10 validation parts in CV method:  2,08547 

[1] MSE on one of 10 validation parts in CV method:  3,00046 

[1] MSE on one of 10 validation parts in CV method:  1,54829 

[1] MSE on one of 10 validation parts in CV method:  2,08823 

[1] MSE on one of 10 validation parts in CV method:  2,03896 

[1] MSE on one of 10 validation parts in CV method:  1,977 

[1] MSE on one of 10 validation parts in CV method:  3,28651 

[1] MSE on one of 10 validation parts in CV method:  1,679 

[1] 

************************************************************* 

[1] MSE_CV for the model equals: 2,15149 
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Model3 

[1] MSE on one of 10 validation parts in CV method:  0,680905 

[1] MSE on one of 10 validation parts in CV method:  0,740123 

[1] MSE on one of 10 validation parts in CV method:  0,863056 

[1] MSE on one of 10 validation parts in CV method:  1,27631 

[1] MSE on one of 10 validation parts in CV method:  0,596856 

[1] MSE on one of 10 validation parts in CV method:  1,0285 

[1] MSE on one of 10 validation parts in CV method:  0,974237 

[1] MSE on one of 10 validation parts in CV method:  0,667925 

[1] MSE on one of 10 validation parts in CV method:  1,49571 

[1] MSE on one of 10 validation parts in CV method:  0,674469 

[1] MSE_CV for the model of the form:  

Num_claims ~ Driver_age + Region + MC_class + Veh_age | 1 

[1] 

************************************************************* 

[1] MSE_CV for the model equals: 0,89981 

 

Step 3. The smallest value of MSE cv was obtained for  Model 3, i.e. 

for the zero-inflated generalized linear model. Thus, this model was used 

further in the ranking creation steps. 

Step 4/Step 5. After discretization, every combination was assigned 

a label representing a risk class: from 10 – the lowest risk of claim to occur, 

to 1 – the highest risk of claim to occur. The first five combinations of 

categories in the ranking were presented in Table 5 for illustration.  

Table 5. Part of the ranking and classification based on Model 3 

Driver_age Region MC_class Veh_age Lambda Risk class 

Driver_ageG RegionG MC_classG Veh_ageD 0.000296 10 

Driver_ageG RegionE MC_classG Veh_ageD 0.000369 10 

Driver_ageG RegionG MC_classG Veh_ageC 0.000473 10 

Driver_ageG RegionG MC_classD Veh_ageD 0.000482 10 

Driver_ageG RegionG MC_classA Veh_ageD 0.000487 10 

Source: own elaboration. 

The number of combinations of different empirical values of predictor 

variables iX  equals 1372. 
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6. Summary 

The procedure for recognizing risk classes in insurance policies portfo-

lios proposed in the paper enables to differentiate policies even in the event 

of observing no claims in the insurance history. The minimum value of   

criterion used in classification means that the risk classes and associated 

premiums are more equitable for individuals applying for an insurance 

policy. Essentially, the main disadvantage of the ZIP model – which turned 

out to be the best in terms of cv error criterion – is that within every risk 

class the policies have an equal expected number of claims, which is an 

unrealistic assumption. The solution to this issue may be in using the mixed 

Poisson model and introducing a random effect that would differentiate 

policies (ZIP regression with random effect). Further work can be done in 

implementing the R procedure to estimate the latter model. Even if it is 

computationally very demanding, its value in real word applications could 

be investigated and compared to the presented approach. 
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